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Background: Older adults with cognitive impairment often present with balance
deficits, reduced walking speed, and attentional difficulties—particularly in
executive function. These challenges increase fall risk and complicate traditional
rehabilitation approaches. Eye-tracking technology offers an objective way to
evaluate attention by analyzing oculomotor behavior during tasks, but its use in
clinical rehabilitation contexts is still limited.
Objective: The aim of this study is to investigate visual attention using eye-
tracking metrics during a non-immersive virtual reality-based balance training
program in older adults with mild to moderate cognitive impairment.
Methods: This was an exploratory pilot study with a prospective, descriptive
cohort, based on a non-controlled, quasi-experimental design of seven older
adults with mild to moderate cognitive impairment. Each patient underwent
VR-based balance training using Rehametrics® software, while their attention
was assessed via eye-tracking (Tobii Pro TX300). Clinical assessments included
the Mini-BESTest, Functional Gait Assessment, 6-Minute Walk Test, 4-Meter
Walk Test, and Montreal Cognitive Assessment (MoCA). Eye-tracking data
focused on fixation patterns, microsaccades, and pupil diameter as indicators
of attentional processing.
Results: Patients showed a small numerical increase, without reaching statistical
significance in task difficulty progression (p = 0.016), lower limb endurance (p =
0.016), and single-leg support time (p = 0.031). Clinical tests revealed a slight
increase, though results were not statistically significant in balance and walking
speed (p = 0.063). Eye-tracking data indicated increased fixation stability and
decreased pupil diameter, suggesting more efficient attention allocation during
motor tasks.
Conclusions: Eye-tracking provided valuable metrics into attentional behavior
during balance training in older adults with cognitive impairment. Its integration
into non-immersive virtual reality rehabilitation may help better understand and
address cognitive-motor interactions. Further studies with larger samples are
needed to confirm these preliminary findings.
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1 Introduction

Older adults represent a population particularly vulnerable
to motor and cognitive impairment, with approximately 35%
experiencing balance or walking impairments by age 70, and
only 20% maintaining normal walking capacity by age 85
(Jahn et al., 2010; Middleton et al., 2015). Aging affects not
only musculoskeletal control—reducing agonist–antagonist
coordination and increasing cortical effort for postural
adjustments—but also cognitive functions such as processing
speed, attention, memory, and executive control (Casamento-
Moran et al., 2017; Van Impe et al., 2013). In individuals with mild
cognitive impairment or neurodegenerative conditions such as
Parkinson’s disease or bilateral vestibulopathy, these deficits are
further exacerbated, leading to slower gait, increased fall risk, and
impaired dual-task performance (Van Impe et al., 2013; Cavanaugh
et al., 2012; Dorsey et al., 2018; Gascuel et al., 2012; Nascimbeni
et al., 2010; Ward et al., 2013; Mancino-Moreira et al., 2021;
Furman et al., 2010).

These motor deficits are tightly linked to cognitive impairment,
especially in executive domains such as inhibition and task
switching, which have been shown to predict fall recurrence (Nagy
et al., 2020; Taylor et al., 2017). Oculomotor behavior—particularly
microsaccades, saccade latency, and fixation duration—has
emerged as a sensitive proxy for visual attention and reduced
cognitive effort, with abnormalities observed in aging, Parkinson’s
disease, and Alzheimer’s disease (Ebaid and Crewther, 2020; Saftari
and Kwon, 2018). Despite this, visual attention and oculomotor
control remain underexplored in rehabilitation, even though
evidence suggests that attention-based strategies and multisensory
stimulation can improve motor and cognitive outcomes in older
adults with neurological conditions (Niering and Seifert, 2024;
Faria et al., 2020). Moreover, conventional rehabilitation often
under-stimulates the cognitive systems involved in motor learning,
highlighting the need for more integrative approaches (Ebaid and
Crewther, 2020; Saftari and Kwon, 2018).

