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meta-analysis 
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Liangru Liu2 , Xiaojie Guo3 and Jianfeng Niu1* 
1 Sports Coaching College, Beijing Sport University, Beijing, China, 2 School of Physical Education, 
Guangxi University, Guangxi, China, 3 Sports Department, Nankai University, Tianjin, China 

Objectives: Nordic walking (NW), as a specialized form of aerobic exercise, 

emerges as a promising strategy to improve the cognitive function in older 

population. However, the effectiveness of NW has yet to be definitively 

confirmed due to the variances in the study designs and observations. This 

systematic review and meta-analysis was thus conducted to examine the effect 

of NW interventions on cognitive function of older adults. 

Methods: The search was conducted in August 2025 on Web of Science, 

PubMed, SPORT-Discus, Medline, the Cochrane Library, Scopus, and PsycINFO 

databases. Two reviewers independently reviewed the search results, extracted 

the data, and assessed the risk of bias and certainty of evidence. Meta-analyses 

and meta-regressions were performed to determine the overall effect size and 

the impact of potential moderators. 

Results: Initial screening identified 336 records, and after full-text assessment, 

eight studies (from 2014 to 2024) comprising 327 participants (71.19 ± 5.44 yrs) 

were included. The effect size of NW on executive function was significant 

[Hedges’ g = 0.89, 95% CI (0.27, 1.50), p = 0.01], while the effects were 

non-significant for global function, memory function, attention, information 

processing, and perceptual ability (p > 0.05). Subgroup analysis indicated 

that the health conditions of participants and the types of control groups 

significantly moderated executive function. Specifically, NW showed significant 

improvements (i) in older adults with health conditions and (ii) compared 

with inactive control groups (p = 0.04). Meta-regression revealed a significant 

positive correlation between the total intervention time of NW and its effect size 

(p < 0.01). 

Conclusion: This systematic review and meta-analysis demonstrates that NW 

interventions could improve executive function in older adults, especially those 

with health conditions. 

Systematic review registration: https://www.crd.york.ac.uk/prospero, identifier 

CRD42025638467. 
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Introduction 

Aging is associated with progressive physiological changes, 
including reduced neurogenesis, impaired synaptic plasticity, 
and decreased cerebral perfusion in older adults (Castellano 
et al., 2017; Poulose et al., 2017; Raichlen and Alexander, 2017; 
Gonzales et al., 2022). These changes collectively contribute 
to cognitive decline, particularly aecting memory, executive 
function, and processing speed (Bettio et al., 2017; Fan et al., 
2017; Leeuwis et al., 2017; Huang et al., 2022). The resultant 
cognitive decline in the older population leads to profound 
adverse consequences, including a marked deterioration in 
quality of life, increased dependency on caregiving support, 
and a higher risk of neurodegenerative diseases, particularly 
Alzheimer’s disease (Li et al., 2017; Sáez De Asteasu et al., 
2017). Given these impacts, developing eective interventions to 
maintain or improve cognitive function in older adults remains 
essential. 

Current approaches against cognitive decline primarily 
encompass pharmacological interventions, cognitive training 
paradigms, and lifestyle modifications (Srikanth et al., 2020; 
Barnes et al., 2023; Antonenko et al., 2024; Faraziani and Eken, 
2024). While these strategies demonstrate some eÿcacy, they are 
constrained by some limitations. Specifically, pharmacological 
interventions are frequently associated with adverse side eects 
and potential long-term complications, raising concerns about 
their safety profile and sustainability (Parnetti et al., 1997; 
Blackman et al., 2021; Van Dyck et al., 2023). Cognitive training 
approaches, though theoretically promising, often exhibit limited 
ecological validity and practical applicability, with questionable 
generalizability to real-world cognitive functions (Bahar-
Fuchs et al., 2013; Butler et al., 2018). Lifestyle modifications 
face challenges in implementation and long-term adherence, 
particularly in elderly populations with varying health conditions 
and functional capacities (Knight et al., 2016; Barber et al., 
2023). These limitations highlight the need for developing 
alternative intervention strategies that are not only eÿcacious 
but also characterized by enhanced safety, accessibility, and 
sustainability. 

