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Background: Lecanemab, a monoclonal antibody targeting soluble amyloid-β 
protofibrils, has demonstrated efficacy in reducing amyloid burden in patients 
with mild cognitive impairment (MCI). However, its effects on brain structure, 
cerebral perfusion, gray matter microstructure and white matter microstructure 
remain unclear.

Methods: This exploratory longitudinal study aimed to evaluate changes in brain 
volume, cerebral blood flow (CBF), and diffusion tensor imaging (DTI) measures 
over a 12-month treatment period in 8 patients with MCI receiving biweekly 
lecanemab infusions. MRI scans were acquired at baseline and at 6, 9, and 
12 months using three-dimensional T1-weighted, pseudo-continuous arterial 
spin labeling (pCASL), and DTI sequences. Changes in whole-brain and regional 
indices were assessed using the Wilcoxon signed-rank test.

Results: Compared to baseline, brain volume showed significant reductions 
at all follow-up points across all examined regions, including the whole brain, 
hippocampus, posterior cingulate cortex, and precuneus. CBF remained 
stable throughout the observation period in both global and regional analyses. 
Both fractional anisotropy (FA) and mean diffusivity (MD) showed significant 
deterioration at the whole-brain level. However, in the hippocampus, left 
precuneus and cingulum (cingulate gyrus), MD increased significantly at several 
timepoints, whereas FA remained relatively preserved, suggesting localized 
preservation of microstructural integrity. Neuropsychological test scores 
remained stable over time, with no significant deterioration observed across 
MMSE-J, MoCA-J, CDR-SB, or ADAS-J Cog scores. In parallel, cerebrospinal 
fluid biomarkers showed significant improvements in Aβ42, Aβ42/40 ratio, and 
p-tau181 at 6 and 12 months.

Conclusion: These findings suggest that lecanemab may help maintain cerebral 
perfusion and partially preserve gray matter microstructure and white matter 
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integrity during the early course of treatment in patients with MCI, despite 
concurrent volumetric and microstructural changes. Multimodal MRI may 
contribute to monitoring treatment response in patients with MCI receiving 
lecanemab.

KEYWORDS

lecanemab, mild cognitive impairment (MCI), longitudinal MRI, cerebral blood flow 
(CBF), microstructure, hippocampus, posterior cingulate cortex, precuneus

1 Introduction

Alzheimer’s disease (AD) is a progressive neurodegenerative 
disorder characterized by the accumulation of amyloid-β (Aβ) plaques 
and abnormal hyperphosphorylation of tau protein, ultimately leading 
to synaptic dysfunction, brain atrophy, and cognitive decline (Bondi 
et  al., 2017; De Wilde et  al., 2016; Double et  al., 1996). The 
accumulation of Aβ in the brain is believed to play a central role in AD 
pathogenesis and therapeutic agents targeting this process have been 
developed in recent years with the aim of slowing disease progression 
(Perneczky et al., 2024; Sims et al., 2023; Vitek et al., 2023). Among 
these, lecanemab, a humanized monoclonal antibody that selectively 
binds to soluble Aβ protofibrils, has demonstrated efficacy in reducing 
amyloid burden and slowing cognitive decline in patients with mild 
cognitive impairment (MCI) in previous clinical trials (van Dyck 
et al., 2023; Vitek et al., 2023).

Recent advances in MRI techniques provide a non-invasive, 
multimodal approach to assessing both macrostructural and 
microstructural brain changes. Structural MRI-based volumetric 
analyses can identify global and regional brain atrophy (Buckner et al., 
2005; Frisoni et  al., 2010) while diffusion tensor imaging (DTI) 
measures, such as fractional anisotrophy (FA) and mean diffusion 
(MD), can capture subtle microstructural alterations (Alexander et al., 
2007; Amlien and Fjell, 2014; Chen et al., 2023). Furthermore, arterial 
spin labeling (ASL) of MRI enables the quantification of cerebral 
blood flow (CBF), offering valuable insights into vascular and 
metabolic brain function (Alsop et  al., 2015; Dolui et  al., 2020). 
Growing evidence indicates that changes in gray matter 
microstructure—particularly increased MD and decreased FA—are 
associated with reductions in regional CBF along the AD continuum, 
suggesting a close relationship between cerebral perfusion and tissue 
integrity (Niu et al., 2023). Consistently, diffusion MRI studies have 
also reported associations between regional amyloid burden and 
microstructural alterations in both white and gray matter (Collij 
et al., 2021).

