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Introduction: This work presents a machine learning (ML) based risk prediction

model for Alzheimer’s disease and related dementias, utilizing real-world

electronic health record (EHR) clinical data. While significant research has been

conducted on dementia risk prediction, most studies rely on volunteer-based

research cohorts rather than real-world clinical data. Using raw EHR data o�ers

more realistic insights but poses challenges due to the extensive e�ort required

to convert real-world EHR clinical data into a decision support system for daily

clinical use.

Methods: The dataset consists of a high-volume, ten-year export of raw EHR

data from Epic, the Johns Hopkins (JH) Health System. In this study, we utilized

multimodal JH EHR data to develop a patient-based model to predict dementia

onset over a five-year period. The interpretable binary classification model

identified prognostic rulesets for dementia based on clinical characteristics.

Results: The model achieved a mean test accuracy of 0.722 (95% CI: 0.722–

0.723) and an AUROC of 0.795 (95% CI: 0.794–0.795) using 5-fold cross-

validation across di�erent sample subsets.

Discussion: Recognizing that neurodegenerative diseases are often driven by

multiple contributing factors rather than a single cause, we identify risk pathways

by leveraging multimodal data and modeling their combined e�ects, leading to

accurate dementia predictions and improved clinical interoperability.

KEYWORDS

dementia prediction, Alzheimer’s disease, electronic health records, clinical study,

cognition, patient-level prediction, real-world data, risk prediction

1 Introduction

Electronic Health Records (EHRs) have been implemented in over 90% of hospitals and

clinics across the United States, creating a vast repository of patient data that serves as a

valuable source of real-world data (RWD) for research (Office of the National Coordinator

for Health Information Technology, 2022; Kim et al., 2023). Unlike traditional registries

or insurance claims databases, which often experience significant time lags, EHR systems

continuously capture up-to-date, longitudinal data generated during routine clinical care.

These records encompass both structured data—such as coded diagnoses, laboratory

results, prescribed medications, and demographic information—and unstructured data,
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including physician notes, discharge summaries, and patient

history narratives. The immediacy and depth of EHR-derived

RWD provide significant opportunities for developing predictive

models and generating real-world evidence in healthcare. One

major benefit of training models on real-world clinical data is

enhanced generalizability (Bakouny and Patt, 2021; Rashidisabet

et al., 2023; Amrollahi et al., 2022). By learning from diverse and

heterogeneous patient populations, these models better reflect the

variability encountered in clinical practice, increasing robustness

and reliability when applied to new settings. However, RWD

require thorough bias analysis, as biases can emerge at various

stages, including data generation, extraction, and modeling.

Realizing the full potential of RWD requires overcoming several

critical challenges (Bastarache et al., 2022; Collins and Tabak,

2014). EHR data are inherently heterogeneous, often unstructured,

and frequently incomplete, necessitating advanced techniques for

preprocessing, standardization (Kim and Min, 2025), integration,

and effective learning. Challenges such as missing values (Ren et al.,

2024), irregular data sampling over time (Chauhan et al., 2024),

and systematic biases in data collection (Al-Sahab et al., 2024) can

significantly impact model performance if not properly managed.

Recent research have shown promising results on identifying

Alzheimer’s disease and related dementias at earlier stages using

machine learning methods on EHR data. Many studies have

shown that both structured and unstructured clinical data, such

as medication histories, clinical narratives, and behavioral patterns

can be mined to detect indicators of cognitive decline (Ford

et al., 2019; Jammeh et al., 2018). Some approaches have proposed

passive digital signatures extracted from longitudinal EHR data to

determine dementia risk years before onset symptoms (Boustani

et al., 2020), while others have improved predicting accuracy using

polygenic risk scores, behavioral symptoms and socioeconomic

factors withing large scale population datasets (Gao et al., 2023;

Li et al., 2023). Another study applied label learning on large-scale

claims and EHR data, achieving strong predictive performance for

incident AD within 2 years by addressing diagnostic uncertainty

inherent in administrative datasets (Nori et al., 2019). Further

work, has shown the importance of multimodal models that

combine EHR data with environmental and social factors on

capturing disease heterogeneity (Tang et al., 2024). These studies

also highlight the importance of temporal dynamics and functional

decline in improving prediction over 1 to 5 year windows as

well as the growing use of explainable machine learning methods

to identify key predictors such as sleep apnea, disorientation,

depressive symptoms and comorbid conditions (Akter et al., 2025).

