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Introduction: Parkinson’s Disease (PD) is a progressive neurodegenerative disorder 
that significantly affects the aging population, creating a growing burden on global 
health systems. Early detection of PD is clinically challenging due to the gradual 
and ambiguous onset of symptoms.
Methods: This study presents a machine-learning framework for the early 
identification of PD using non-invasive biomedical voice biomarkers from the UCI 
Parkinson’s dataset. The dataset consists of 195 sustained phonation recordings 
from 31 participants (23 PD and 8 healthy controls, ages 46–85). The methodology 
includes subject-level stratified splitting and normalization, along with 
BorderlineSMOTE to address class imbalance. Initially, an XGBoost model is applied 
to select the top 10 acoustic features, followed by a Bayesian-optimized XGBoost 
classifier, with the decision threshold tuned via F1-maximization on validation data.
Results: On the held-out test set, the model achieves 98.0% accuracy, 0.97 
macro-F1, and 0.991 ROC-AUC. This performance exceeds that of a deep neural 
network baseline by 4.0 percentage points in accuracy (94.0% to 98.0%), 4.3 
percentage points in macro-F1 (92.7% to 97.0%), and 0.050 in AUC (0.941 to 
0.991). Compared to a classical SVM, it outperforms by 7.0 percentage points in 
accuracy (91.0% to 98.0%), 6.5 percentage points in macro-F1 (90.5% to 97.0%), 
and 0.089 in AUC (0.902 to 0.991).
Discussion: Model decisions are elucidated using SHAP, offering global and 
patient-specific insights into the influential voice features. These findings 
indicate the feasibility of a non-invasive, scalable, and explainable voice-based 
tool for early PD screening, highlighting its potential integration into mobile or 
telehealth diagnostic platforms.
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1 Introduction

Parkinson’s disease (PD) is a chronic, progressive neurodegenerative disorder that mainly 
involves motor function and is manifested by symptoms of resting tremors, muscular rigidity, 
bradykinesia, and a broad spectrum of non-motor features such as cognitive impairment and 
speech disturbances. It is the second most prevalent neurodegenerative disorder worldwide 
after Alzheimer’s disease and impacts about 1% of people over 60 years old (Bang et al., 2023). 
As the world population continues to age, the occurrence of Parkinson’s disease is expected to 
escalate exponentially, placing more socioeconomic burden on healthcare systems and creating 
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greater demand for early and definitive diagnostic techniques. In 
clinical practice, early diagnosis is critical in initiating neuroprotective 
therapies that can slow symptom progression and maintain quality of 
life. Yet, diagnosis of PD at its early stage continues to be evasive due 
to the slow, insidious development of symptoms that tend to overlap 
with other aging-related neurological disorders, resulting in common 
misdiagnoses or delays in diagnosis (Rabie and Akhloufi, 2025).

Within the field of aging neuroscience, recent years have seen 
growing investigation into non-invasive biomarkers that may enable 
early PD diagnosis through the capture of subtle neuromuscular 
decline. Of interest is the human voice, a rich and accessible window 
into underlying neurophysiological function. Almost 90% of patients 
with Parkinson’s disease have measurable speech deficits, manifest as 
changes in pitch variability, frequency modulation, amplitude, and 
vocal stability (Tabashum et  al., 2024; Iyer et  al., 2023). These 
perturbations are thought to be due to age-related decline in the basal 
ganglia and corresponding cortical–subcortical circuits that drive 
motor output to the vocal apparatus. Changes in voice signal often 
antedate visible motor deficits, rendering them appealing for early-
stage screening. In addition, the exploitation of vocal biomarkers has 
particular utility in aging cohorts living in under-resourced or rural 
areas where access to specialist neurology services or advanced 
neuroimaging modalities is compromised (Md Abu et  al., 2023). 
Publicly available datasets like the UCI Parkinson’s dataset (Sabherwal 
and Kaur, 2024) have facilitated broad investigation of these acoustic 
features using machine learning approaches, enabling advances in 
reproducible and scalable screening methodologies.