These MRI techniques are widely used to monitor disease 
progression across the AD continuum and to evaluate the effects 
of anti-amyloid therapies, such as lecanemab. In line with these 
applications, a previous report showed volume reductions in the 
whole brain and hippocampus at 6, 9, and 12 months during 
lecanemab treatment (Swanson et al., 2021). While lecanemab has 
been shown to effectively reduce amyloid burden (Swanson et al., 
2021; van Dyck et al., 2023), it remains unclear whether lecanemab 
affects other structural and functional imaging markers, such as 
gray matter microstructure, white matter microstructure and 
cerebral perfusion, as well as regional volumes of key areas 
including the posterior cingulate cortex and precuneus, which are 
central hubs of the default mode network and have been shown to 

exhibit reduced CBF during the prodromal stages of Alzheimer’s 
disease (Alsop et al., 2010; Binnewijzend et al., 2016; Ibrahim et al., 
2021). Notably, a preclinical study showed that anti-amyloid 
antibody treatment induced vascular amyloid clearance, followed 
by restoration of vascular morphology, thereby supporting a 
vascular amyloid clearance model of ARIA (Zago et al., 2013), and 
we  hypothesized that clearance of amyloid from both the 
vasculature and brain parenchyma could lead to improved cerebral 
blood flow. Clarifying whether lecanemab can help preserve 
cerebral perfusion and microstructural brain integrity in MCI 
patients is essential to understanding its broader 
therapeutic impact.

This study aimed to evaluate longitudinal changes in brain 
volume, cerebral perfusion, gray matter microstructure and white 
matter microstructure in relation to cognitive performance in MCI 
patients treated with lecanemab, focusing on the 6- to 12-month 
period of treatment. In addition to whole brain analysis, we examined 
specific regions known to be affected early in the AD continuum, such 
as the hippocampus, posterior cingulate cortex, and precuneus. This 
study provides preliminary insights into the functional and structural 
effects of lecanemab in patients with MCI.

2 Materials and methods

2.1 Study design and participants

This prospective study was conducted at Yasu City Hospital. 
Participants were enrolled based on the following neuropsychological 
and cerebrospinal fluid (CSF) biomarker criteria: Mini-Mental State 
Examination (MMSE) score between 22 and 28, Montreal Cognitive 
Assessment (MoCA) score between 18 and 25, Clinical Dementia 
Rating-Global Score (CDR-GS) between 0.5 and 1, and Geriatric 
Depression Scale (GDS) score of 8 or lower. CSF biomarkers included 
an amyloid-β 1–42 to 1–40 ratio (Aβ42/40 ratio) of 0.67 or lower and 
phosphorylated tau 181 (p-tau181) of 59.0 pg/mL or higher. For a 
more detailed assessment of cognitive function, the CDR-Sum of 
Boxes (CDR-SB) and Alzheimer’s Disease Assessment Scale-Cognitive 
Subscale (ADAS-Cog) were also administered (Table 1).

All participants were screened using structural MRI, including 
T1-weighted, FLAIR, SWI, and time-of-flight MRA sequences. 
We  excluded individuals with any evidence of large territorial 
infarction, intracerebral hemorrhage, intracranial mass lesions, or 
significant asymmetry or stenosis in the internal carotid artery system.

The study included 8 participants (6 females and 2 males) aged 
between 60 and 79 years. Each participant received lecanemab 
infusions every 2 weeks, and evaluations were conducted between 
6 months and 1 year after the initiation of treatment.
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2.2 Ethical considerations

This prospective observational study was approved by the Ethics 
Committee of Yasu City Hospital. As the study involved only the analysis 
of data obtained during routine clinical care, and posed no additional risk 
or burden to participants, the requirement for written informed consent 
was waived in accordance with institutional ethical guidelines.