2 Materials and methods

2.1 Source of data

We analyzed RWD from the Johns Hopkins Health System

EHR (Epic). The EHR initially contained 685,765 cohorts. Applying

specific inclusion criteria, such as patient profile constraints

and visit attributes related to primary care, memory care, and

completion status, refined to a baseline of 197,481 patients. This

final group includes individuals with 10 years of EHR data,

spanning from January 1, 2014, to December 31, 2023, from both

primary care and memory clinics within the Johns Hopkins (JH)

health system (Figure 1). The memory clinic includes outpatients

of the Johns Hopkins Memory and Alzheimer’s Treatment Center

(JHMATC) in Baltimore Maryland, USA with at least one visit

between 2014 and the end of 2023. The primary care data

includes all outpatients with at least one encounter during the

same period within Johns Hopkins primary care clinics. The Johns

Hopkins primary care clinics, located across theMaryland/DC area,

provide a range of primary care services. Table 1 summarizes the

demographic and clinical characteristics of the study population.

Table 1 outlines the demographic and clinical characteristics of

the study cohort. After the initial selection process for CI stage

classification, the final sample consisted of 142,175 patients,

with 139,437 (98.1%) classified in the control group and 2,738

(1.9%) classified in dementia. The mean age increased across

the groups, from 58.5 years in the control group to 74.7 years

in the dementia group. It should be noted that our dataset

combines primary care data, which covers a broader age range,

and memory clinic data, where patients tend to be older and the

age range is narrower. This reduces strict comparability because

age is a major risk factor for dementia and some of the observed

differences may therefore reflect age-related effects rather than

disease-specific characteristics. However, since age is not included

as a model feature, this limitation should be carefully considered

when interpreting the results. Future studies should aim to include

age-matched controls or apply statistical methods to minimize the

influence of age on the findings.

Our analysis was based on ICD-10 coding to identify clinical

diagnoses and comorbidities. Since ICD-10 was implemented on

October 1, 2015, a small number of diagnoses were not captured

due to the lack of consistent ICD-10 coding prior to its adoption.

A case-control binary classification prediction target was estimated

at the patient level, determining whether patients (cohort IDs)

were ever diagnosed with any form of dementia during the study

period, based on the dementia-related ICD-10 codes outlined in

the Table 2. In this study, ICD-10 codes from the sample were

mapped to disease categories using the International Classification

of Diseases, 10th Revision (ICD-10), a globally recognized standard

for coding diseases and health conditions maintained by theWorld

Health Organization (WHO) (World Health Organization, 1992).

2.2 Cases and controls

In this study, time-stamped EHR records are transformed into

a structured, tabular format, where each patient is represented by

a set of features (predictors) and class labels assigned based on

inclusion criteria, indicating whether the outcome occurs within

the specified risk period (Shickel et al., 2018; Ferrao et al., 2017).

The initial cohort collection process in Figure 1 included of 197,481

patients gathered from JHMATC and JHCP clinics, at their first

encounter recorded in the EHR after January 1, 2014 and before

December 31, 2023. To be included, encounters were required to

have a valid and completed encounter type such as office visit,

clinical support, video visit or follow-up visit. The process of

classifying the patients into case and control groups is outlined

below, resulting initially in 11,687 cases and 139,477 controls.
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FIGURE 1

Inclusion criteria.

As additional assessments are typically required before a final

diagnosis of dementia can be made during a subsequent encounter,

cases were included if their diagnosis was documented at least

6 months and at most 5 years after their first visit. Following

this inclusion process for case cohorts, 2,738 case-labeled patients

remain in the dataset, out of the 11,687 case patients selected in

the initial phase (Table 3). Similarly, we assigned the control label

to patients from the initial selection (197,481) if the patient never

received a dementia diagnosis (i.e., the subject is not included in the

case list). Of the resulting controls, 1,909 were excluded because

they received dementia diagnoses outside of JHMATC or JHCP

clinics. To increase the likelihood that control patients remained in
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TABLE 1 Sample characteristics.

Characteristics Total N = 142,175a Cognitive impairment stage

Control N = 139,437 (98.1%) Dementia N = 2,738 (1.9%)

Ageb (Mean and SD) 58.8 (11.1) 58.5 (10.9) 74.7 (10.0)

<65 101,283 (71.2%) 100,908 (72.4%) 375 (13.7%)

65−74 26,838 (18.9%) 25,963 (18.6%) 875 (32.0%)

75−84 10,891 (7.7%) 9,820 (7.0%) 1,071 (39.1%)

85+ 3,163 (2.2%) 2,746 (2.0%) 417 (15.2%)

Sex

Female 81,861 (57.6%) 80,125 (57.5%) 1,736 (63.4%)

Male 60,314 (42.4%) 59,312 (42.5%) 1,002 (36.6%)

Race

White 91,072 (64.1%) 89,284 (64.0%) 1,788 (65.3%)