Machine learning (ML) provides powerful tools for unearthing 
latent diagnostic patterns in high-dimensional biomedical data with 
minimal domain-specific preprocessing. Traditional algorithms such as 
decision trees, random forests, and support vector machines (SVMs), as 
well as newer ensemble learners like XGBoost, have shown impressive 
classification accuracy when trained on voice-based PD datasets. In 
addition, the increasing focus on model interpretability in clinical AI 
research has fueled the uptake of explainable AI (XAI) frameworks. 
Specifically, SHAP (SHapley Additive exPlanations) has become a 
mathematically rigorous method for attributing prediction outcomes to 
individual features using marginal contribution scores (Govindu and 
Palwe, 2023; Lamba et al., 2022). In a clinical setting, explainability is not 
a nice-to-have feature but an essential prerequisite to provide 
transparency, accountability, and trust among clinicians. Models that 
yield accurate but opaque predictions are of limited use in translational 
neuroscience, where validation, insight, and traceability are paramount 
for responsible adoption (Çelik and Akbal, 2025; Yu et al., 2020).

Yet, a critical review of recent literature demonstrates ongoing 
methodological deficiencies that preclude real-world deployment and 
generalizability. For example, Rahman et  al. (2021) investigated an 
XGBoost-based voice screening model but obtained only modest AUC 
scores (0.75) owing to difficulties in handling heterogeneous audio 
inputs and noise artifacts. The PythonGeeks Team (Python Geeks, 
2025) initially claimed 96.67% accuracy with a Random Forest classifier, 
yet follow-up audits revealed data leakage caused by premature 
oversampling and scaling prior to data splitting, lowering actual 
performance to 81% (Sabherwal and Kaur, 2024). Likewise, Govindu 
and Palwe (2023) suggested a hybrid SVM-RF model with 91.83% 
accuracy but was plagued by poor sensitivity due to class imbalance. 
Wang et al. (2022) obtained 96% accuracy with XGBoost, reaffirming 
the algorithm’s capability in structured clinical data. Earlier seminal 
research by Mohammed et al. (2025) demonstrated the usefulness of 

both linear and nonlinear classifiers for PD diagnosis, while Tsanas 
et al. (2010) made an invaluable contribution through engineering 
more than 130 dysphonia features, highlighting the acoustic richness 
pertinent to PD detection. Yet, even in these state-of-the-art studies, 
numerous recurring issues hamper clinical translation. Recently, Shen 
et al. (2025) applied SHAP interpretability to voice-based machine 
learning for early Parkinson’s detection, further introducing a 
probability-based scoring system for tracking disease progression.

Most egregious is the extreme class imbalance in PD datasets that 
skews in favor of positive samples, leading to biased classifiers and 
inflated accuracy measures that neglect sensitivity for healthy controls 
(Idrisoglu et al., 2023; Zollanvari, 2023). Furthermore, most studies 
utilize defective data pipelines in which operations such as 
oversampling or normalization are performed prior to train-test 
splitting, inducing information leakage and exaggerated results 
(Arellano, 2019). Feature selection is either poorly handled or 
neglected altogether, contributing to high-dimensional, noisy feature 
spaces that hinder model interpretability. Another limitation is the use 
of fixed 0.5 decision thresholds, which are not suitable for imbalanced 
binary classification problems where it is essential to optimize trade-
offs between precision and recall. Lastly, although SHAP has been 
embraced for global interpretability, individualized explanations such 
as force plots have yet to be fully leveraged despite being essential to 
furnish transparent, case-specific explanations that can be examined 
by clinicians (Sakar et al., 2013; Liu et al., 2022; Riasi et al., 2025).

