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Neuroinflammation plays a dual role in the central nervous system, offering 
protection in acute phases but contributing to chronic damage in neurodegenerative 
diseases. Estrogen, traditionally recognized for its reproductive functions, exerts 
extensive neuroprotective effects by modulating neuroinflammatory processes 
across multiple levels. This review explores the actions of estrogen through its 
receptors in astrocytes, microglia, and neurons, emphasizing its regulation of 
signaling pathways such as PI3K/Akt, NF-κB, and WNT/β-catenin. Estrogen also 
enhances mitochondrial function, promotes DNA repair, and interacts with the 
gut microbiota to influence systemic inflammation. Furthermore, sex-specific 
responses to 17α-estradiol highlight the importance of hormonal context. Together, 
these findings underscore estrogen’s potential as a multifaceted modulator of 
neuroinflammation and provide insight for precision therapeutic strategies.
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1 Introduction

Neuroinflammation is a response initiated by specialized cells following brain injury, 
aiming to restore tissue homeostasis (Shi and Yong, 2025). It involves multiple cell types, 
including neurons, microglia, astrocytes, and endothelial cells. During the inflammatory 
response, disruption of the blood–brain barrier (BBB) often facilitates the infiltration of 
peripheral immune cells, such as monocytes/macrophages and lymphocytes, into the central 
nervous system (CNS) (Candelario-Jalil et al., 2022). In the acute phase, neuroinflammation 
is generally beneficial, contributing to the resolution of injury and enhancing the brain’s 
defense against pathogens and other insults. However, in many neurological disorders—
including Alzheimer’s disease, Parkinson’s disease, and multiple sclerosis—neuroinflammation 
becomes exaggerated and chronic. Prolonged or excessive activation of microglia and 
astrocytes leads to overproduction of pro-inflammatory cytokines and chemokines, resulting 
in synaptic dysfunction, neuronal damage, and ultimately irreversible cognitive and motor 
deficits (Adamu et al., 2024).

Traditionally, research on estrogen has focused primarily on its roles in pubertal 
development and reproductive function. However, it is now well recognized that estrogens 
exert wide-ranging effects beyond reproduction. Circulating estrogens act on multiple organ 
systems—including the cardiovascular, immune, and central nervous systems—exerting 
tissue-specific biological functions. Clinical trials have shown that estrogen can alleviate brain 
damage caused by ischemic stroke (Zhong et al., 2023). A meta-analysis of preclinical studies 
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suggests that estrogen helps improve morphological and cellular 
outcomes following neonatal hypoxia-ischemia (Durán-Carabali 
et  al., 2023). Estrogen influences neuroinflammation not only by 
modulating the activation status and cytokine profiles of immune cells 
such as microglia, but also by affecting neuronal survival, BBB 
integrity, and apoptosis-related pathways (Ma et  al., 2016). These 
multifaceted actions position estrogen as a key regulator of 
CNS homeostasis.

This review aims to elucidate the multi-level roles of estrogen in 
the regulation of neuroinflammation. We examine interconnected 
dimensions, beginning with neural cell responses, followed by 
mitochondrial regulation, DNA repair pathways and the influence of 
gut microbiota on neuroimmune communication. By integrating 
recent research findings, we seek to provide a theoretical foundation 
for the development of estrogen-based precision interventions.

1.1 Literature search strategy

We conducted a literature search in PubMed, Web of Science, and 
Scopus databases. The search covered articles published between 
January 2003and May 2025, using a combination of the following 
keywords: “estrogen,” “neuroinflammation,” “estrogen receptor,” 
“mitochondria,” “gut-brain axis,” and “DNA repair.”

Inclusion criteria were: (1) original research articles involving 
in vitro, in vivo (animal), or clinical/observational human studies; (2) 
studies specifically investigating the effects of estrogen or its receptors 
on neuroinflammation or related neural processes.