Black 35,223 (24.8%) 34,511 (24.8%) 712 (26.0%)

Asian 2,101 (1.5%) 2,053 (1.5%) 48 (1.8%)

Other 5,331 (3.7%) 5,242 (3.8%) 89 (3.3%)

Unknown 8,448 (5.9%) 8,347 (6.0%) 101 (3.7%)

Ethnicity

Hispanic 2,280 (1.6%) 2,236 (1.6%) 44 (1.6%)

Other 139,821 (98.3%) 137,127 (98.3%) 2,694 (98.4%)

Unknown 74 (0.1%) 74 (0.1%) −

aDemographic data is unavailable for 40 of the 142,215 cohorts.
bAge is calculated from the date of birth at the patient’s first visit to JH EHR.

TABLE 2 Primary ICD-10 codes for dementia and related conditions.

Category Description Patients
(N = 3,688)c

G30.xa Alzheimer’s disease (includes early/late

onset, atypical, unspecified)

892

G31.84 Mild cognitive impairment, so stated

(pre-dementia stage)

1,025

G31.83 Neurocognitive disorder with lewy

bodies

56

G31.0 Frontotemporal dementia −

F01.x Vascular dementia 334

F02.xb Dementia in other diseases (e.g.,

Parkinson’s, Pick’s, Huntington’s)

144

F03.x Unspecified dementia (used when

cause is unknown or not documented)

1,237

aThe (x) indicates all subcodes are included (e.g., F01.5, F01.A, F01.B, etc.).
bF02.x codes are used with other primary disease codes like G20 (Parkinson’s), G23.1 (PSP),

etc.
cSeveral patients were diagnosed with multiple dementia-related ICD-10 codes.

the control group for at least five years, we imposed an additional

constraint requiring their first encounter to have occurred before

January 1, 2019. Although dementia often develops over extended

periods, previous studies have demonstrated that a 5-year window

is sufficient to capture a substantial proportion of incident cases

and is commonly used in prognosis and prediction modeling.

TABLE 3 Creating collection of labeled data.

Selection Cohorts

Initial selection 685,765

Apply selection criteria 197,481

Control—first visit <2019 139,477

Control—first visit>2019 44,408

Exclude (controls) with non-primary/memory clinic dementia

diagnoses

1,909

Dementia (All) 11,687

Dementia—first diagnosis between 7 and 60 months 2,738

Dementia—first diagnosis within the first 6 months or after 60

months

8,949

Baseline cohorts : 139,477+ 44,408+ 1,909+ 11,687= 197,481.

Cohorts included in the final dataset : 139,477 + 2,738 = 142,215. Numbers in bold indicate

the control and disease cohorts retained in the final dataset.

Extending the timeframe to 7–10 years would substantially limit the

eligible cases in our cohort, as the observation period spans 2014 to

the end of 2023.

Mitchell and Shiri-Feshki (2009) conducted a meta-analysis

of 41 inception cohort studies of individuals with mild cognitive

impairment (MCI). They reported an annual conversion rate

(ACR) of 6.7% for progression from MCI to dementia, 6.5%

specifically for Alzheimer’s disease, and 1.6% for vascular dementia.

These rates imply that over a 5-year follow-up window, a
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substantial proportion of individuals with MCI will progress to

dementia—typically in the range of 25–35% or higher, depending

on the cohort and diagnostic criteria. This evidence supports the

adequacy of a 5-year observation window, as it is long enough to

capture a meaningful number of incident dementia cases, making

it a standard timeframe in prognostic and predictive modeling

studies. Thus, while we acknowledge that dementia progression can

extend beyond 5 years, our design ensures diagnostic stability of the

control group, preserves sufficient sample size.

However, we acknowledge that the additional constraint

requiring control patients’ first encounter to occur before January 1,

2019 does not ensure complete follow-up, particularly for memory

clinic patients, many of whom live out of state and may not be

consistently captured in the EHR throughout the entire period.

2.3 Parameters

After assigning class labels to patients based on their encounter

and diagnosis profile, the next step was to analyze the EHR data

to extract the set of their medical covariates. The final multimodal

dataset includes features from clinical measurements, vital signs,

laboratory test results, and cognitive test questionnaire scores.

The extracted measurements for both case and control patients

included data from their (earliest) first recorded visit and a 6-month

window following that particular initial encounter. With the 6-

month window, we ensure that a broad range of measurements

is collected, thereby minimizing missing values for each feature.

For repeated measurements of the same feature, the most recent

measurement is considered as the most accurate (Figure 2).