2.3 MRI acquisition

All MRI data were collected using a 3 T MRI system (Lumina; Siemens, 
Erlangen, Germany), equipped with a 32-channel head coil. Structural 3D 
T1-weighted images were acquired using three-dimensional magnetization-
prepared rapid gradient-echo (3D-MPRAGE) sequences with the following 
parameters: repetition time (TR) = 1,240 ms, echo time (TE) = 2.88 ms, 
inversion time (TI) = 900 ms, flip angle (FA) = 10°, field of view 
(FOV) = 256 × 256 mm, resolution 1 × 1 × 2 mm3. ASL images were 
acquired by employing 3D fast spin echo pseudo-continuous ASL (pCASL) 
sequence with acquisition parameters: TR = 4,500 ms, TE = 21.80 ms, 
FA = 120°, voxel size = 1.8 × 1.8 × 5 mm3, NEX = 3 and post label 
delay = 2,000 ms. For the WM microstructural evaluation, a standard DTI 
protocol was performed with the following parameters TR = 10,800 ms, 
TE = 108 ms, voxel size = 2 × 2 × 2 mm3, gap = 0, 30 diffusion directions 
with b = 1,500 s/mm2.

All participants underwent MRI scans before the initiation of 
lecanemab treatment, with follow-up scans conducted at the 13th 
(6 months), 20th (9 months), and 26th (1 year) administrations after 
treatment initiation. At each time point, imaging was performed using 
3D T1-weighted images, pCASL, and DTI sequences to analyze 
longitudinal changes in brain volume, CBF, gray matter microstructure 
and white matter microstructure.

2.4 MRI processing

All MRI data in DICOM format were converted to NIfTI format 
using dcm2niix (version 1.0.20240202) (Li et al., 2016). T1-weighted 

images underwent bias field correction, skull stripping, and tissue 
segmentation using the fsl_anat tool from FSL (version 6.0.7.13) 
(Smith et  al., 2004). ASL images were processed using the BASIL 
module (oxford_asl) based on a Bayesian inference model (Chappell 
et al., 2009), and CBF maps were generated.

DTI data were processed using topup (Andersson et al., 2003), 
eddy (Andersson et al., 2018; Andersson et al., 2017; Andersson et al., 
2016; Andersson and Sotiropoulos, 2016), and DTIFIT, all of which 
are part of FSL, to correct for magnetic field and eddy current 
distortions and to compute voxel-wise diffusion measures such as FA 
and MD. DTI analysis was performed using the standard pipeline 
provided by FSL.

To enable integrated analysis within the same spatial framework, 
ASL and DTI data were accurately registered to FreeSurfer space using 
bbregister from FreeSurfer (version 8.0.0). Longitudinal processing in 
FreeSurfer was applied to improve within-subject consistency across 
timepoints. Brain volume measures were obtained from FreeSurfer 
(Fischl et al., 2002), while CBF, FA, and MD values derived from FSL 
were resampled into the same space. ROI analyses targeted the 
hippocampus, posterior cingulate cortex and precuneus, which are 
key regions along the Alzheimer’s disease continuum and were defined 
anatomically using FreeSurfer.

2.5 Statistical analysis

2.5.1 Imaging marker statistical analysis
Longitudinal changes in brain volume, CBF, FA, and MD were 

evaluated at baseline, 6 months, 9 months, and 12 months. Values 
were extracted from the whole brain and ROIs, including the 
hippocampus, posterior cingulate cortex, and precuneus. 
Statistical analyses between baseline and each follow-up time 
point were conducted in R (version 4.4.2), using the Wilcoxon 
signed-rank test to evaluate changes at both whole-brain and 
ROI levels.

2.5.2 Neuropsychological and CSF biomarker 
statistical analysis

Changes in neuropsychological test scores and CSF biomarkers 
between baseline and each follow-up time point (6 months, 9 months, 
and 12 months) were similarly evaluated using the Wilcoxon signed-
rank test. The variables included in the statistical analysis were 
ADAS-J Cog, MMSE-J, MoCA-J, CDR-SB, Aβ42, Aβ42/40 ratio, and 
p-tau181.

2.5.3 Statistical considerations
As this study is exploratory with a small sample size, statistical 

analyses of imaging markers, neuropsychological tests, and CSF 
biomarkers report uncorrected p-values without adjustment for 
multiple comparisons.