Recent literature increasingly corroborates that exercise is a 
particularly promising intervention strategy (Sanders et al., 2020; 
Zhang et al., 2023; Hatami et al., 2025). Exercise has been shown 
to promote neuroplasticity and regulate inflammatory processes, 
thereby creating an optimal neurobiological environment for 
cognitive preservation and enhancement in older populations 
(Hortobágyi et al., 2022; Vints et al., 2024; Lavie et al., n.d.). 
Among various forms of exercise, walking is the preferred choice 
for most older adults to enhance their cognitive function due 
to its safety and low intensity, especially for those with limited 
physical function associated with aging or disease (Adderley 
et al., 2025; Ahmadpour et al., 2025; Cunha et al., 2025; 
Sandro et al., 2025). Notably, recent research has shown that 
compared with standard walking, a form of walking known 
as Nordic walking (NW) is less physically demanding for 
older adults and may provide greater cognitive benefits (Passos-
Monteiro et al., 2020; Nemoto et al., 2021; Kettinen et al., 
2023). NW distinguishes itself through the incorporation of 
two specially designed poles that facilitate active engagement 

of the upper body musculature, thereby resulting in more 
propulsion and energy expenditure (Schier et al., 2006). 
The arm-swinging motion involved in NW is beneficial for 
maintaining coordination of upper and lower limbs, which 
may generate similar cognitive eects to dual-task walking 
(Doi et al., 2014; Franzoni et al., 2018; Gomeñuka et al., 
2019). Studies have demonstrated that NW induced significant 
improvements in executive function and memory of older adults 
with or without health conditions as compared to walking or 
blank control groups (Passos-Monteiro et al., 2020; Guszkowska 
et al., 2022; Kettinen et al., 2023; Ploydang et al., 2023). 
However, despite these promising preliminary results, existing 
evidence remains inconsistent. Several studies reported that 
no significant changes in cognitive function were observed 
following NW intervention (Passos-Monteiro et al., 2020; Haas 
et al., 2024). These inconsistencies may stem from variations 
in study design, such as intervention duration, intensity, or 
participant characteristics. Additionally, the lack of standardized 
protocols for NW and the heterogeneity in cognitive function 
assessment metrics further complicate the interpretation of study 
findings. 

Therefore, to highlight the recent study findings and explicitly 
and comprehensively examine the eects of NW on cognitive 
function in older adults and the potential contributors to 
such eects, we completed a systematic review and meta-
analysis based upon up-to-date peer-reviewed publications. This 
work will ultimately provide critical knowledge to inform 
the appropriate intervention design in future research and 
rehabilitative practice for the maintenance of cognitive function in 
older populations. 

Materials and methods 

Study protocol 

This systematic review and meta-analysis was conducted 
using Preferred Reporting Items for Systematic Reviews and 
Meta-Analysis (PRISMA) guidelines (Page et al., 2021) and 
registered with PROSPERO (Registration ID: CRD42025638467), 
an international prospective registry for systematic reviews. 

Literature search 

Two authors (HL and JG) independently searched Web of 
Science, PubMed, MEDLINE, SPORT-Discus, Cochrane Library, 
Scopus, and PsycINFO from inception to August 5, 2025; 
Studies were searched in the electronic databases using the 
following key terms combined by Boolean logic (“AND”, “OR”): 
(“Nordic walking” OR “Nordic pole walking” OR “pole walking”) 
AND (“Cognitive function” OR “cognition” OR “Cognitive 
performance”). A secondary search strategy was also used, which 
involved a manual search in the reference lists of eligible studies 
(i.e., citation tracking). Searches were limited to publications 
in English. Any disagreements arising during this process were 
resolved through discussion between the two authors (HL 
and JG), with additional input provided by a third author 
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(JN). Detailed search strategies are provided in Supplementary 
Table 1. 

Selection criteria 

All included studies must be published articles. The inclusion 
criteria were carried out according to the PICOS principle: (1) 
Population: All the participants included in this study were at 
least 60 years old. None of them had used any drugs known 
to significantly aect cognitive function, or had discontinued 
such drugs for more than 4 weeks, or had indicated their actual 
medication status at baseline to ensure the comparability of 
drug exposure between the two groups; (2) Interventions: the 
interventions used were NW only or NW combined with other 
interventions. When NW was used in combination with other 
interventions, the control group was supposed to receive other 
interventions alone to ensure that the observed changes were 
caused by NW; (3) Comparisons: Each group is characterized as 
either active (e.g., interventions involving physical activities other 
than Nordic walking, NW) or inactive (e.g., non-intervention, 
or routine treatment for the diseases the subjects suer from); 
(4) Outcomes: Outcome measures reflecting cognitive function 
were employed. (5) Study design: The study employed randomized 
controlled trials or randomized crossover trial designs. Articles 
with the following conditions will be excluded: (1) did not 
investigate cognitive function outcomes or provide specific data 
of outcome measures (e.g., reporting only p-values without 
means/SDs); (2) review papers, conference abstracts, and articles; 
(3) those with duplicate publications; (4) non-English publications. 