While real-world data are invaluable for their realistic outcomes,

working with such data presents significant challenges, particularly

in transforming raw clinical data into a structured, machine

learning-ready format (Kim and Min, 2025). Measurement fields

in observational databases are often stored as strings, increasing

the likelihood of typographical errors. Additionally, some values,

such as blood pressure readings, are recorded as string formats of

type systolic/diastolic. To standardize these measurements, blood

pressure values were converted into a single numerical metric: the

Mean Arterial Pressure (MAP) (DeMers and Wachs, 2025). For

instance, a recorded value of “130/86” is replaced with the value

of 100.66 which is its MAP equivalent. This conversion is labeled

as “Fix EPIC measurements” in Figure 2. Likewise, laboratory

measurements in the source data may appear in different units of

measurement, necessitating a thorough unit conversion process to

align each marker with a standard reference unit of measurement.

Instead, we normalized measurements using the Normal Reference

Range (NR) for each marker, adjusting lab results relative to the

specific Upper and Lower Limits of Normal (ULN and LLN) as

defined for each marker by the automated laboratory systems. This

method offers several advantages over traditional unit conversions

by eliminating dependency on measurement units and reducing

the risk of UoM conversion errors. Instead, each lab measurement

is documented alongside its normal reference range, which is

present in 94% of records in the Johns Hopkins (JH) EHR

system. Moreover, another key advantage of this method is that

it makes minimal assumptions, relying solely on the source data

(the actual measurement and its normal reference range) regardless

of the unit of measurement. This enhances the ability to perform

standardized measurement comparisons across diverse laboratory

systems as well as specimen sources, such as blood and urine.

In addition to vital signs, laboratory test results, and cognitive

test questionnaires, we incorporated diagnoses of comorbidities

(Figure 2). To identify the presence of comorbidity diagnoses, the

EHR database was searched for ICD-10 codes associated with

specific comorbidity categories. For case patients, comorbidity

diagnoses were recorded before the diagnosis of dementia. We

assumed that, if a diagnosis is not recorded in the EHR system, it

does not exist. The list of comorbidity ICD-10 codes is derived from

the International Classification of Diseases catalog (World Health

Organization, 1992). Furthermore, we excluded blocks related to

accidents or abnormal findings on examinations that did not lead

to a diagnosis. Moreover, to prevent target leakage, we excluded

from the comorbidities catalog the blocks (features) containing

diagnoses that overlap with parts of the target ICD-10 codes [e.g.,

DISEASES OF THE NERVOUS SYSTEM (G30–G32)] or involve

a diagnosis related to cognition [e.g., SYMPTOMS AND SIGNS

INVOLVING COGNITION PERCEPTION EMOTIONAL STATE

AND BEHAVIOR (R40–R46)]. The final step in collecting clinical

measurements (Figure 2) involved merging all features, including

clinical measurements (vital signs, laboratory results, and cognitive

assessment scores) with the comorbidities diagnoses, into a unified

table. This table was transposed into a matrix consisting of 1,193

features as columns and 142,215 rows (observations).

2.4 Preprocessing

The preprocessing phase in prognostic modeling involves

detecting, correcting, or eliminating errors, inconsistencies,

and inaccuracies within a dataset to enhance its quality and

reliability for machine learning models. Additionally, strategies

to address imbalances in the dataset are employed to ensure

that the model performs effectively across both classes. These

methods help mitigate bias and improve the model’s ability to

generalize to unseen data. Generally, preprocessing guarantees

data completeness, accuracy, and consistency, while reducing

noise and potential biases in data-driven applications. The dataset

showed substantial imbalance, with 2,738 cases comprising just

1.9% of the 139,477 controls (Figure 3). To address this imbalance

without reducing the control sample size, we applied the Repeated

Random Undersampling Cross-Evaluation method (He and Ma,

2013). Specifically, the control group was divided into 51 equally

sized subsets, each matching the size of the minority class.

Each subset was then paired with the same minority class

to form a balanced training dataset. The model was trained

independently on each subset, and the performance metrics were

subsequently aggregated.

The model training hyperparameters were tuned separately

for each subset, selecting the configuration that achieved the

highest mean accuracy across cross-validation folds. Subsequently,

each of the two models was standardized using the selected

set of hyperparameters. This study utilizes RandomForest and

XGBoost algorithms to validate and compare the performance of

the applied method.
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FIGURE 2

Collecting clinical measurements.