Exclusion criteria included: (1) studies unrelated to the central 
nervous system (CNS); (2) non-English publications; (3) studies 
lacking mechanistic or outcome-related data on estrogen effects.

2 Estrogen and estrogen receptors

Estrogen, a lipophilic steroid hormone synthesized from ovarian 
cholesterol, readily diffuses across membranes, including the BBB 
(Hao et al., 2019). Besides peripheral sources, neurons and glial cells 
also produce neurosteroid-derived estrogen, compensating for 
declining systemic levels (Saldanha, 2021). Estrogen exists as estrone, 
estradiol, and estriol; of these, 17β-estradiol (E2) is the most abundant, 
bioactive, and extensively studied in the nervous system—thus the 
focus of this article.

Estrogen exerts its effects through binding to estrogen receptors 
(ERs) via two mechanisms. The genomic pathway involves classical 
nuclear ERα and ERβ, which bind E2 and activate estrogen response 
elements on DNA to regulate target gene transcription. Different ER 
subtypes elicit distinct or opposing effects. Some studies suggest ERα 
deletion alleviates inflammation and cognitive impairment, possibly 
due to its promotion of NF-κB signaling. ERα may protect female rat 
neurons from glutamate-induced injury but shows no effect in males 
(Maioli et al., 2021), contributing to ongoing debate over its role. In 
contrast, the neuroprotective role of ERβ appears to be more clearly 
defined. ERβ has been found to mediate the inhibition of NF-κB-
driven inflammatory pathways, oxidative stress-related factors, and 
the Indoleamine 2,3-dioxygenase 1-mediated tryptophan/kynurenine 
pathway in the hippocampus, thereby alleviating neuroinflammation. 
ERβ also downregulates miR-638, reducing TNF-α-induced pericyte 

migration, thus preserving BBB integrity and protecting the 
neurovascular unit (Kurmann et al., 2024).

With aging, the expression levels of ERα and ERβ in the brain 
undergo dynamic changes. In the hippocampal cornu ammonis region 
1 of aged rats, both ERα and ERβ exhibit reduced synaptic expression. 
However, unlike ERα, ERβ can be reactivated and upregulated upon 
administration of E2, suggesting a selective restoration potential for 
ERβ (Waters et al., 2011).

The non-genomic pathway involves membrane-bound receptors 
rapidly activating intracellular signaling cascades. E2 can directly 
interact with ERα and chloride intracellular channel protein 1, 
enhancing the currents mediated by chloride intracellular channel 
protein 1 and thereby rapidly modulating the excitability of 
ERα-positive neurons in the brain at millisecond timescales, with 
broad implications for various neurophysiological processes (Yu et al., 
2024). In addition to ERα and ERβ, another non-classical membrane-
bound receptor, G protein–coupled estrogen receptor 1 (GPER1), also 
mediates estrogen signaling by activating multiple downstream 
pathways (PKA, ERK, PI3K), promoting the generation of intracellular 
cyclic adenosine monophosphate (cAMP), and regulating intracellular 
calcium homeostasis (Bai et  al., 2020). Recent evidence further 
indicates that activation of GPER after global cerebral ischemia 
upregulates the expression of interleukin-1 receptor antagonist in the 
hippocampus, thereby reducing ischemia-induced cell death. By 
increasing interleukin-1 receptor antagonist levels in neurons, GPER 
enhances anti-inflammatory mechanisms and helps preserve cognitive 
function following global cerebral ischemia.

Estrogen receptors are widely distributed throughout the central 
nervous system, encompassing regions associated with higher-order 
brain functions such as the hypothalamus, limbic system, 
hippocampus, and prefrontal cortex (Fuente-Martin et  al., 2013). 
These receptors are expressed not only in neurons but also extensively 
in glial cells, particularly astrocytes and oligodendrocytes. Moreover, 
ERs are also localized to intracellular organelles, including 
mitochondria, suggesting additional roles in regulating energy 
metabolism and apoptosis (Yang et  al., 2004). The key signaling 
pathways, molecular targets, and functional outcomes associated with 
estrogen action in neural cells are detailed in Table 1.