Data extraction 

The process of data extraction was conducted independently by 
two authors (HL and JG) according to the Cochrane Collaboration 
Handbook. The extracted information of the publications included: 
study (authors, year), participants (age, sex, physical condition), 
grouping and sample size, interventions (type, frequency, number 
of sessions, duration of each session, duration of intervention), 
auxiliary means (e.g., Nordic walking poles or Hiking pole, etc.), 
and outcome measures. Any outcome measures on which the two 
authors disagreed were discussed with the other two authors (JN 
and KZ) until a consensus was achieved. For each study, extract 
the mean and standard deviation (SD) of the post-intervention 
indicator results. For studies that do not report changes in results 
before and after, or those presenting results in the form of 
"Mean ± SE/SEM (Standard Error/Standard Error of the Mean)", 
use the following formula for calculation (Borenstein et al., 2013): 

SD(pre) = SE(pre) 
√ 
n = ×; SD(post) = SE(post) 

√ 
n 

R = 0.4/0.5 

When the full-text article data were presented only in a 
figure format, WebPlotDigitizer (Ankit Rohatgi, 2019, V.4.2; 
WebPlotDigitizer, Pacifica, CA, USA) was used to extract the data 
from the figures. In the absence of any relevant data, the first author 

or the corresponding author of the article would be contacted via 
email to obtain the required data. 

Quality assessment 

The quality of the included studies was independently evaluated 
by two authors (HL and JG) according to the principles of 
the Physiotherapy Evidence Database (PEDro). The PEDro scale, 
specifically designed to assess the methodological quality of 
randomized controlled trials in physical interventions, is highly 
suitable for evaluating the studies in this research (de Morton, 2009; 
Cashin and McAuley, 2020). This scale examines crucial elements 
such as randomization, blinding, and allocation concealment, 
which are essential for ensuring the internal validity of the studies 
included in this systematic review and meta-analysis (Cashin and 
McAuley, 2020). 

Specifically, the PEDro scale consists of 11 items, to which 
we were required to respond with “no” or “yes”. For each “no” 
response, a value of 0 was assigned, and for each “yes” response, a 
value of 1 was assigned. The total score for each study ranged from 0 
to 11. Since blinding (especially of participants and investigators) is 
diÿcult to implement in exercise intervention trials (Sherrington 
et al., 2010), the methodological quality classification of each 
article was adjusted, taking into account the eligibility criteria as 
previously described [sum scores: ≥6 (“high quality, low risk of 
bias”); scores: 4–5 (“acceptable quality, moderate risk of bias”); 
scores: ≤ 3 (“low quality, high risk of bias”)]. 

The quality of the evidence was also independently appraised 
by two authors (HL and JG) based on the Grading of 
Recommendations Assessment, Development and Evaluation 
(GRADE) criteria. The GRADE criteria characterize the evidence in 
terms of study limitations, imprecision, inconsistency, indirectness, 
and publication bias. In cases where the two authors disagreed on 
any score, a third author (JN or KZ) was consulted for discussion 
until a consensus was reached. 

Statistical analysis 

Meta-analysis was carried out using Stata/MP 17.0 (STATA 
Corp, College Station, TX, USA) and R 4.2.0 (R Core Team, 
R Foundation for Statistical Computing, Vienna, Austria). Given 
the diverse measurement units of outcome measures across 
studies, such as time, score, number of stimuli, etc., a random-
eects model was employed to calculate Hedges’ g and the 95% 
confidence interval (CI), which served as the indicator of the 
eect size for the dierence in pre-post changes between the 
intervention and control groups (Fritz et al., 2012). The eect 
sizes were categorized as follows: trivial (Hedges’ g < 0.2), 
small (0.2 ≤ Hedges’ g < 0.5), moderate (0.5 ≤ Hedges’ 
g < 0.8), or large (Hedges’ g ≥ 0.8) (Cohen, 2013). Additionally, 
prediction intervals were computed to reflect heterogeneity in 
comparison with confidence intervals. The between-study variance 
was estimated using the restricted maximum likelihood estimator 
with Hartung-Knapp adjustment (Veroniki et al., 2016). Statistical 
heterogeneity was evaluated by means of the heterogeneity chi-
squared (χ2) and I2 values. The degree of heterogeneity was 
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FIGURE 1 

Flow diagram of the study selection process. 