2.5 Missing values

Detecting missing values and determining an appropriate

handling strategy, such as removing rows or columns, imputing

values, or encoding missingness as a feature, is a key aspect

of preprocessing (Ren et al., 2023). Given that the final dataset

contained 78% missing values, largely due to the transposition

of time-stamped clinical data into a tabular format, features with

more than 90% missingness were excluded, reducing the number

of effective predictors from 1,193 to 166. This threshold was

chosen to reduce model complexity and minimize noise from

sparsely observed variables. While some infrequently ordered

laboratory tests may be highly informative, an empirical assessment

using XGBoost’s feature importance measures indicated that

features with extremely high missingness contributed minimally

to model performance. For the remaining missing values,

imputation was not applied, since missing information in

clinical data is often not at random (MNAR) and it may

carry important clinical meaning leading to biased results when

imputing laboratory measurements (Ibrahim et al., 2012; Li et al.,

2021).

2.6 Model development

We evaluated the performance of two widely used ensemble

learning algorithms, Random Forest (RF) and XGBoost (XGB), to

tackle the challenges posed by high-dimensional and heterogeneous

data commonly found in EHRs, given their well-established
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FIGURE 3

Cohort classification.

robustness and effectiveness in handling complex datasets (Lebedev

et al., 2014; Moore and Bell, 2022).

Tree-based ensemble methods such as Random Forest and

XGBoost are specifically designed to mitigate overfitting compared

with single decision trees. Random Forest achieves this by

combining the predictions of many decorrelated decision trees,

each trained on bootstrapped samples of the data and with

randomized feature selection. This design reduces variance and

prevents the model from memorizing noise in the training

set, leading to better generalization (Breiman, 2001). Similarly,

XGBoost incorporates boosting with regularization techniques

(both L1 and L2 penalties) and shrinkage, which prevent the

algorithm from fitting noise or spurious patterns in the training

data and thereby further reduce the risk of overfitting while

maintaining predictive accuracy (Chen and Guestrin, 2016).

Both algorithms have been shown in applied studies to achieve

high predictive performance while maintaining robustness against

overfitting, making them well suited for clinical prediction tasks.

Random Forest and XGBoost showed comparable performance

in terms of accuracy and generalization. The objective

was to identify a model that most effectively captures the

underlying patterns in the data and exhibits strong generalization

characteristics. Thus, we carried out a comprehensive evaluation

using a 5-repeats, 5-fold Repeated Stratified KFold cross-validation

process across all 51 dataset partitions resulting in 1,275 iterations,

followed by averaging model prediction performance results on

unseen (test) data to assess overall effectiveness and generalization.

The training hyperparameters for each model were individually

optimized for each of 51 subsets using the Bayesian optimization

with cross-validation method (BayesSearchCV), and selecting the

configuration that yielded the highest mean accuracy across cross-

validation folds. Subsequently, both models were standardized

hyperparameter tuning. While both Random Forest and XGBoost

are tree-based ensemble methods, Random Forest is often

favored for clinical interpretation due to its use of independent

decision trees, making it easier to extract and analyze individual

trees (Laabs et al., 2024). Additionally, although it averages

predictions across multiple trees, each tree remains interpretable on

its own.

2.7 Decision paths

Supplementary Table 8 presents a set of decision paths (from

root to leaf) identified through the ensemble method comprising

multiple decision trees of the Random Forest Classifier. The

classifier is configured with 100 estimators, meaning each model

consists of 100 trees. To evaluate model performance, Repeated

Stratified K-Fold Cross-Validation is employed with 5 splits and

5 repeats, resulting in 25 unique train-test splits. For each split, a

separate Random Forest model is trained, leading to the generation

of 2,500 decision trees across all iterations. The model achieving

the highest test F1 score of disease class during cross-validation is

selected as the optimal classifier. Subsequently, the 100 decision

trees from this best-performing forest are passed individually to

a function that transforms each tree into a tabular format and

appends them to a dataframe, enabling further selection of the

most informative decision pathways based on a set of predefined

criteria. These criteria included leaf nodes containing more than

140 samples, with at least 72% classified as disease cases, and an

F1 score of disease class exceeding 0.70 for the corresponding tree.

To increase the clinical relevance and confidence in our findings,

10 decision pathways were selected (Supplementary Table 8) from

a total pool of 5,100 trees for expert interpretation. These

rule-based pathways enhance clinical interpretability and offer a

transparent, intuitive framework that supports faster and more

accurate dementia diagnosis.

For example, the clinical interpretation of the ruleset in Table 4

indicates that among 252 patients with creatinine levels within

the normal range but near the upper limit, VLDLCALC values

close to the lower bound, weight below 3167.60 oz, a normal

CHOL/HDL ratio, low TSH levels, normal (to low) total protein,

and low white blood cell counts, 75% developed dementia within

5 years.
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Unlike black-box models, rule base structure follows a clear,

logic that clinicians can easily explain, enhancing trust and

usability in practice. They highlight the most informative clinical

features and reveal complex interactions between risk factors,

which may not be evident through traditional methods. This

allows for early detection of dementia by identifying subtle but

meaningful patterns. Decision pathways also enable rapid triage

and risk stratification, helping clinicians classify patients into risk

categories and prioritize timely interventions. Additionally, they

can be tailored to align with clinical guidelines, making them

highly adaptable for practical use. Overall, themethod of rule-based

clinical interpretation offers a balance of interpretability, speed,

and accuracy that is particularly valuable in managing complex

conditions like dementia.