This study aims to examine whether non-immersive virtual
reality (NIVR) balance training can improve balance, visual
attention, and motor learning in older adults with cognitive
impairments. Using eye-tracking technology, we assessed visual
attention through microsaccades and fixation patterns before
and after a rehabilitation program. Given that gaze metrics
correlate with reduced cognitive effort and executive function
(Nyström et al., 2021; Choe et al., 2016; Hayes and Petrov, 2016),
we hypothesize that improvements in eye-tracking indicators
reflect enhanced attention, leading to better balance control and
functional performance (Maldonado-Díaz et al., 2021).

2 Methods

2.1 Study design

This exploratory pilot study employed a non-controlled, quasi-
experimental design with a prospective and descriptive cohort
of older adults with mild to moderate cognitive impairment.
Patients were enrolled from the outpatient neurorehabilitation
unit at the Department of Physical Medicine and Rehabilitation,

Clínica Alemana, Santiago, Chile and consisted of balance training
using non-immersive virtual reality combined with eye-tracking
assessment. Eye-tracking data were collected using the Tobii
Pro TX300 system, which was available through a six-month
research grant awarded via a Latin American competition. Due
to this limited access period, seven participants were recruited
and completed the full intervention protocol. The study was
approved by the “Comité Ético- Científico de Clínica Alemana-
Universidad del Desarrollo” (ID: 1167; Protocol Code: 2022-88).
This study followed the Transparent Reporting of Evaluations
with Nonrandomized Designs (TREND) checklist for transparently
reporting non-randomized studies (Des Jarlais et al., 2004).
Calibration was performed individually using the Tobii Glasses 2
standard procedure and repeated if necessary; however, “eyes not
found” events occasionally occurred, which were attributed not
only to calibration but also to participant-related factors such as
facial morphology, movement during dynamic tasks, or underlying
neurological conditions.

2.2 Population

The study included adults over the age of 60 with mild to
moderate cognitive impairment (refers to a clinical spectrum
of cognitive decline that ranges between normal aging and
more severe forms of dementia. It is typically characterized by
deficits in one or more cognitive domains—such as memory,
attention, executive function, language, or visuospatial skills—
that are measurable but do not yet meet the criteria for major
neurocognitive disorder) who completed 10 rehabilitation sessions.
A non-probabilistic convenience sampling method was used.
Patients were screened consecutively and invited to participate
voluntarily. All participants were already engaged in conventional
rehabilitation programs at the clinic prior to recruitment. The
enrollment period lasted 3 months and was aligned with the
duration for which the eye-tracking equipment was available for
research use. Patients were eligible based on the following criteria:
(i) adults over 60 years old with balance disorders, frontotemporal
dementia, or Parkinson’s disease; (ii) mild to moderate cognitive
impairment defined by Montreal Cognitive Assessment (MoCA)
score between 10 and 26. Patients were excluded when having (i)
visual impairments such as diplopia or spatial hemineglect; (ii) high
risk of falls defined by a Mini-BESTest reactive control score of 3
or less; (iii) severe cognitive impairment, defined as a MoCA score
below 10; and (iv) refusal to participate in the study.

2.3 Intervention protocol

Patients participated in a NIVR balance training program
using Rehametrics

R©
. Each session included exercises targeting

anticipatory postural control, a key component of balance. At
the beginning of each task, patients read on-screen instructions
and observed a visual demonstration before performing the
activity independently. The program automatically adjusted
difficulty based on individual performance, modifying elements
such as visual distractors, time constraints, and background
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FIGURE 1

Intervention protocol study timeline.

FIGURE 2

Visual fixation patterns before, during, and after obstacle crossing. Source: Rehametrics (2025).

contrast. Training data—including session count, duration, and
single-leg stance characteristics—were recorded. Eye-tracking
was used to monitor visual fixation points and gaze duration,
while standardized clinical assessments evaluated cognitive
function, balance, walking speed, and functional mobility.
Supplementary Table S1.