interpreted in accordance with the guidelines of the Cochrane 
Collaboration: 0%–40% might not be of significance; 30%–60% 
may indicate moderate heterogeneity; 50%–90% may represent 
substantial heterogeneity; and 75%–100% implies considerable 
heterogeneity (Higgins, 2003). In the event of substantial or 
considerable heterogeneity (I2 > 50%), subgroup analyses were 
conducted to explore the impact of study characteristics (e.g., the 
physical condition of the participants). Additionally, we performed 
meta-regression to explore the dose-response relationship of NW 
on cognitive function. The intervention duration, session number, 
and total time (i.e., session number × session duration) were used 
as the eect moderators. Subsequently, sensitivity analyses were 
performed to assess the stability of the pooled estimates and to 
determine whether any study influenced the overall eect size 
(Veroniki et al., 2016). Moreover, publication bias was assessed 
through the generation of funnel plots and the conduct of Egger’s 
test. If significant asymmetry was detected, the Trim and Fill 
method was utilized to adjust for publication bias (Duval and 
Tweedie, 2000). 

Results 

Study selection 

The results of the study selection process are summarized in a 
PRISMA flowchart (Figure 1). The study selection commenced with 
the identification of 336 records through database searches, which 
were distributed among Web of Science (n = 84), PubMed (n = 64), 
MEDLINE (n = 29), SPORT-Discus (n = 47), Cochrane Library 
(n = 46), Scopus (n = 61), and PsycINFO (n = 3). Additionally, 
two further studies were identified through citation searching. 
After removing 174 duplicate records, a total of 162 records were 
available for the screening phase. During the title and abstract 

screening stage, 143 records were excluded. Subsequently, a full-
text eligibility assessment was conducted on 18 articles, and 10 
studies were excluded. Eventually, 8 studies were included in the 
meta-analysis. 

Characteristics of included studies 

Participant characteristics 
The eight studies included in the analysis were conducted 

across seven countries: Germany (n = 1), Poland (n = 1), Japan 
(n = 1), Thailand (n = 1), Brazil (n = 2), Italy (n = 1), and Finland 
(n = 1). The total number of participants across all studies was 327. 
Excluding one study that did not report age information (Ebersbach 
et al., 2014), the mean age of participants in the remaining seven 
studies was 70.92 years (Table 1). Six studies included both male 
and female participants (Passos-Monteiro et al., 2020; Miyazaki 
et al., 2022; Angiolillo et al., 2023; Kettinen et al., 2023; Ploydang 
et al., 2023; Haas et al., 2024), one study exclusively involved female 
participants (Guszkowska et al., 2022), and one study did not report 
the gender distribution of participants (Ebersbach et al., 2014). 

Participants in three studies were essential health (Guszkowska 
et al., 2022; Miyazaki et al., 2022; Kettinen et al., 2023), while 
the other five studies included participants with health conditions 
(Ebersbach et al., 2014; Passos-Monteiro et al., 2020; Angiolillo 
et al., 2023; Ploydang et al., 2023; Haas et al., 2024), including 
Parkinson’s disease (n = 3) (Ebersbach et al., 2014; Passos-Monteiro 
et al., 2020; Haas et al., 2024), Type 2 diabetes (n = 1) (Ploydang 
et al., 2023), and Alzheimer’s disease (n = 1) (Angiolillo et al., 2023). 

Intervention characteristics 
Of the eight studies incorporated in this review, seven were 

conducted using a randomized controlled trial design (Passos-
Monteiro et al., 2020; Nemoto et al., 2021; Guszkowska et al., 2022; 
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TABLE 1 Characteristics of included studies (n = 8). 

References Sample 
size 

Age Sex men/ 
women 

Physical 
condition 

Interventions Duration Frequency Session 
number 

Session 
duration 

Outcome measures 

Ebersbach et al., 
2014 

NW (19) Unclear Unclear Parkinson’s disease Nordic walking 8 weeks 2 times/week 16 60 min Information processing speed: 
cRT↑; nRT→ 

CG (19) Domestic exercise 

Passos-Monteiro 

et al., 2020 

NW (16) 64.9 ± 10.2 13/3 Parkinson’s disease Nordic walking 9 weeks 2 times/week 18 The first 3 weeks: 
35 min 

The last 6 weeks: 
40–60 min 

Global cognition: MoCA→ 

CG (17) 70.5 ± 5.8 7/10 Free walking 

Guszkowska 

et al., 2022 

NW (20) 80.25 ± 5.755 0/20 Essential health Nordic walking 3 months 2 times/week 24 60 min Information processing speed: 
APT (3/8) perception 

speed↑Perceptual Abilities: APT 

(3/8) perception 

fallibility↑Attention: APT (3/8) 
attention fallibility↑ 

CG (20) 0/20 No intervention 

Miyazaki et al., 
2022 

NW (29) 67.93 ± 5.81 22/7 Essential health Nordic walking combined with a daily 

supplement containing 8 g of protein 

4 weeks 3 times/week 9∼12 45 min Global cognition: 
MoCA→Executive functions: 