3 Results

The performance results for the case and control classes are

very similar, as expected in a balanced dataset. The XGBoost model

demonstrated performance similar to or slightly better than the

Random Forest model (Table 5) with the mean F1-score for the

case class in the population ranging from 72.5% to 72.6% for the

XGBoost classifier and from 71.4% to 71.5% for the Random Forest.

TABLE 4 Identifying dementia through diagnostic pathways formed by

patterns of risk factors.

Decision path

IF

CREATININEa<0.94 AND

VLDLCALCa
<0.10 AND

WEIGHT/SCALE<3167.60 AND

CHOLHDLa<0.39 AND

TSHa>0.19 AND

PROTa
<0.47 AND

WBCa>0.21

THEN DEMENTIA: 75% Total Samples: 252

aLaboratory markers with measurement normalized within the normal reference range (NR)

Section 2.3.

Both models demonstrate AUROC values ranging from 0.77 to

0.79. The 95% Confidence Intervals (CI) for both models were

computed using the Student’s t-distribution, providing an estimate

of the precision around the performance metrics.

3.1 Contribution of predictors to the
outcome

In machine learning, covariate analysis is crucial for

interpreting the influence of features on the target variable,

improving model accuracy, and ensuring meaningful insights

from the data. The SHAP plot (Figure 4), highlights the top-20

most influential characteristics for the deployed Random Forest

model. Given that we adopted a patient-level approach, each

dot on the SHAP plot represents an individual patient’s clinical

measurement (extracted from lab results or vital signs) or diagnosis

of comorbidities. The x-axis represents the SHAP value for a

specific feature, indicating the impact that feature has on the

model’s prediction for that patient. The y-axis lists the features

(e.g., laboratory results or diagnosis of comorbidities) sorted by

their importance in the model while the dots show individual

patients’ values for that feature and their corresponding SHAP

value, which reflects how much that feature contributes to the

model’s prediction for that patient. The color of the dots indicates

the value of the feature for that patient, with the color gradient

aiming to illustrate how the feature’s value interacts with its impact

on the prediction. For the comorbidities (e.g., diagnosis with

1 for True and 0 for False), SHAP values on the x-axis ranged

continuously from ± 0.10 since SHAP values represent the impact

or contribution of each feature to the model’s output (prediction)

for each instance, not the binary value itself. Thus, for instance, in

the case of HYPERTENSIVE DISEASES, the red color (Dx True)

signifies that a prior diagnosis of hypertensive disease is associated

with an increased risk of Dementia (positive shap values to the

right). The SHAP feature importance (Figure 5) is determined by

averaging the absolute SHAP values for the disease class across all

samples. This measures the average magnitude of each feature’s

impact on the model’s prediction, regardless of direction. The

resulting values indicate the relative contribution of each feature

to the prediction for the disease class with higher values signifying

greater importance. The remaining features up to 166 exhibit

TABLE 5 Model prediction and generalization capabilities after 1,275 model iterations.

Metric Random Foresta XGBoosta

Value (Std) 95% CIb Value (Std) 95% CIb

Mean AUROC 0.776 (0.014) 0.775–0.777 0.795 (0.014) 0.794–0.795

Mean precision control 0.718 (0.015) 0.718–0.719 0.727 (0.025) 0.726–0.729

Mean precision case 0.698 (0.015) 0.697–0.698 0.718 (0.021) 0.717–0.719

Mean test accuracy 0.707 (0.014) 0.706–0.708 0.722 (0.014) 0.722–0.723

Mean F1-score control 0.699 (0.016) 0.698–0.700 0.719 (0.016) 0.718–0.720

Mean F1-score case 0.715 (0.013) 0.714–0.715 0.725 (0.014) 0.725–0.726

aLibrary: scikit-learn 1.6.1.
b95% confidence intervals for mean estimates were calculated based on the t-distribution.
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FIGURE 4

SHAP interpretations obtained from the Random Forest model.

zero SHAP importance, having no measurable impact on the

model’s predictions.

4 Discussion

Our aim was to develop 5-year dementia prediction models

using real-world data. The study was based on a single cohort

that included outpatients from the memory clinic of the Johns

Hopkins Memory and Alzheimer’s Treatment Center (JHMATC)

in Baltimore, Maryland, USA, as well as outpatients from primary

care clinics across the Maryland/DC area.