3 Estrogen and neural cells

3.1 Estrogen and astrocytes

Astrocytes express estrogen receptors on their surface that allow 
for rapid recognition and response to hormonal signaling (Rurak 
et al., 2021). Studies have shown that E2 can stimulate astrocytes to 
synthesize and release various neurotrophic factors, thereby 
contributing to neuroprotection (Karki et al., 2014).

In addition, E2 upregulates both mRNA and protein levels of 
glutamate transporters GLAST and GLT-1 in astrocytes (Pawlak et al., 
2005). This enhances the capacity of astrocytes to uptake extracellular 
glutamate, preventing excitotoxic neuronal death caused by glutamate 
accumulation. In an Alzheimer’s disease model derived from induced 
pluripotent stem cells, studies have shown that E2 significantly 
alleviates the astrogliosis, which is closely related to 
neuroinflammation. Specifically, in a neuron-astrocyte co-culture 
system, E2 treatment led to a downregulation of astrocytic activation 
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markers, such as Glial fibrillary acidic protein (GFAP), and a 
restoration of cell morphology to a more homeostatic state (Supakul 
et al., 2024). This suggests that E2 may reduce excessive astrocyte 
activation, thereby mitigating the inflammatory environment and 
helping to maintain the stability of the neuronal microenvironment.

3.2 Estrogen and microglia

As the principal immune cells of the central nervous system, 
microglia predominantly express estrogen receptors (Upadhayay et al., 
2023). Under acute stress conditions such as infection or hypoxia, E2 
can induce a phenotypic shift in microglia from a pro-inflammatory 
“M1-like” state to a reparative “M2-like” state, thereby suppressing 
inflammatory responses and maintaining CNS homeostasis (Thakkar 
et al., 2018). In chronic neuroinflammatory environments, such as 
those observed in neurodegenerative diseases, E2 primarily exerts 
neuroprotective effects by attenuating microglial neurotoxicity 
through ERβ and membrane-associated receptors like GPER, thus 
protecting neurons from sustained inflammatory damage (Loiola 
et al., 2019).

E2 can downregulate the expression of miR-138-5p, relieving 
its inhibition of the deacetylase Sirtuin 1 (SIRT1), thereby 
upregulating SIRT1 expression. SIRT1 further inhibits the 
expression of high-mobility group box 1 (HMGB1), suppressing 
microglial activation and the release of inflammatory factors, 
significantly alleviating neuroinflammation in the hippocampus 
(Zhang et al., 2024).

Additionally, in vivo and animal experiments have shown that E2 
can also inhibit the ferroptosis-related factor ATF4, blocking the 
TLR4/NF-κB pro-inflammatory signaling pathway mediated by 
microglia, thereby exerting anti-inflammatory and neuroprotective 
effects in Parkinson’s disease models (Wang et al., 2024).

However, it is important to note that the neuroprotective effects 
of estrogen occur within a relatively narrow physiological 
concentration range. While physiological levels of E2 exert anti-
inflammatory and neuroprotective functions, supraphysiological 
doses may exert neurotoxic effects. A recent study demonstrated this 
phenomenon, showing that administration of supraphysiological 
estradiol (sE2) at twice the physiological dose exacerbated depressive-
like behaviors in ovariectomized mice. In vitro experiments further 
revealed that E2 activated the ERα/NF-κB signaling pathway in 
microglia, leading to a pro-inflammatory phenotype and associated 
neurotoxicity (Li et al., 2023). These findings suggest that the use of 
sE2  in estrogen replacement therapy may carry potential risks, 
particularly when dosing exceeds physiological levels. Therefore, 
rather than simply increasing E2 dosage, the development of novel 
compounds that specifically target estrogen receptors, particularly 
ERβ, may represent a more promising and safer strategy to mitigate 
neuroinflammation in menopausal individuals.