FAB↑ 

CG (29) 23/6 Take a daily protein supplement 
containing about 8 grams of protein 

Angiolillo et al., 
2023 

NW (9) 78.89 ± 6.68 3/6 Alzheimer’s disease Nordic walking combined with reality 

orientation therapy, music therapy, 
motor, proprioceptive and postural 

rehabilitation 

24 weeks 2 times/week 48 60 min Global cognition: 
MMSE→Executive functions: 
FAB→; SWCT-time↑memory: 
RVLT-I→; RVLT-D↑Perceptual 

Abilities: CGD→Attention: 
Attentional Matrices→Fluid 

Intelligence: CPM↑ 

CG (13) 78.92 ± 8.04 5/8 Reality orientation therapy, music 

therapy, motor, proprioceptive and 

postural rehabilitation 
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Miyazaki et al., 2022; Angiolillo et al., 2023; Ploydang et al., 
2023; Haas et al., 2024), with the remaining study adopting a 
randomized crossover controlled trial design (Kettinen et al., 2023). 
The characteristics of the intervention measures are detailed in 
Table 1. Among the included studies, five studies independently 
employed NW as the intervention measure (Ebersbach et al., 
2014; Passos-Monteiro et al., 2020; Kettinen et al., 2023; Haas 
et al., 2024, 2024). One study combined NW with daily protein 
supplementation (Miyazaki et al., 2022), while another study 
utilized aquatic NW as the intervention (Ploydang et al., 2023). 
Additionally, one study implemented a multimodal intervention 
approach, integrating NW with reality orientation therapy, music 
therapy, physical exercise, proprioceptive training, and postural 
rehabilitation (Angiolillo et al., 2023). 

Regarding the control groups, three studies employed non-
active control conditions (Guszkowska et al., 2022; Miyazaki et al., 
2022; Ploydang et al., 2023), which included maintaining usual 
daily activities (n = 2) (Guszkowska et al., 2022; Ploydang et al., 
2023) and nutritional supplementation (daily intake of 8g protein 
supplements) (n = 1) (Miyazaki et al., 2022). The remaining five 
studies utilized active control conditions (Ebersbach et al., 2014; 
Passos-Monteiro et al., 2020; Angiolillo et al., 2023; Kettinen et al., 
2023; Haas et al., 2024), which involved interventions such as 
domestic exercise (n = 1) (Ebersbach et al., 2014), deep-water 
exercise (n = 1) (Haas et al., 2024), regular walking (n = 2) 
(Passos-Monteiro et al., 2020; Miyazaki et al., 2022), and a 
multimodal training program incorporating reality orientation 
therapy, physical exercise, and proprioceptive training (n = 1) 
(Angiolillo et al., 2023). 

The duration of a single intervention session varied from 35 to 
60 min. The frequencies of intervention included a single session 
(n = 1) (Kettinen et al., 2023), two sessions per week (n = 5) 
(Ebersbach et al., 2014; Passos-Monteiro et al., 2020; Guszkowska 
et al., 2022; Angiolillo et al., 2023; Haas et al., 2024), and three 
sessions per week (n = 2) (Miyazaki et al., 2022; Ploydang et al., 
2023). 

The overall intervention period ranged from 1 day to 24 weeks, 
and the total number of interventions across the studies was 
between 1 and 36. Specifically, the intervention protocols varied 
across the studies: one studies involved 16 sessions over 8 weeks 
(Ebersbach et al., 2014), one study included 18 sessions over 9 weeks 
(Passos-Monteiro et al., 2020), one study implemented 24 sessions 
over 3 months (Guszkowska et al., 2022), one study featured 9–12 
sessions over 4 weeks (Miyazaki et al., 2022), one study consisted 
of 48 sessions over 24 weeks (Angiolillo et al., 2023), one study 
implemented 24 sessions over 24 weeks (Haas et al., 2024), one 
study involved a single session conducted over 1 day (Kettinen 
et al., 2023), and one study provided 36 sessions over 12 weeks 
(Ploydang et al., 2023). Across all studies, participants received 
prior instruction on the knowledge and skills necessary for NW 
before commencing the interventions. 