Driven by these limitations, this research presents a complete, 
interpretable, and clinically informed ML pipeline for early detection 
of Parkinson’s disease in aging populations from voice biomarkers. To 
counter data imbalance, the approach incorporates BorderlineSMOTE, 
a synthetic oversampling technique designed to strengthen boundary 
instances indispensable to classifier learning. The classifier relies on 
XGBoost owing to its forte in structured medical datasets and its 
built-in feature importance scores. Dimensionality is flattened by 
retaining the top 10 most vital features from an initial XGBoost pass 
to retain greater interpretability without any trade-off in accuracy. 
Bayesian Optimization is leveraged to perform hyperparameter tuning 
efficiently and methodically. In addition, rather than using a fixed 
decision threshold, the classification cutoff is optimized dynamically 
to achieve maximum F1-score, yielding a balanced perspective of 
sensitivity and specificity. The pipeline is completed by SHAP-based 
interpretability at both the global and local levels to clarify which 
vocal features are driving the predictions and how these connect with 
the neurophysiological underpinnings of PD. By addressing common 
pitfalls systematically and enhancing interpretability and 
generalizability, this research offers a scalable and clinically meaningful 
solution that aligns with the larger objective of driving diagnostic 
options for age-associated neurological disorders.

2 Methodology

2.1 Dataset

The dataset utilized in the current study is the publicly accessible 
UCI Parkinson’s disease dataset, which contains a total of 195 sustained 
phonation voice recordings (Pahuja and Nagabhushan, 2021; Islam 
et al., 2024). Each sample is described by 22 biomedical voice features 
carefully extracted through digital signal processing techniques. The 
features include measures of fundamental frequency variability, 
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amplitude and frequency perturbation (e.g., jitter and shimmer), 
harmonic-to-noise ratios, and nonlinear dynamic characteristics, such 
as recurrence period density entropy and detrended fluctuation 
analysis. The dataset further contains a binary target feature, with a 
value of 1 representing the presence of Parkinson’s disease and 0 
representing a healthy patient. Note that the dataset has inherent class 
imbalance, with a much larger proportion of Parkinsonian samples 
than non-Parkinsonian samples. Although such imbalance mirrors the 
real-world clinical prevalence, it also presents the potential for bias 
during training, making it necessary to implement proper class-
balancing techniques in the data preprocessing workflow (Figure 1).

2.2 Splitting and standardization

In order to prepare the data for model development while 
maintaining the statistical integrity of the data, the dataset was 
partitioned into training and testing sets at a 75:25 split using subject-
level stratified sampling, ensuring that all recordings from a given 
subject were exclusively assigned to either the training or test set. This 
avoided the possibility of information leakage between partitions while 
maintaining proportional representation of both classes. Stratified 
sampling was used to address sampling bias in order to ensure that the 
proportion of the classes was the same in both the training and testing 
sets. This was accomplished to ensure that the testing evaluation of 
performance would not be skewed due to class imbalance by ensuring 
that both the Parkinson’s positive and healthy control classes were 

represented in the same proportion. For clarity, this principle can 
be represented mathematically as Equation 1 below:

	
≈, ,

, ,

A train B train

A total B total

n n
n n 	

(1)

where ,A trainn  is the number of class A samples in the training set, 
,A totaln  is the total number of class A samples in the whole dataset, 
,B trainn  is the number of class B samples in the training set, and ,B totaln  

is the total number of class B samples in the whole dataset. This initial 
split guarantees that data leakage will not happen and provides an 
unbiased foundation for model development (Sabherwal and Kaur, 
2024). After the split, the first aspect of preprocessing was to 
standardize the features so that all numerical input features were 
transformed to a common scale. While tree-based classifiers, such as 
XGBoost, are generally robust to feature scaling, certain aspects of the 
preprocessing, including the SMOTE algorithm (Sun et al., 2022), use 
distance measures in feature space and thus are sensitive to the relative 
scale of input dimensions. To properly standardize the input features, 
I adopted the approach implemented in Scikit-learn’s StandardScaler 
that uses z-score normalization, derived from the training set statistics 
only. The following transformation formalizes how this standardization 
is performed given by Equation 2:

	

µ
σ
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where x  denotes the original feature value before standardization, 
and µtrain and σ train stand for the mean and standard deviation of the 
feature calculated on the training set, respectively. This formula is then 
consistently applied to the training and testing data. Standardization 
was necessary to ensure proper functioning of subsequent distance-
based techniques, such as SMOTE, and to maintain numerical stability 
during preprocessing, even though tree-based models like XGBoost 
(Chen and Guestrin, 2016; Niazkar et al., 2024) are less sensitive to 
feature scaling.