We evaluated two widely used ensemble methods—Random

Forest and XGBoost—to address the challenges of high-

dimensional, heterogeneous electronic health record (EHR)

data. These algorithms were selected for their ability to model

nonlinear relationships and complex interactions among multiple

predictors. In future work, we will extend the comparison to

include additional approaches such as LASSO and RUSBoost with

the same evaluation pipeline.

The SHAP plot (Figure 4), and the feature importance analysis

(Figure 5) indicate that a diagnosis of OVERWEIGHT, OBESITY,

AND OTHER HYPERALIMENTATION (E65-E68) is associated

with a decreased risk of dementia. This finding runs counter to the

common hypothesis that midlife obesity increases the possibility of

developing dementia in later life. Instead, the evidence suggests that

being underweight may be linked to a higher dementia risk. These

unexpected findings highlight the necessity for further investigation

into the underlying causes and their potential implications for

public health (Qizilbash et al., 2015). A similar pattern is observed

with other key anthropometric features such as WEIGHT/SCALE

and BMI, which are continuous variables derived from the Epic

(vital signs) dataset. Other findings of this study suggest that lower

values of alanine aminotransferase (ALT), cholesterol (CHOL), and

red blood cells (RBCs) are associated with an increased risk of

dementia. The Atherosclerosis Risk in Communities (ARIC) Study
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FIGURE 5

Feature importance.

found that individuals with ALT levels below the 10th percentile

had a 34% higher risk of developing dementia compared to

those in the second quintile. This association remained significant

even after adjusting for factors like age, sex, race, education,

and APOE4 genotype. The study suggests that low ALT levels

may indicate reduced liver function, which could contribute
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to cerebral hypometabolism and neurotransmitter impairment,

thereby increasing dementia risk (Lu et al., 2021).

Similarly, the study by Wang et al. (2018) demonstrated that

over a 7-year follow-up of 1,800 elderly individuals, those with

comparatively low serum ALBUMIN levels faced more than double

the risk of developing mild cognitive impairment. These findings

indicate that albuminmay act as an independent risk factor forMCI

in the elderly.

Another study showed that involving over 300,000 UK Biobank

participants identified that low levels of hemoglobin (HGB) and red

blood cell (RBC) distribution width (RDW)were associated with an

increased risk of dementia. Specifically, anemia was linked to a 56%

higher risk of developing dementia. The study also found that low

levels of RBCs and hemoglobin could lead to decreased oxygen-

carrying capacity of the blood, contributing to the pathogenesis of

dementia (Qiang et al., 2023).

Conversely, there is growing evidence that elevated blood

urea nitrogen (BUN) levels (an indicator of kidney dysfunction)

are associated with an increased risk of dementia. Mendelian

Randomization Study used genetic data to support a causal

link between impaired kidney function (including markers like

BUN) and increased dementia risk. This strengthens the argument

that the relationship is not just correlational (Huang et al.,

2024). Similarly, elevated serum CREATININE levels, indicative of

reduced kidney function, have been associated with an increased

risk of cognitive decline and dementia (Xiao et al., 2023). Diagnosis

of HYPERTENSION (high blood pressure) is strongly associated

with an increased risk of dementia, including Alzheimer’s disease

and vascular dementia with numerous large-scale cohort studies to

consistently show that individuals with hypertension, especially in

midlife, have a significantly higher risk of developing dementia later

in life (Kennelly et al., 2009).

When we compared our results with the best-known non-

AI approaches in the dementia-risk literature, the performance

gap and its source became clearer. Classical mid-life risk scores

such as CAIDE, which rely on an additive mix of age, blood

pressure, cholesterol, body-mass index and education, consistently

discriminate future dementia with AUROC between 0.64 and 0.78

across external validations (Pietilä et al., 2025). Our random forest

approach achieved a mean AUROC of 0.776 and a test accuracy

of 0.707 which is a modest but consistent improvement that is

entirely explained by the model’s ability to capture complex high-

order interactions. For example, one of the ten decision paths that

the model retained identified a 75% risk of developing dementia

within 5 years (Table 4). This high-risk pattern appeared in 252

patients who shared seven common clinical findings: creatinine

levels near the upper limit, low VLDL cholesterol, below-average

weight, a normal cholesterol-to-HDL ratio, low thyroid-stimulating

hormone, low total protein, and a reduced white blood cell count.

On their own, these values might seem unremarkable or even

protective, but together they marked a group at significantly

elevated risk. Traditional stepwise regression would have likely

missed this pattern, since each variable by itself shows only a

weak association with the outcome. This observed performance

gain should not be interpreted as a solely endorsement of AI

methods over traditional approaches. Rather, it reflects the capacity

of ensemble learning to systematically explore high-dimensional

interactions and uncover clinically meaningful risk profiles that

are likely to remain undetected by conventional statistical models

which are limited by predefined terms and a narrow set of

interaction terms.