Study outcomes 

This meta-analysis included 23 eect sizes from 8 studies. These 
eect sizes encompassed multiple domains of cognitive ability, 
including global cognitive function (Passos-Monteiro et al., 2020; 
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Miyazaki et al., 2022; Angiolillo et al., 2023; Ploydang et al., 
2023; Haas et al., 2024), memory function (Angiolillo et al., 2023), 
executive function (Miyazaki et al., 2022; Angiolillo et al., 2023; 
Kettinen et al., 2023; Ploydang et al., 2023), perceptual abilities 
(Guszkowska et al., 2022; Angiolillo et al., 2023), information 

processing speed (Guszkowska et al., 2022; Kettinen et al., 2023), 
and attention (Ebersbach et al., 2014; Guszkowska et al., 2022; 
Angiolillo et al., 2023). Specific cognitive tests administered 

and their corresponding domain classifications are detailed in 
Supplementary Table 3. 

Effect of NW on cognitive function levels 

The overall eect size for cognitive function was moderate 
and statistically significant [Hedges’ g = 0.56, 95% CI (0.29, 

FIGURE 2 

The pooled effect size of NW on cognitive function levels. 
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FIGURE 3 

Dose-response curve. (A) Session number. (B) Total time. 

FIGURE 4 

Funnel plot. 
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0.84), PI (−0.57, 1.70), p < 0.01, Figure 2], with substantial 
heterogeneity (I2 = 70.75%, p < 0.01). Meta-regression analysis 
indicated no significant association between eect size and the 
number of intervention sessions (b = 0.042, p = 0.62, Figure 3A), 
while it revealed a significant positive association between eect 
size and the total intervention duration (b = 0.0003, p = 0.049, 
Figure 3B). 

For specific cognitive abilities, the eect size for executive 
function was large and significant [Hedges’ g = 0.89, 95% 
CI (0.27, 1.50), p = 0.01], with substantial heterogeneity 
(I2 = 73.04%, p < 0.01). The eect size for memory function 
was moderate but not statistically significant [Hedges’ g = 0.77, 
95% CI (−0.86, 2.39), p = 0.11], with non-significant 
heterogeneity (I2 = 0.00%, p = 0.68). The eect size for 
global cognition was moderate but not statistically significant 
[Hedges’ g = 0.73, 95% CI (−0.08, 1.53), p = 0.07], with 
substantial heterogeneity (I2 = 80.46%, p < 0.01). The eect 
size for attention was small and not statistically significant 
[Hedges’ g = 0.20, 95% CI (−0.48, 0.88), p = 0.41], with 
moderate heterogeneity (I2 = 40.81%, p = 0.17). The eect 
size for information processing was trivial and not statistically 
significant [Hedges’ g = 0.18, 95% CI (−2.57, 2.93), p = 0.56], 
with non-significant heterogeneity (I2 = 7.50%, p = 0.30). 
The eect size for perceptual ability was trivial and not 
statistically significant [Hedges’ g = −0.07, 95% CI (−3.70, 
3.56), p = 0.85], with non-significant heterogeneity (I2 = 20.61%, 
p = 0.26). The funnel plot (Figure 4) and Egger’s test (t = 2.47, 
p = 0.02) indicated a potential risk of publication bias, but 
the Trim and Fill method for sensitive analysis showed 
that the pooled eect size (Hedges’ g = 0.56, p < 0.01) was 
robust. 

To examine characteristics that may contribute to the impact of 
Nordic walking on cognitive function, we conducted a subgroup 
analysis using a random eects model on studies that reported 
large eects involving cognitive function (Table 2). The analysis was 
based on the following study characteristics: participants’ health 
status (i.e., healthy population vs. diseased population) and control 
type (i.e., active vs. inactive). 

The subgroup analysis based on participants’ health status 
revealed a moderate and statistically significant eect size for the 
disease group [Hedges’ g = 0.70, 95% CI (0.04, 1.35), p = 0.04], 
while the healthy group showed a large but non-significant eect 
size [Hedges’ g = 1.06, 95% CI (−1.28, 3.40), p = 0.19]. The 
analysis by control type indicated that NW had a large but non-
significant eect size compared to the active intervention control 

group [Hedges’ g = 1.06, 95% CI (−1.28, 3.40), p = 0.19]. In 
contrast, NW showed a moderate and statistically significant eect 
size when compared to the inactive control group [Hedges’ g = 0.56, 
95% CI (0.20, 0.92), p < 0.01]. 