3 Results

3.1 Neuropsychological measures

The results of the statistical analysis of neuropsychological 
tests are presented in Figure  1. No significant changes were 

TABLE 1  Participant demographics and baseline characteristics.

Category Value

Sex (F/M) 6/2

Age, mean ± SD (range) 71.62 ± 6.97 (60–79)

ApoE genotype 3/3: 5, 3/4: 1, 4/4: 2

MMSE-J 25.0 ± 2.07 (22–28)

MoCA-J 19.25 ± 1.28 (18–21)

CDR-SB 2.69 ± 1.25 (1–5)

CDR-GS 0.56 ± 0.18 (0.5–1)

ADAS-J Cog 14.12 ± 5.03 (8–24)

Aβ42 (pg/mL) 713.0 ± 148.85 (551–938)

Aβ42/40 ratio 0.044 ± 0.008 (0.029–0.055)

p-tau181 (pg/mL) 91.64 ± 44.99 (51–166)

CDR, Clinical Dementia Rating; MMSE-J, Mini-Mental State Examination-Japanese version; 
MoCA-J, Montreal Cognitive Assessment-Japanese version; CDR-SB, Clinical Dementia 
Rating-Sum-of-Boxes; CDR-GS, Clinical Dementia Rating-Global Score; ADAS-J Cog, 
Alzheimer’s Disease Assessment Scale-Cognitive subscale-Japanese version; Aβ, amyloid-
beta; p-tau181, phosphorylated tau at threonine 181.
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observed in the neuropsychological test scores, except for ADAS-J 
Cog at the 12-month time point, which showed a significant  
improvement.

3.2 CSF biomarkers measures

The results of the statistical analysis of CSF biomarkers are 
presented in Figure 2. Significant improvements were observed in 

Aβ42, Aβ42/40 ratio, and p-tau181 at both the 6-month and 12-month 
time points.

3.3 Whole-brain measures

The results of the statistical analysis of whole-brain measures are 
presented in Figure 3. Whole-brain volume showed a significant decrease 
at 6, 9, and 12 months compared to baseline. Whole-brain CBF did not 

FIGURE 1

Change from baseline in cognitive test scores. (A) MMSE-J and (B) MoCA-J results at four time points (baseline, 6, 9, and 12 months). (C) CDR-SB and 
(D) ADAS-J Cog results at three time points (baseline, 6, and 12 months). Solid lines indicate medians; dotted lines indicate means. Statistical 
significance was assessed by Wilcoxon signed-rank tests: p < 0.05, p < 0.01, and p < 0.001; n.s., not significant. Effect sizes were reported as r values.
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show any significant changes at any follow-up time point. Whole-brain 
FA showed a significant decrease, and whole-brain MD showed a 
significant increase at 6, 9, and 12 months compared to baseline.

3.4 Hippocampal measures

The results of the statistical analysis of hippocampal measures are 
presented in Figure 4 for the left hippocampus and Figure 5 for the right 

hippocampus. Hippocampal volume showed a significant decrease at 6, 
9, and 12 months compared to baseline. Hippocampal CBF showed no 
significant changes at 6, 9, or 12 months. Hippocampal FA also showed 
no significant changes at 6, 9, or 12 months. Although the decrease in 
right hippocampal FA at 12 months did not reach statistical significance 
(p = 0.0547), the effect size was large (r = −0.679), suggesting a 
meaningful trend of microstructural deterioration. Hippocampal MD 
showed a significant increase at 6, 9 and 12 months except for the left 
hippocampus at 9 months. Although the increase at 9 months in left 

FIGURE 2

Change from baseline in cerebrospinal fluid (CSF) biomarker levels. (A) Aβ42, (B) Aβ42/40 ratio, and (C) p-tau181 results at three time points (baseline, 
6, and 12 months). Solid lines indicated medians; dotted lines indicated means. Statistical significance was assessed by Wilcoxon signed-rank tests: 
p < 0.05, p < 0.01, and p < 0.001; n.s., not significant. Effect sizes were reported as r values.
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hippocampal did not reach statistical significance (p = 0.0547), the effect 
size was large (r = 0.679), suggesting a consistent and meaningful trend 
of microstructural deterioration over time.