To contextualize our findings within the current landscape of

dementia risk modeling, we reviewed several recent, high-quality

studies. Schliep et al. (2024) linked 4,206 participants from the

Cache County cohort to 163 ICD-coded diagnostic categories and

six sociodemographic variables. Using a 1-year prediction horizon,

their model achieved an AUROC of 0.67, which increased to 0.77

when dementia was defined directly from ICD codes rather than

through adjudication, highlighting the performance limitations

imposed by sparse feature sets. Tang et al. (2024) trained a random

forest classifier on 749 Alzheimer’s cases and 250,545 controls,

reporting an AUROC that rose from 0.72 seven years before onset

to 0.81 on the index date. Their use of a biomedical knowledge

graph further identified hyperlipidemia and osteoporosis as early,

sex-specific predictors. The Emergency Department Dementia

Algorithm (EDDA), developed from 759,665 ED visits using only

a limited set of triage vitals and medication fields, achieved an

AUROC of 0.85 on a held-out test set and 0.93 in external

validation, demonstrating that highly focused, real-time features

can still yield strong short-term predictive performance (Cohen

et al., 2025).

Against these benchmarks our approach achieved an AUROC

of 0.776 and a test accuracy of 0.707 (Table 5). Notably,

SHAP analysis identified renal markers (BUN, creatinine) and

lipid-related variables that align with the hyperlipidemia signal

described by Tang et al. (2024), while also highlighting low-

grade anemia and bilirubin levels which are features that are not

detectable in imaging-based approaches such as Eye-AD. These

findings suggest that although different modalities capture distinct

biological signatures, a comprehensive and widely available EHR

feature set can attain performance comparable to or exceeding

that of specialized models, while providing additional, clinically

interpretable risk factors.

We re-estimated the model using only the most relevant

features, specifically those with an importance score greater than

or equal to 0.005 (Figure 5), in order to assess how well the model

performs under reduced dimensionality. After this reduction,

the model was re-evaluated with 27 features instead of the

original 166, which led to only an AUROC performance drop of

about 3%.

A potential source of bias in our dataset is the use of

questionnaire-derived variables, due to self-reported measures

that are inherently susceptible to recall bias, response bias, and

subjective interpretation, which may introduce variability and

affect data reliability. For example, patients may underreport or

overreport lifestyle factors, caregivers may provide inconsistent

information depending on their perceptions, and responses can

vary based on education, cultural background, or cognitive

state. These issues can limit accuracy and introduce systematic

differences between groups, which in turn may affect predictive

modeling if questionnaire-derived variables represent a substantial

proportion of the dataset. In our study, however, questionnaire-

based data represented only a very small fraction of the features

that are used in our models, in contrast to the much larger set
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of objective measures such as laboratory test results, diagnostic

codes, and comorbidities. Because of this imbalance, questionnaire

variables had negligible influence on the models’ outcomes and

did not alter the relative feature contributions. SHAP analysis

(Figure 4) confirmed that the main predictors were drawn from

objective clinical data. While the potential for bias in self-reported

measures is important to acknowledge, in this case their limited role

reduces the risk of any meaningful impact on model validity.

The conclusions of this study should be generalized with

caution and are most applicable under circumstances where the

study population and data characteristics closely resemble those

of our cohort. Specifically, the findings are most relevant to

populations with similar demographic profiles, clinical features,

and healthcare contexts as represented in the dataset. Because

dementia is influenced by genetic, social, environmental, and

lifestyle factors, the predictive patterns identified here may not

hold in populations that differ substantially along these dimensions.

Moreover, generalization is most appropriate when the available

clinical and demographic variables overlap with those included in

our models. Since our predictions are based on a specific set of

features, applying these models in settings where such information

is incomplete or systematically different may reduce accuracy.

Although the SHAP analysis increases transparency by identifying

which features most strongly influence predictions, it does not

eliminate the risk that other unmeasured factors could play a

critical role in dementia risk.

5 Conclusions

This study demonstrates the feasibility of using machine

learning to predict the risk of Alzheimer’s disease and related

dementias from real-world EHR data. By transforming time-

stamped clinical records into structured predictors, the models

achieved strong performance with AUROC values between 0.77

and 0.79. Importantly, our approach goes beyond individual risk

factors by identifying combinations of predictors that form clinical

pathways, or sets of rules, associated with dementia outcomes. This

offers interpretable insights into disease onset and supports more

effective risk stratification.
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