Sensitivity analysis 

Of the eight included studies, one study was with a 
randomized crossover controlled design. To evaluate the impact 
of this study on the results, we performed a sensitivity analysis 
by excluding it. The overall eect size remained significant 
after excluding it [Hedges’ g = 0.49, 95% CI (0.23, 0.75), 
p < 0.01], and was consistent with the previous overall eect 
size [Hedges’ g = 0.56, 95% CI (0.29, 0.84), p < 0.01]. It was 
noted that the heterogeneity between studies assessing executive 
function decreased significantly after excluding this study (before 
exclusion: I2 = 73.04%, p ≤ 0.01; after exclusion: I2 = 8.42%, 
p = 0.27), suggesting the dierence in the duration of the 
intervention contributed to the inter study heterogeneity. However, 
the eect size for executive function also remained significant 
[Hedges’ g = 0.56, 95% CI (0.06, 1.06), p = 0.04]. These 
results confirm the robustness of our findings. Furthermore, by 
eliminating one eect size at a time, we explore the robustness 
of the pooled results across dierent cognitive classifications. 
The sensitivity analysis showed that the results in terms of 
attention, executive function, information processing, memory 
and perception were relatively robust (Supplementary Figure 1). 
In terms of global cognition alone, after excluding a study 
where the control group engaged in deep-water exercise, the 
eect size of the meta-analysis showed a significant change. 
Before exclusion [Hedges’ g = 0.73, 95% CI (−0.08, 1.53), 
p = 0.07], after exclusion [Hedges’ g = 0.94, 95% CI (0.23, 
1.66), p = 0.02]. The above results indicate that the dierences 
in the control conditions might be the reason for the relatively 
sensitive global cognitive eect. Therefore, these results should be 
treated with caution. 

Risk of bias and GRADE 

The methodological assessment details of each included study 
are presented in Table 3. The overall quality rating of all included 
studies is high. The overall mean score is 7.13 ± 1.25; high-
quality studies account for 100% (8/8). The level of certainty of the 

TABLE 2 Subgroup analysis results regarding the effects of executive function. 

Variables No. of studies Hedges’ g (95% CI) P-value Test of heterogeneity 

I2 (%) P-value 

The health status of participants 

Diseased 2 0.70 (0.04, 1.35) 0.04a 0 0.33 

Healthy 2 1.06 (−1.28, 3.40) 0.19 89.73 <0.01 

Control types 

Active 2 1.06 (−1.28, 3.40) 0.19 89.73 <0.01 

Inactive 2 0.70 (0.04, 1.35) 0.04a 0 0.33 

a NW group showed a statistically significant improvement (P < 0.05). 
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TABLE 3 Quality assessment of included studies (n = 8). 

References Eligibility 
criteria 

Random 
allocation 

Concealed 
allocation 

Similar 
baseline 

Participant 
blinding 

Investi-
gator 

blinding 

Assessor 
blinding 

Complete-
ness of 

follow-up 

Intention 
to treat 

Between 
group 

comparisons 

Point 
measures 

and 
variability 

Total 
score 

Overall 
quality 

Ebersbach et al., 
2014 

1 1 0 1 0 0 1 1 0 1 1 7 High 

Passos-Monteiro 

et al., 2020 

1 1 1 1 0 0 1 1 1 1 1 9 High 

Guszkowska et al., 
2022 

1 1 0 1 0 0 0 0 0 1 1 5 High 

Miyazaki et al., 
2022 

1 1 0 1 0 0 1 1 1 1 1 8 High 

Angiolillo et al., 
2023 

1 1 0 1 0 0 1 0 0 1 1 6 High 

Kettinen et al., 
2023 

1 1 0 1 0 0 0 1 1 1 1 7 High 

Ploydang et al., 
2023 

1 1 0 1 0 0 0 1 1 1 1 7 High 

Haas et al., 2024 1 1 0 1 0 0 1 1 1 1 1 8 High 
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evidence was downgraded by one level due to limitations in study 
bias (Supplementary Table 2). 

Discussion 

To the best of our knowledge, this study represents the 
first systematic review and meta-analysis to comprehensively 
evaluate the eects of NW on cognitive function in older 
adults. The findings highlight the potential of NW as a non-
pharmacological intervention to mitigate age-related cognitive 
decline with moderate quality of evidence. Eight studies were 
included, and the overall score was assessed as “high quality”, 
indicating no risk of bias. The primary results suggest that NW 
significantly enhances the executive function of older adults but 
does not substantially improve global function, memory function, 
attention, information processing, and perceptual ability. Meta-
regression analysis revealed a positive correlation between the 
total duration of the intervention and the cognitive benefits. 
Subgroup analysis indicated that the eect of NW might be 
more pronounced in the diseased populations as compared to 
essential healthy individuals. The knowledge from this work 
suggests that NW should be carefully considered in future 
studies for the rehabilitation plans of older adults with health 
conditions. 