3.5 Posterior cingulate cortex measures

The results of the statistical analysis of posterior cingulate 
cortex measures are presented in Figure 6 for the left posterior 

cingulate cortex and Figure  7 for the right posterior cingulate 
cortex. Posterior cingulate cortex volume showed a significant 
decrease at 6, 9, and 12 months compared to baseline. Posterior 
cingulate cortex CBF showed no significant changes at 6, 9, or 
12 months. Posterior cingulate cortex FA also showed no 
significant changes at 6, 9, or 12 months. Posterior cingulate 
cortex MD showed no significant changes at 6, 9, or 12 months 
except for the left posterior cingulate cortex at 6 months, which 
showed a significant increase.

FIGURE 3

Change from baseline in whole-brain measures. (A) Whole-brain volume, (B) whole-brain CBF, (C) whole-brain FA, and (D) whole-brain MD results at 
four time points (baseline, 6, 9, and 12 months). Solid lines indicated medians; dotted lines indicated means. Statistical significance was assessed by 
Wilcoxon signed-rank tests: p < 0.05, p < 0.01, and p < 0.001; n.s., not significant. Effect sizes were reported as r values.
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3.6 Precuneus measures

The results of the statistical analysis of precuneus measures are 
presented in Figure 8 for the left precuneus and Figure 9 for the 
right precuneus. Precuneus volume showed a significant decrease 
at 6, 9, and 12 months compared to baseline. Precuneus CBF 
showed no significant changes at 6, 9, or 12 months. Precuneus FA 
showed no significant changes at 6, 9, or 12 months except for the 

right precuneus at 12 months, which showed a significant 
decrease. Left precuneus MD showed a significant increase at 6 
and 9 months. Although the increase at 12 months in left 
precuneus MD did not reach statistical significance (p = 0.0547), 
the effect size was large (r = −0.679), suggesting a consistent and 
meaningful trend of microstructural deterioration over time. 
Right precuneus MD showed no significant changes at 6, 9, or 
12 months. Although the increase at 6 months in right precuneus 
did not reach statistical significance (p = 0.0547), the effect size 

FIGURE 4

Change from baseline in left hippocampal measures. (A) Left hippocampus volume, (B) left hippocampus CBF, (C) left hippocampus FA, and (D) left 
hippocampus MD results at four time points (baseline, 6, 9, and 12 months). Solid lines indicate medians; dotted lines indicate means. Statistical 
significance was assessed by Wilcoxon signed-rank tests: p < 0.05, p < 0.01, and p < 0.001; n.s., not significant. Effect sizes were reported as r values.
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was large (r = 0.679), suggesting a meaningful trend of 
microstructural deterioration.

3.7 Cingulum measures

To further investigate, we analyzed the cingulum bundle, a white 
matter tract that anatomically connects the hippocampus, posterior 

cingulate cortex, and precuneus. The results of the statistical analysis of 
cingulum measures are presented in Figure  10 for the cingulum 
(cingulate gyrus) and in Figure 11 for the cingulum (hippocampus), both 
defined according to the JHU white matter atlas from FSL. The cingulum 
(cingulate gyrus) showed a significant increase in MD at 12 months 
compared to baseline, whereas the cingulum (hippocampus) showed no 
significant changes. These findings may suggest progressive 
microstructural alterations during lecanemab treatment.

FIGURE 5

Change from baseline in right hippocampal measures. (A) Right hippocampus volume, (B) right hippocampus CBF, (C) right hippocampus FA, and 
(D) right hippocampus MD results at four time points (baseline, 6, 9, and 12 months). Solid lines indicated medians; dotted lines indicated means. 
Statistical significance was assessed by Wilcoxon signed-rank tests: p < 0.05, p < 0.01, and p < 0.001; n.s., not significant. Effect sizes were reported as r 
values.
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4 Discussion

4.1 Summary of longitudinal imaging and 
cognitive changes

In this exploratory longitudinal study of patients with MCI 
receiving lecanemab, we observed progressive reductions in brain 
volume—including whole brain, hippocampus, posterior cingulate 
cortex, and precuneus—over a 6-to-12-month treatment period. 