2.3 Exploratory feature analysis and class 
imbalance handling

After standardization, an exhaustive exploratory feature analysis 
was performed to measure inter-relationships between the vocal 
biomarkers and identify dependencies that might be influential to 
model training and generalization. A Pearson correlation heatmap 
was generated to explore pairwise statistical association between the 
standardized features. The Pearson correlation heatmap depicted a 
detailed summary of linear dependencies through computing the 
Pearson correlation coefficient r , which can be mathematically defined 
as Equation 3 below:
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FIGURE 1

Proposed machine learning pipeline for early Parkinson’s disease 
detection using vocal biomarkers.
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Here, ix  and iy  represent the respective individual observations 
for features, and x  and y are there corresponding sample means, with 
n representing the total number of instances. The numerator captures 
the empirical covariance between the two features, and the 
denominator normalizes this quantity by the product of their sample 
standard deviations. The resulting values of r range from −1 to +1, 
where coefficients approaching +1 suggest strong positive linear 
relationships, those approaching 1 imply strong inverse dependencies, 
and values approaching y indicate weak or no linear association. The 
heatmap highlighted several clusters of highly correlated features, 
suggesting a possible presence of multicollinearity and redundancy in 
the dataset. However, feature removal was intentionally deferred at 
this stage to avoid the premature elimination of potentially informative 
dimensions. Instead, model-driven feature selection techniques were 
employed in later stages to isolate diagnostically useful attributes. 
Meanwhile, the distribution of classes within the dataset exhibited a 
natural imbalance, marked by a considerably higher prevalence of 
patients with Parkinson’s disease than healthy controls. This imbalance 
posed a significant risk of model bias, notably towards overfitting the 
majority class. To address this concern, BorderlineSMOTE applied 
solely to the training data. Unlike conventional SMOTE, which 
generates synthetic minority samples uniformly across the feature 
space of the minority class, BorderlineSMOTE specifically targets 
those minority instances located near the decision boundary—regions 
where the risk of misclassification is most severe. By concentrating 
augmentation efforts on these critical borderline samples, the model’s 
exposure to intricate decision boundaries was maximized, improving 
generalization without introducing artificial noise from well-separated 
minority instances. Preliminary comparisons with standard SMOTE 
and ADASYN confirmed that BorderlineSMOTE consistently yielded 
higher F1-scores and balanced accuracy in cross-validation, thereby 
justifying its selection as the preferred imbalance handling strategy.

2.4 XGBoost model training and feature 
selection strategy

Now that the class imbalance has been addressed and the data has 
been properly set up, the first classification model was trained using 
eXtreme Gradient Boosting (XGBoost) algorithm, a scalable and 
efficient implementation of gradient-boosted decision trees for 
structured, tabular data. XGBoost builds an ensemble of additive 
regression trees, each sequentially improving on the errors of prior 
iterations while optimizing a regularized objective function. This 
objective function combines a differentiable loss function together with 
a regularization term, mathematically represented as Equation 4 below:

	
( ) γ λ ω

= = =

 
 = + +
 
 

∑ ∑ ∑ 2

1 1 1

1,
2
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i i j

l y y T

	
(4)

Here, ( )ˆ,i il y y  represents the loss function, typically defined as the 
logistic loss for binary classification, evaluated with respect to the true 
label iy  and predicted probability ˆiy . The second summation is the 
regularization penalty over all K  trees in the model. kT is the number 
of leaves in tree, ω2

kj is the score of the j-th leaf in tree k, and the 
parameters γ  and λ are regularization hyperparameters that penalize 
model complexity to avert overfitting. XGBoost was chosen not only 
for its competitive classification performance but also for its tolerance 

of missing values, inherent feature ranking capabilities, and ability to 
capture non-linear interactions.