Each patient completed 10 rehabilitation sessions, each
lasting 15 min, combining NIVR balance training with eye
tracking (Figure 1). This eye tracker operates by illuminating
the eye with a light source to produce distinct reflections,
which are captured by a camera. The system identifies
reflections from the cornea (glint) and pupil, calculates the
vector between these reflections (Pupil-Corneal Reflection
or PCCR), and uses its direction along with other geometric

features to determine gaze direction. Tobii eye trackers
represent an advanced version of traditional remote PCCR-based
eye-tracking technology, employing near-infrared illumination
to create corneal and pupil reflection patterns captured by
image sensors.

The technical setup for the program included a physical space
of 3 meters in length by 2 meters in width, a smart TV, and a
Wi-Fi connection. The Rehametrics

R©
VR software (version 1.0,

Rehametrics SL) was used for the virtual training.
For eye-tracking data analysis, Tobii Toolbox for MATLAB

R©

was employed, providing an interface between MATLAB
R©

and
the Tobii eye trackers via the Tobii Software Development Kit
(SDK) in a Windows environment. Since eye-tracking analysis
is more accurate with static images, key moments from training

Frontiers in Aging Neuroscience 03 frontiersin.org

https://doi.org/10.3389/fnagi.2025.1671477
https://www.frontiersin.org/journals/aging-neuroscience
https://www.frontiersin.org


Maldonado-Díaz et al. 10.3389/fnagi.2025.1671477

sessions on day 2 (T1) and day 9 (T2) were captured. Three
stages of a specific exercise were selected for analysis: the patient
walking in place while obstacles appear on the floor. The task
requires lifting one foot to avoid the obstacle, anticipating the next
obstacle, and stepping over it. The aim was to identify how patients
visually and motorically respond to this visuomotor challenge
and whether their response improved after repeated practice
(Figure 2).

For video analysis, two time points were compared: initial (T1)
and final (T2). Eye movements were analyzed across stages M1,
M2, M3 at T1 and stages M1, M2, M3 at T2. Areas of Interest
(AOIs) were drawn on the videos at moments when obstacles
appeared, (the patient anticipates an obstacle (M1), passes it and
fixes their gaze on the next obstacle (M2) and then anticipates the
next obstacle (M3), allowing precise evaluation of gaze patterns
relative to the task demands.

2.4 Outcomes

The initial assessment included the following clinical
measurements: Mini-BESTest (MBT) to evaluate balance and
fall risk, Functional Gait Assessment (FGA) to measure walking
stability, the 6-Minute Walk Test (6MWT) for walking endurance,
and the 4-Meter Walk Test (4-mWT) for walking speed. Based
on these assessments, patients were assigned to specific VR
exercise clusters. All participants engaged in cluster 5 exercises,
which involved walking and balancing tasks with multidirectional
changes in base of support.

2.5 Analysis

Prospective data were obtained from clinical records, the
Virtual Reality rehabilitation report, and the Tobii Pro Tx300 eye-
tracking device (Lab version 1.241/2024-03-20). Eye movements
were analyzed with Tobii Studio software through identification of
Areas of Interest (AoI)—defined as specific regions of the image
deemed relevant and subject to analysis (Sharafi et al., 2015)—
as well as heatmaps and gaze plot graphs. The data recorded by
Tobii Studio were exported as flat files and subsequently processed
using the Stata 16 statistical software, with no patient-identifying
information; each participant was assigned a consecutive study
ID at enrollment. Clinical records were maintained in the
RedCap database for neurological patients at the SMFR unit. To
characterize the patient sample, absolute and relative frequencies
were calculated for qualitative variables. For quantitative variables
medians (P25-P75) were reported. Spearman’s non-parametric
correlation test was used to assess potential associations between
variables. Visual impairments, visual strategies, and vestibular-
visual system adjustments (including microsaccades, gaze angles,
pupil data, among others) were analyzed in relation to other
variables of interest using Wilcoxon rank-sum test. Independence
was tested using chi-square tests or Fisher’s exact test, depending
on observed frequencies. Finally, Wilcoxon signed-rank tests
were used to compare clinical scale scores at baseline and

TABLE 1 Demographic characteristics of the study sample.