In contrast, CBF remained stable across all examined regions. DTI 
measures revealed a more heterogeneous pattern: MD increased 
in the whole brain, the bilateral hippocampus, the left precuneus, 
and the cingulum (cingulate gyrus), while FA remained relatively 
stable in regions closely associated with cognitive function. 
Notably, cognitive performance did not show significant 
deterioration, while significant improvements were observed in 
Aβ42, the Aβ42/40 ratio, and p-tau181 over the course of 
the study.

FIGURE 6

Change from baseline in left posterior cingulate cortex (PCC) measures. (A) Left PCC volume, (B) left PCC CBF, (C) left PCC FA, and (D) left PCC MD 
results at four time points (baseline, 6, 9, and 12 months). Solid lines indicated medians; dotted lines indicated means. Statistical significance was 
assessed by Wilcoxon signed-rank tests: p < 0.05, p < 0.01, and p < 0.001; n.s., not significant. Effect sizes were reported as r values.
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4.2 Stability of CBF under lecanemab 
treatment

While alterations in CBF, including both decreases and 
transient increases, have been reported during the MCI stage of 
Alzheimer’s disease, the absence of significant change in our cohort 
may reflect hemodynamic stability during lecanemab treatment 

(Alsop et al., 2010; Binnewijzend et al., 2016). This stability was 
observed even in regions such as the posterior cingulate cortex and 
precuneus, which are among the earliest to exhibit CBF reduction 
in the prodromal stage of Alzheimer’s disease (Alsop et al., 2010; 
Binnewijzend et al., 2016). These findings suggest that lecanemab 
may help stabilize vascular and metabolic function in the early 
stages of disease progression.

FIGURE 7

Change from baseline in right posterior cingulate cortex (PCC) measures. (A) Right PCC volume, (B) right PCC CBF, (C) right PCC FA, and 
(D) right PCC MD results at four time points (baseline, 6, 9, and 12 months). Solid lines indicated medians; dotted lines indicated means. 
Statistical significance was assessed by Wilcoxon signed-rank tests: p < 0.05, p < 0.01, and p < 0.001; n.s., not significant. Effect sizes were 
reported as r values.
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4.3 Dissociation between FA and MD 
trajectories

With respect to gray matter microstructure and white matter 
microstructure, our findings revealed a dissociation between FA 
and MD trajectories. FA remained relatively stable in key regions 
such as the hippocampus, posterior cingulate cortex, precuneus, 
and the cingulum (cingulate gyrus), while MD showed significant 
increases primarily in the bilateral hippocampus, left precuneus, 
and the cingulum (cingulate gyrus). This pattern is consistent with 
previous studies suggesting that MD may be more sensitive than FA 

in detecting early microstructural alterations along the Alzheimer’s 
disease continuum (Nir et al., 2013; Niu et al., 2023).

4.4 Relationship between gray matter 
microstructure, white matter integrity, and 
cognitive preservation

Previous studies have demonstrated associations between DTI 
measures and cognitive performance in individuals with Alzheimer’s 
disease and MCI (Chen et al., 2023; Nir et al., 2013). In this context, 

FIGURE 8

Change from baseline in left precuneus measures. (A) Left precuneus volume, (B) left precuneus CBF, (C) left precuneus FA, and (D) left precuneus MD 
results at four time points (baseline, 6, 9, and 12 months). Solid lines indicated medians; dotted lines indicated means. Statistical significance was 
assessed by Wilcoxon signed-rank tests: p < 0.05, p < 0.01, and p < 0.001; n.s., not significant. Effect sizes were reported as r values.
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the relative preservation of FA in regions implicated in memory and 
higher-order cognitive functions, such as the hippocampus, posterior 
cingulate cortex, and precuneus, may at least partly account for the 
stable cognitive profiles observed in the present cohort. Although 
causality cannot be inferred, the partial preservation of gray matter 
microstructure and white matter integrity in these areas may 
contribute to the maintenance of cognitive function despite concurrent 
volume loss and MD increases. These findings emphasize the value of 
integrating diffusion imaging with structural and perfusion measures 

to better understand the multifaceted nature of disease progression 
and treatment response.