NW showed no significant eects on cognitive domains 
except executive function, consistent with prior studies of 
standard walking (Chen et al., 2020a; Passos-Monteiro et al., 
2020; Tomoto et al., 2021; Lin et al., 2023). The limited 
cognitive benefits from walking interventions may largely 
reflect insuÿcient aerobic intensity, a well-established determinant 
of exercise-induced neuroplasticity (Mavros et al., 2017; Chen 
et al., 2020b; Thomas et al., 2020). Although NW increases 
energy expenditure compared to conventional walking, its 
intensity probably remains below the threshold required for 
broad cognitive adaptations, particularly in hippocampal-
dependent memory or temporoparietal-mediated perceptual 
processing (Passos-Monteiro et al., 2020; Nemoto et al., 2021; 
Angiolillo et al., 2023; Kettinen et al., 2023; Baker et al., 
2025). The neurocognitive value of NW appears to stem 
primarily from its motor complexity rather than absolute 
intensity. Unlike standard walking, NW requires synchronized 
upper and lower limb activation through pole propulsion, 
recruiting supplementary motor areas, premotor cortices, 
and frontoparietal networks (Schier et al., 2006; Erickson 
et al., 2013; Niemann et al., 2014). These regions are integral 
to planning, decision-making, and inhibitory control (Liu-
Ambrose et al., 2012; Erickson et al., 2013; Voelcker-Rehage and 
Niemann, 2013; Niemann et al., 2014; Müller et al., 2017). Such 
enhanced cortical activation may improve synaptic density 
and white matter integrity, supported by elevated BDNF 
levels in NW interventions (Gmiat et al., 2018). Additionally, 
NW’s rhythmic bilateral coordination may stimulate cerebellar-
thalamocortical circuits critical for executive function, optimizing 
neural eÿciency for task-switching and error monitoring 
(Passos-Monteiro et al., 2020). Consequently, NW acts as a 
dual-task modality that enhances prefrontal eÿciency through 
mechanisms distinct from pure aerobic stimulation. Our meta-
regression indicated longer interventions were associated with 

greater cognitive benefits, suggesting executive improvements 
emerge relatively quickly with NW, while other domains may 
require extended exposure to achieve intensity thresholds 
through cumulative neurotrophic eects (Jasim et al., 2024; 
Baker et al., 2025). 

Subgroup analyses indicated greater cognitive benefits 
from NW in diseased populations (e.g., Alzheimer’s patients) 
compared to essential healthy older adults. This dierence 
may reflect compensatory neuroplasticity in individuals with 
health conditions, where baseline cognitive impairment increases 
sensitivity to exercise-induced neurotrophic and vascular changes 
(Kirk-Sanchez and McGough, 2013; Ploydang et al., 2023; 
Kadiyala et al., 2024; Popescu et al., 2024). For example, the 
capacity of NW to improve cerebral perfusion through upper 
limb engagement may counter hypoperfusion in Alzheimer’s 
pathology, particularly benefiting clinical groups (Sanders et al., 
2020; Angiolillo et al., 2023). Healthy older adults may require 
higher-intensity or cognitively enhanced NW protocols to 
exceed their neurocognitive reserve thresholds (Zhang et al., 
2023). Additionally, NW demonstrated comparable eÿcacy 
to active controls (e.g., standard walking) but outperformed 
inactive controls. This suggests that while the biomechanical 
advantages of NW improve adherence and physical outcomes 
like reduced perceived exertion (Angiolillo et al., 2023; Haas 
et al., 2024), its cognitive benefits may overlap with other exercise 
modalities. Nevertheless, NW’s scalability, low injury risk, and 
dual-task potential make it a practical option for older adults with 
mobility limitations. However, all studies using active controls 
involved essential healthy participants, making it unclear whether 
outcomes were influenced primarily by health status or control 
group type. Further research is required to clarify the relevant 
conclusions. 

Limitations 

The results of this work still need to be taken with caution. 
First, the number of included studies was relatively limited 
(n = 8), which may potentially aect the statistical power 
of our meta-analysis and meta-regression results. Additionally, 
due to the limited number of studies, subgroup analyses to 
characterize the influences of protocol settings of NW (e.g., 
appropriate number of sessions, the frequency of intervention, 
and Intervention intensity) cannot be completed. Furthermore, 
interpretations regarding underlying mechanisms remain to 
be validated in future studies due to the small sample size 
and the limited number of existing studies. Lastly, although 
sensitivity analyses showed robust results, heterogeneity among 
the studies may have a potential influence on the interpretation 
of outcome measures. Nevertheless, the knowledge obtained from 
this work will help inform the appropriate design of intervention 
protocols of NW. 

Conclusion 

This study suggests that NW has promise to enhance the 
executive function in older adults with health conditions. Future 
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RCTs with rigorous designs are needed to help obtain more 
definitive conclusions on the eects of NW on cognitive function 
in older adults. 
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