Patient Primary diagnosis Sex Age (years)

Patient 1 Parkinson’s disease Male 72

Patient 2 Balance disorders Female 80

Patient 3 Frontotemporal dementia Male 77

Patient 4 Parkinson’s disease Male 75

Patient 5 Balance disorders Male 92

Patient 6 Parkinson’s disease Male 79

Patient 7 Parkinson’s disease Male 63

Median [P25-P75] 77 [72–80]

after rehabilitation. All statistical analyses were conducted using
Stata 16.

3 Results

The intervention was conducted between December 1, 2023,
and March 30, 2024, with a total of seven participants enrolled
(mean age: 76.9 ± 8.8 years). The sample was predominantly male
(86%), and the most frequent diagnosis was Parkinson’s disease
(57%), followed by balance disorders and frontotemporal dementia
(Table 1).

Following the non-immersive virtual reality (NIVR) balance
training, seven participants (mean age: 76.9 ± 8.8 years; 86% male)
demonstrated statistically significant improvements in several
motor parameters, including task difficulty progression (p = 0.016),
lower limb endurance (p = 0.016), and single-leg support height (p
= 0.031). Clinical assessments revealed a small numerical increase,
without reaching statistical significance in balance performance
as measured by the Mini-BESTest (p = 0.063) and in walking
speed (p = 0.063), suggesting a slight increase, though results were
not statistically significant in functional mobility post-intervention
(Table 2).

Eye-tracking analysis showed increased fixation percentages
during the second evaluation (T2), exceeding 70% in the initial
obstacle anticipation phases. “Eyes Not Found” and “Unclassified”
events remained below 30% across all phases and timepoints
(Figure 3). Although saccadic activity varied between sessions,
no statistically significant differences were observed in ocular
metrics between pre- and post-intervention measurements. These
findings are summarized in Supplementary Table S2 and illustrated
in Figure 2.

4 Discussion

This exploratory pilot study revealed a small numerical
increase, without reaching statistical significance in balance,
walking speed, and visual attention among older adults with
neurodegenerative conditions by receiving non-immersive
virtual reality balance training. These outcomes were supported
by both clinical assessments and eye-tracking data, which
showed reductions in median values and variability across
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TABLE 2 Comparison between T1 and T2 in clinical tests, non-immersive virtual reality training outcomes, and eye-tracker findings.

Session using non-immersive virtual reality T1 - median [P25–P75] T2 median [P25–P75] p-value

Difficulty (%) 12 [11–14] 48 [32–50] 0.016

Performance (%) 75 [69–77] 84 [79–88] 0.453

Lateral displacement

Level (max: 45) 1 [1–2] 3 [1–13] 0.375

Hits (%) 44 [33–51] 56 [28–74] 0.453

Errors (%) 56 [26–67] 35 [19–48] 0.453

Average response time (seconds) 11 [11–12] 10 [6–11] 0.125

Lower limb endurance

Level (max: 60) 2 [2–3] 17 [5–22] 0.016

Hits (%) 98 [89–100] 94 [45–98] 0.125

Errors (%) 0 [0–2] 2 [0–6] 0.688

Average response time (seconds) 3 [2–3] 4 [3–7] 0.453

Single-leg balance

Level (max: 21) 2 [2–15] 16 [12–21] 0.031

Hits (%) 88 [77–93] 85 [61–97] 0.999

Errors (%) 0 0 0.999

Average response time (seconds) 5 [4–5] 5 [4–7] 0.999

Overall result

Average step height (cm) (left; right) 12 [0.3–12] 14 [12–28] 0.125

Average step width (cm) (left; right) 10 [7–16] 13 [5–14] 0.453

Balance (mini-BESTest)

Total 20 [14–25] 22 [17–25] 0.063

Walking stability (functional gait assessment)

Total 23 [19–26] 26 [18–28] 0.688

Cognitive level (MoCA test)