4.5 Regional patterns of structural and 
microstructural change

The hippocampus, precuneus, and posterior cingulate cortex 
are among the regions vulnerable to early alterations in 

FIGURE 9

Change from baseline in right precuneus measures. (A) Right precuneus volume, (B) right precuneus CBF, (C) right precuneus FA, and (D) right 
precuneus MD results at four time points (baseline, 6, 9, and 12 months). Solid lines indicated medians; dotted lines indicated means. Statistical 
significance was assessed by Wilcoxon signed-rank tests: p < 0.05, p < 0.01, and p < 0.001; n.s., not significant. Effect sizes were reported as r values.
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Alzheimer’s disease (Alsop et al., 2010; Buckner et al., 2005; Chen 
et al., 2023; Frisoni et al., 2010). In the present study, all three 
regions showed progressive volume loss. Changes in MD were 
observed primarily in the hippocampus, left precuneus, and the 
cingulum (cingulate gyrus), where MD increased in parallel with 
volume reduction, while CBF and FA remained relatively stable. 

This discrepancy between structural degeneration and preserved 
perfusion or axonal integrity may represent an intermediate stage 
of disease progression. These findings suggest that regional 
assessment of volume, MD, CBF, and FA may provide sensitive 
markers of treatment response in MCI patients receiving  
lecanemab.

FIGURE 10

Change from baseline in cingulum (cingulate gyrus) measures. (A) Left cingulum (cingulate gyrus) FA and (B) left cingulum (cingulate gyrus) MD, 
(C) right cingulum (cingulate gyrus) FA, and (D) right cingulum (cingulate gyrus) MD results at four time points (baseline, 6, 9, and 12 months). Solid lines 
indicate medians; dotted lines indicate means. Statistical significance was assessed by Wilcoxon signed-rank tests: p < 0.05, p < 0.01, and p < 0.001; 
n.s., not significant. Effect sizes were reported as r values.
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4.6 Limitations

Several limitations of this study should be acknowledged. First, 
the small sample size (n = 8) limits statistical power and increases the 
risk of both Type I and Type II errors. The absence of a control group 
further restricts the ability to isolate treatment effects from the 
natural course of disease progression. In addition, multiple 
comparisons were performed without correction due to the 
exploratory nature of the study, which necessitates cautious 

interpretation of the findings. Moreover, the sex distribution of 
participants was unbalanced (6 females and 2 males), which may have 
amplified individual variability and limited the generalizability of the 
findings. Finally, as all participants were recruited from a single site 
in Japan, potential differences related to ethnic, genetic, or 
environmental backgrounds should be considered when generalizing 
these findings to non-Asian populations. These limitations 
underscore the need for larger, controlled studies to validate and 
extend the present observations.

FIGURE 11

Change from baseline in cingulum (hippocampus) measures. (A) Left cingulum (hippocampus) FA and (B) left cingulum (hippocampus) MD, (C) right 
cingulum (hippocampus) FA, and (D) right cingulum (hippocampus) MD results at four time points (baseline, 6, 9, and 12 months). Solid lines indicate 
medians; dotted lines indicate means. Statistical significance was assessed by Wilcoxon signed-rank tests: p < 0.05, p < 0.01, and p < 0.001; n.s., not 
significant. Effect sizes were reported as r values.
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5 Conclusion

In conclusion, this exploratory study suggests that cognitive 
function was preserved during the first year of lecanemab treatment 
in patients with MCI, despite progressive structural and 
microstructural brain changes. No significant changes in CBF were 
observed in any examined regions, including the posterior cingulate 
cortex and precuneus—areas typically affected early in AD—
suggesting that lecanemab may help maintain cerebral perfusion 
during the early disease stages.

In contrast, MD increased in several regions such as the 
hippocampus, precuneus, and the cingulum (cingulate gyrus), even as 
FA remained relatively stable, indicating that gray matter 
microstructure and white matter integrity may have been only 
partially and temporarily preserved. This dissociation between 
vascular/metabolic stability and microstructural degeneration 
suggests that lecanemab may help preserve perfusion and partially 
maintain gray matter microstructure and white matter integrity in 
regions including the hippocampus, posterior cingulate cortex, 
precuneus, and the cingulum (cingulate gyrus), even as structural 
decline progresses.

These findings underscore the utility of multimodal imaging in 
detecting early therapeutic effects and suggest that preservation of 
CBF and axonal integrity may be associated with maintenance of 
cognitive function in MCI patients receiving lecanemab.
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