3.3 Estrogen and neurons

Estrogen exerts neuroprotective effects by modulating key 
signaling pathways in neurons. It activates pro-survival proteins such 
as PI3K, cAMP-response element binding protein (CREB), Bcl-2, 
Bcl-x, c-fos, and c-jun (Yune et  al., 2008), while inhibiting 
pro-apoptotic molecules including Fas, Fas-associated protein with 
death domain, Bax, and the release of cytochrome C (Jia et al., 2009). 
Estrogen also initiates mitogen-activated protein kinase signaling, 
enhances CREB phosphorylation, and suppresses cell death-associated 
signals such as caspase-3/8 and p53, thereby promoting neuronal 
survival (Jover-Mengual et al., 2007).

Shakya et al. (2023) further demonstrated that E2 exerts anti-
inflammatory and neuroprotective effects through activation of the 

TABLE 1  Estrogen-mediated signaling pathways and their functional outcomes in neural cells.

Target Key signaling pathways Major molecular targets Functional outcomes

Astrocytes Not specified

Potential cross-talk with neurotrophins

↑ GLAST, GLT-1

↓GFAP

↑Neurotrophic factors

Enhances glutamate uptake, reduces 

excitotoxicity, alleviates astrogliosis

Microglia PI3K/Akt

TLR4/NF-κB

SIRT1/miR-138-5p

Ferroptosis-related pathways

↑SIRT1

↓HMGB1

↓ATF4

↓IL-1β

Promotes M2-like phenotype, suppresses 

inflammation, reduces oxidative stress

Neurons PI3K/Akt

MAPK/CREB

WNT/β-catenin

↑Bcl-2, Bcl-x

↓Fas, Bax, CytC

↑ β-catenin

Inhibits apoptosis, enhances survival and 

plasticity, suppresses neuroinflammation

Mitochondria PI3K/Akt

AMPK/PGC-1α

Nrf2/HO-1

↑COXI–III

↑Mn-SOD, GPx

Stabilization of ΔΨm

Enhances OXPHOS, reduces ROS, inhibits 

NLRP3 inflammasome, maintains bioenergetic 

homeostasis

DNA Repair 

System

PI3K/Akt → Nrf2

BDNF signaling cascade

↑APE1

↑Nrf2

APE1 mitochondrial/nuclear translocation

Enhances oxidative DNA repair, maintains 

genome integrity, protects against 

neurodegeneration

Gut Microbiota Microbial metabolism of estrogen

Regulation of tight junctions, mucus genes

↑Lactobacillus

↑Mucin gene expression

↑β-glucuronidase activity

Modulates estrogen bioavailability, supports 

gut-brain axis, reduces systemic inflammation
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canonical Wingless/Integrated (WNT) signaling pathway. This 
pathway involves key components such as WNT1, Frizzled receptors, 
Low-density lipoprotein receptor-related protein 5/6 co-receptors, 
and the downstream effector β-catenin. Chronic inflammatory 
stimuli are known to suppress the expression of WNT1 and β-catenin, 
leading to impaired neuronal proliferation and exacerbated cellular 
damage. E2 treatment reverses these alterations by upregulating 
WNT1 and β-catenin levels, thereby activating the WNT pathway, 
enhancing neuronal viability, and reducing inflammation-
induced neurotoxicity.

4 Estrogen and mitochondrial 
function

Although the brain accounts for only about 2% of total body 
weight, it consumes nearly 20% of the body’s total energy, making it 
highly dependent on mitochondrial function (Song et  al., 2024). 
Recent studies have demonstrated that E2 exerts neuroprotective 
effects in the central nervous system by enhancing mitochondrial 
respiration and suppressing inflammatory responses.