Total 26 [21–27] 27 [21–28] 0.250

Walking speed (m/s) 1 [0.6–2] 2 [1–2] 0.063

Walking capacity (6-Minute Walk Test) (meters) 303 [238–364] 308 [290–308] 0.999

Individual standard walking capacity (meters) 420 [400–478]

several parameters. A trend toward improvement was observed
in pupil diameter, which decreased at T2 compared to T1
(Supplementary Table S2). However, the initial measurement,
exceeding 9 mm, seems abnormally high for this population and
likely reflects a calibration issue, as such values are rarely reported
in the literature for aging adults under standard lighting conditions
(Telek et al., 2018; Karatekin, 2007). Even so, the overall trend of
decreasing pupil size may suggest reduced cognitive effort and
greater task familiarity, which has been described in previous
studies on cognitive aging (El Haj, 2024).

We also observed a shift from frequent saccades at T1 to
longer fixations at T2, suggesting a possible adjustment in visual
strategies. This pattern may indicate a more efficient allocation
of attention, consistent with observations in visuomotor learning

research, where repeated exposure to tasks tends to stabilize
fixations and reduce superfluous eye movements (Marino and
Mazer, 2016). From a physiological standpoint, these adaptations
could reflect preliminary evidence of changes in attentional filtering
and emotional regulation, functions previously linked with smaller
pupil diameters during cognitive tasks (Manohar et al., 2017;
Lavin et al., 2014; Varazzani et al., 2015; Kahneman and Beatty,
1966; Gilzenrat et al., 2010; van der Wel and van Steenbergen,
2018). Additionally, participants’ ability to sustain visual focus
during dynamic, full-body movement points to the cognitive
demands embedded in NIVR balance training (Gkintoni et al.,
2025).

Taken together, these oculomotor changes provide additional
context to the clinical outcomes, highlighting the potential value of
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FIGURE 3

Eye-tracking metrics during obstacle anticipation in virtual reality balance training. This figure shows the distribution of eye-tracking outcomes
(fixation stability, microsaccades, and pupil diameter) during obstacle anticipation tasks across two training time points: first session and final session;
and three types of exercises performed in non-immersive virtual reality: obstacle crossing, static balance with visual targets, and dynamic stepping
with visual anticipation toward the next target. Dynamic stepping specifically requires looking toward the next target, activating anticipatory attention
mechanisms. Improvements in attention-related oculomotor behavior are observed between obstacle crossing and static balance.

integrating eye-tracking into rehabilitation protocols. While some
rapid fluctuations in pupil size were noted, these are unlikely to be
explained solely by changes in lighting or task structure and may
instead relate to attentional processes (Grujic et al., 2024). At the
same time, the slight increase in “Eyes Not Found” events at T2
suggests the presence of fatigue or calibration issues, underscoring
the need for more robust standardization in future protocols.

Beyond the specific findings of this pilot study, non-immersive
VR has been explored in prior research as a rehabilitation tool, with
reported benefits for balance, gait, and cognition (Rehametrics,
2025; Dockx et al., 2016; Laver et al., 2017; Wulf, 2013; Hunt et al.,
2017; Sugianto et al., 2025; Huang et al., 2024). Our results cannot
confirm such efficacy, but they are consistent with these broader
trends and may support the rationale for further trials. Importantly,
the motivational aspects of VR training, observed in our
participants’ engagement across increasing task difficulty, suggest
that this approach could complement conventional rehabilitation
strategies. However, given the exploratory design and limited
sample, the present findings should be considered preliminary
and interpreted with caution. Future randomized controlled trials
with larger samples are needed to determine whether the trends
observed here translate into clinically meaningful benefits (Dockx
et al., 2016; Laver et al., 2017; Tortora et al., 2024).