Upon binding to estrogen receptors, E2 further interacts with 
estrogen response elements located in the D-loop control region of 
mitochondrial DNA (mtDNA), thereby directly modulating the 
transcription of mitochondrial genes (Klinge, 2020). E2 has been 
shown to upregulate the mRNA expression of cytochrome c oxidase 
subunits I, II, and III (Complex IV) encoded by mtDNA (Arjmand 
et al., 2024; Klinge, 2008). In addition, estrogen receptor β (ER-β), 
present in both mitochondria and nuclei, promotes CREB 
phosphorylation. Phosphorylated CREB binds to the D-loop region 
of mtDNA, regulating the transcription of oxidative phosphorylation 
(OXPHOS) subunits, thus influencing the expression of 
mitochondrial respiratory chain proteins (Lee et al., 2008).

Under pathological conditions such as ischemia, mitochondrial 
reactive oxygen species (ROS) are generated, which triggers the 
mitochondrial translocation of the NLRP3 inflammasome and the 
subsequent release of mtDNA (Zhang et al., 2022). Importantly, E2 
has been reported to suppress NLRP3 gene expression in the cerebral 
cortex under inflammatory conditions (Slowik and Beyer, 2015). 
Further investigations have elucidated multiple key mechanisms 
(Thakkar et  al., 2016). Firstly, at the transcriptional level, E2 
suppresses the expression of key inflammasome components, 
including NLRP3, ASC, caspase-1, and IL-1β, and also downregulates 
the expression of P2X7 and TXNIP, two well-established upstream 
activators of NLRP3 inflammasome activation. These findings suggest 
that E2 can inhibit inflammasome activation at its source by blocking 
the initiating signals. In support of this, recent experimental studies 
have demonstrated that G-1, a selective GPER1 agonist, effectively 
inhibits the formation of the NLRP3/caspase-1 complex and the 
maturation of pro-IL-1β (Bai et al., 2020). Secondly, E2 significantly 
impedes the assembly of the inflammasome by preventing the 
formation of the NLRP3–caspase-1 complex, thereby disrupting the 
effector phase of the inflammatory cascade. Finally, the estrogen 
receptor coregulator PELP1 has been shown to be  essential for 
mediating the regulatory effects of E2 on NLRP3 inflammasome 
activation, highlighting the importance of ER-associated cofactors in 
E2-driven anti-inflammatory responses. E2 also activates protein 

phosphatase 2A, which inhibits NLRP3 phosphorylation and reduces 
downstream inflammatory signaling.

Mitochondrial dysfunction—particularly characterized by ROS 
accumulation and the loss of mitochondrial membrane potential 
(ΔΨm)—is a major contributor to neuronal injury in many central 
nervous system disorders. E2 activates the Nrf2/HO-1 signaling 
pathway and upregulates key mitochondrial antioxidant enzymes, 
including manganese superoxide dismutase (Mn-SOD) and 
glutathione peroxidase (GPx), thereby enhancing mitochondrial 
antioxidant defenses and facilitating ROS clearance (Khan et  al., 
2021). In dorsal root ganglion neurons, E2 primarily activates the 
CaMKKβ/AMPK pathway via ERα, promoting the expression of 
PGC-1α and ATF3, thereby enhancing mitochondrial biogenesis and 
facilitating axonal regeneration (Mishra et  al., 2025). In other 
experimental models, E2 regulates mitochondrial bioenergetics and 
maintains mitochondrial membrane potential (ΔΨm) through 
non-genomic pathways mediated by ERβ and GPER, which in turn 
activate downstream PI3K/Akt and AMPK/PGC-1α signaling 
cascades.(Guajardo-Correa et al., 2022). In traumatic brain injury 
models, nanomolar concentrations of E2 applied to isolated brain 
mitochondria significantly improved electron transport chain 
activity, reduced ROS production, and preserved ΔΨm in a 
sex-dependent manner (Kalimon et al., 2024). Figure. 1 underscores 
the role of E2 as a regulator of mitochondrial homeostasis.

5 Sex hormones and DNA repair

With aging, DNA repair capacity declines, leading to mutations 
in the brain (Chatterjee and Walker, 2017). While most evidence 
linking sex hormones to DNA repair has originated from cancer 
research (Zach et al., 2022), estrogens have been shown to promote 
DNA double-strand break repair via non-homologous end joining 
and improve mismatch and nucleotide excision repair (Jiménez-
Salazar et al., 2021).

Though brain-focused studies are limited, estrogen protects 
against oxidative DNA damage by upregulating repair enzymes such 
as APE1 (Dietrich et al., 2013). Additionally, estrogen may indirectly 
enhance DNA repair capacity by inducing the expression of brain-
derived neurotrophic factor (BDNF), which in turn promotes the 
synthesis of DNA repair enzymes such as APE1 (Scharfman and 
MacLusky, 2006). This establishes a neuroprotective cascade: 
Estrogen → BDNF → DNA repair enzymes → Enhanced DNA repair. 
Estrogen also activates the PI3K/Akt signaling pathway, which 
elevates the activity of Nrf2, a master transcription factor in the 
antioxidant response, further amplifying DNA repair mechanisms 
(Zhu et al., 2015). This pathway has been shown to confer protective 
effects in both brain and retinal models (Zhu et al., 2015; Ishii and 
Warabi, 2019).

Importantly, the influence of estrogen extends beyond gene 
expression to subcellular localization. For example, under estrogen 
stimulation, APE1 can translocate from the cytoplasm to mitochondria 
or specific nuclear domains, thereby enhancing regional DNA repair 
capacity (Rothman and Mattson, 2012). This subcellular redistribution 
is closely associated with oxidative stress elevation in states of estrogen 
deficiency, highlighting the hormone’s multifaceted role in 
maintaining genomic integrity and neuronal resilience.
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6 Estrogen and the gut microbiota

Recent studies have identified a bidirectional communication 
system between the gut and brain—the gut–brain axis (Wang 
et  al., 2023; Lin et  al., 2024), which allows gut microbes to 
influence CNS function via the vagus nerve, enteric nervous 
system, and microbe-derived metabolites such as 
neurotransmitters, cytokines, and short-chain fatty acids. 
Estrogen, a key steroid hormone regulating neural activity, also 
serves as a critical mediator in this axis, modulating 
neuroinflammation and cognitive processes (Zim and 
Bommareddy, 2025).

Estrogen and the gut microbiota regulate each other reciprocally. 
Estrogen influences gut physiology by modulating intestinal motility, 
thereby altering microbial composition. Estrogen signaling enhances 
microbial diversity and supports the growth of beneficial bacteria like 
Lactobacillus (Zim and Bommareddy, 2025). In elderly mouse, 
supplementation with E2 has been found to increase the expression of 
mucin genes in colonic epithelial cells and improve gut barrier 
integrity (Song et al., 2018). Conversely, sex hormone deficiency has 
been shown to reduce the expression of tight junction proteins, 
impairing gut epithelial structure and increasing permeability. This, 

in turn, may facilitate the translocation of pro-inflammatory signals 
into systemic circulation (Song et al., 2018).

The gut microbiota contributes to systemic estrogen homeostasis. 
A specific subset of gut microbes, known as the “estrobolome,” is 
capable of metabolizing estrogens (Sui et al., 2021). Some of these 
bacteria produce β-glucuronidase, an enzyme that deconjugates 
bound estrogens into their active, free forms, facilitating their 
enterohepatic recirculation and reuse in the body (Sui et al., 2021). 
However, dysfunction of the estrobolome can reduce levels of 
bioactive estrogens, potentially contributing to metabolic disorders 
and neurodegenerative diseases.

This “gut–brain–estrogen axis” framework offers valuable insights 
into the sex-specific mechanisms underlying neurodegeneration and 
provides a theoretical basis for future targeted therapies.