5 Limitations

This study has several limitations. The small sample size
restricts generalizability and statistical power. Additionally, the
heterogeneity of neurological diagnoses introduces variability that
may obscure condition-specific effects. In part, this was due

to the exploratory nature of the study and to recruitment and
equipment availability constraints. Therefore, the findings should
be considered preliminary and orientative, and future studies
with more homogeneous cohorts are needed to analyze diagnosis-
specific effects. Moreover, the absence of additional physiological
measures, such as EEG or galvanic skin response (GSR), limits
interpretation of arousal and emotional engagement (Gkintoni
et al., 2025; Sugianto et al., 2025).

It should be noted that “eyes not found” events may have
affected data capture; these were likely related not only to
calibration issues but also to participant-specific factors such as
facial features, movement during dynamic tasks, or neurological
conditions, which may have influenced eye-tracking accuracy.

Baseline pupil diameter values should be interpreted with
caution, as calibration issues with the Tobii Glasses 2 and
participant-specific factors may have influenced accuracy;
future studies will address this with stricter pre-recruitment
procedures, more controlled environments, and improved data
collection protocols.

The absence of formal correction for multiple comparisons
increases the potential risk of Type I error, which should be
considered when interpreting the findings.

Because effect sizes and confidence intervals were not
calculated, borderline p-values should be interpreted with caution
and considered non-significant within the exploratory context of
this pilot study.

Calibration of eye-tracking devices is generally more reliable
under static, seated conditions with minimal head movement;
because our participants performed dynamic balance tasks, pupil
diameter results should be interpreted with caution and considered
exploratory only.
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In summary, the main limitations can be outlined as follows: (i)
very small sample size; (ii) diagnostic heterogeneity; (iii) absence
of a control group; (iv) possible calibration/technical issues; and
(v) limited generalizability. These factors highlight the exploratory
character of the study and reinforce the need for larger, more
stratified cohorts in future research.

5.1 Clinical and translational implications

Clinically, the results of this study suggest that integrating
visual-attentional strategies and oculomotor assessments could
enhance motor learning. For example, external focus of attention
(EFA) strategies—shown to improve performance in both
musculoskeletal and neurological populations—could be applied
alongside eye-tracking feedback to promote optimal motor
planning (Wulf, 2013; Hunt et al., 2017). In keeping with emerging
research in neurodegenerative conditions, our exploratory findings
underscore the potential of eye-tracking not just as a research tool
but as a clinical adjunct. In Parkinson’s disease, eye-tracking has
been validated as a reliable, cost-effective method for detection,
cognitive assessment, and rehabilitation (Diotaiuti et al., 2025).
Further, a recent systematic review highlights that metrics such
as saccade velocity, fixation duration, and pupillary changes
correlate with disease severity—with increasing scalability through
machine learning and VR integration (Culicetto et al., 2025).
Importantly, Dalbro et al. (2025) demonstrated the repeatability
and reliability of eye-movement metrics (fixations, saccades)
in Parkinson’s patients, laying the groundwork for their use in
clinical monitoring. From a practical standpoint, ensuring that
impaired patients visually attend to therapeutic tasks is crucial for
efficient therapy—eye-tracking provides therapists with objective,
real-time confirmation of attention, helping to avoid wasted effort.
As accessible eye-tracking systems become more widespread,
they offer opportunities for personalized, attention-informed
rehabilitation protocols in outpatient or community settings.
Future studies should explore these integrative approaches over
longer periods to assess their impact on functional recovery and
quality of life.

6 Conclusions

A small group of participants with mild to moderate cognitive
impairments showed a small numerical increase, without reaching
statistical significance in balance, walking speed, and visual
attention by receiving NIVR balance training combined with eye-
tracking. Clinical assessments showed a non-significant change
compared to baseline in visuospatial function and postural control,
marked by a shift from rapid saccades to longer gaze fixations—
suggesting improved visual strategies. These findings support
the integration of attentional and oculomotor components in
rehabilitation and highlight the potential of this approach as
an accessible, personalized tool for motor-cognitive recovery in
individuals with neurodegenerative conditions. As an exploratory
pilot study, these results should be interpreted with caution but
provide a foundation for larger and controlled follow-up trials.
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