7 Sex-specific effects of 17aE2 on 
neuroinflammation

Studies have shown that 17aE2 exerts sex-specific anti-
inflammatory effects. Recent experimental evidence shows that 
chronic administration of 17aE2 significantly attenuates 

FIGURE 1

Estrogen-mediated regulation of mitochondrial function and neuroinflammation. E2 exerts neuroprotective effects through multiple pathways. Binding 
to membrane ER-β activates PI3K/Akt and AMPK/PGC-1α/Nrf2 signaling, enhancing mitochondrial biogenesis and antioxidant defenses. Within 
mitochondria, ER-β promotes CREB activation and OXPHOS, increasing ATP production and reducing ROS. E2 also inhibits NLRP3 inflammasome 
activation via PP2A and GPER1 signaling, thereby suppressing IL-1β release and neuroinflammation. ER-β, Estrogen receptor beta; PI3K, 
Phosphoinositide 3-kinase; Akt, Protein kinase B; AMPK, AMP-activated protein kinase; PGC-1α, Peroxisome proliferator-activated receptor gamma 
coactivator 1-alpha; Nrf2, Nuclear factor erythroid 2–related factor 2; CREB, cAMP response element-binding protein; OXPHOS, Oxidative 
phosphorylation; PP2A, Protein phosphatase 2A; GPER1, G protein–coupled estrogen receptor 1; NLRP3, NACHT, LRR, and PYD domains-containing 
protein 3; ASC, Apoptosis-associated speck-like protein containing a CARD.
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neuroinflammatory responses in male mice, characterized by reduced 
activation of microglia and astrocytes in both the hypothalamus and 
hippocampus. In contrast, this anti-inflammatory effect is not 
observed in female mice (Debarba et al., 2022).

Further investigation suggests that this sexual dimorphism relies 
on endogenous androgens like testosterone. In castrated male mice, 
17aE2’s anti-inflammatory effects are significantly reduced, indicating 
a requirement for male sex hormones. Mechanistically, 17aE2 
markedly upregulates ERα expression in the male hypothalamus, an 
effect absent in females (Li et al., 2023), highlighting ERα as a key 
mediator of its sex-specific anti-inflammatory action.

8 Conclusion

This review underscores estrogen’s key role in modulating 
neuroinflammation through multiple mechanisms. However, its 
diverse receptor subtype actions and sex-specific effects pose 
challenges, and its neuroprotection is limited to a narrow physiological 
range—higher doses may cause neurotoxicity, hindering clinical use.

Future research should prioritize developing ERβ-targeted 
selective modulators to enhance efficacy with fewer side effects. 
Exploring estrogen’s role in the gut–brain axis and its interaction with 
the microbiota also holds promise for understanding 
neuroinflammation and cognitive dysfunction. A deeper grasp of 
estrogen signaling will support more precise, personalized 
interventions for related diseases.
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Glossary

Akt - Protein kinase B

AMPK - AMP-activated protein kinase

ASC - Apoptosis-associated speck-like protein containing a CARD

ATF4 - Activating transcription factor 4

BBB - Blood–brain barrier

BDNF - Brain-derived neurotrophic factor

CNS - Central nervous system

CREB - cAMP-response element binding protein

CytC - Cytochrome c

E2 - 17β-estradiol

GFAP - Glial fibrillary acidic protein

GPER1 - G protein–coupled estrogen receptor 1

GPx - Glutathione peroxidase

HMGB1 - High mobility group box 1

Mn-SOD - Manganese superoxide dismutase

mtDNA - Mitochondrial DNA

NLRP3 - NACHT, LRR, and PYD domains-containing protein 3

Nrf2 - Nuclear factor erythroid 2–related factor 2

OXPHOS - Oxidative phosphorylation

PGC-1 - Peroxisome proliferator-activated receptor gamma 
coactivator 1-alpha

PP2A - Protein phosphatase 2A

ROS - Reactive oxygen species

sE2 - Supraphysiological estradiol

SIRT1 - Sirtuin 1

WNT - Wingless/Integrated
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