Following training the baseline model, feature importance scores 
were harvested to carry out dimensionality reduction and prioritize 
the model’s learning on the most predictive predictors. Feature 
importance was measured using the “gain” metric, which calculates 
the average improvement in the objective function contributed by 
each feature during decision tree splits. Within each cross-validation 
fold, the top ten features with the highest gain were identified and 
retained, effectively lowering input dimensionality from 22 to 10. This 
fold-wise approach served to simplify the model, reduce computational 
overhead, and reduce the risk of overfitting, all while maintaining the 
features most valuable to accurate Parkinson’s classification. In 
contrast to arbitrary or correlation-based feature elimination, this 
model-informed and fold-specific selection process guaranteed that 
retained features played a significant role in classification performance 
and interpretability, establishing a strong foundation for the final 
model optimization and explanation steps.

2.5 Model optimization via Bayesian 
hyperparameter search and F1-based 
threshold adjustment

After the initial XGBoost classifier was built and stripped down to 
its most informative features, the model was subjected to an intense 
optimization routine aimed at refining its predictive accuracy while 
maintaining generalization. This stage centered on hyperparameter 
optimization via Bayesian Optimization (Louie et  al., 2021), 
specifically the BayesSearchCV implementation, which provides a 
probabilistic alternative to the traditional grid or random search 
approach. Unlike grid search, which exhaustively tries all possible 
combinations within a predefined hyperparameter space, and random 
search, which samples the space randomly, Bayesian Optimization 
exploits previous evaluation outcomes to progressively model the 
objective function. By building a surrogate probability model of the 
underlying function and choosing the next point to sample based on 
an acquisition function, this approach efficiently balances the 
exploration of under-sampled areas with the exploitation of already 
known promising areas. In this research, the optimization routine 
targeted prominent XGBoost hyperparameters, such as the learning 
rate, maximum tree depth, number of boosting rounds (n_estimators), 
subsample ratio, column sample ratio (colsample_bytree), and the 
minimum loss reduction required to split a node (gamma). The 
specific hyperparameters tuned during this optimization phase, such 
as learning rate, maximum tree depth, number of boosting rounds, 
subsample ratio, column sampling ratio, and gamma are summarized 
in Table  1, along with their respective search ranges. Each 
hyperparameter was constrained to a carefully specified range to limit 
the search to feasible, interpretable values and speed up convergence. 
The ultimate parameter setup, arrived at after multiple iterations, was 
chosen by its performance under stratified cross-validation, 
minimizing the overfitting risk and maximizing the trained 
model’s generalizability.

Furthermore, for hyperparameter tuning, additional calibration 
was performed by adjusting the classification threshold to maximize 
the F1-score, a measure that balances both precision and recall. 
Conventional classification systems tend to default to a probability 
threshold of 0.5, where all instances with predicted probabilities 
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greater than this threshold are assigned to the positive class. In 
imbalanced medical datasets like this one, however, such a threshold 
can fail to detect clinically significant minority class cases or generate 
an excess of false positives. To combat this, the predicted probabilities 
of the model were assessed over a range of thresholds from 0.3 to 0.7, 
allowing a decision boundary to be  found that achieves the best 
trade-off between false positives and false negatives. At each threshold, 
the F1-score was calculated according to the following Equation 5:

	
×

= ×
+

i1 2 Prec sion RecallF
Precision Recall 	

(5)

In this formulation, precision is the ratio of correctly predicted 
positive cases to all instances predicted to be positive, whereas recall 
is the ratio of correctly predicted positive cases to all actual positive 
instances. The F1-score therefore represents a harmonic mean of the 
two, yielding a single performance measure that penalizes models with 
a strong bias toward either precision or recall. The threshold that 
yielded the best F1-score on the validation fold was chosen as the best 
decision boundary and was then applied to the test set. This post-
training threshold adjustment step was critical in the setting of 
healthcare prediction tasks, where the costs of misclassification are 
asymmetrical and both types of diagnostic mistakes can have grave 
repercussions. By optimizing the decision boundary of the model to 
explicitly trade off balanced diagnostic performance, the final classifier 
had enhanced reliability and interpretability when used in real-world 
clinical practice.

2.6 Model explainability using SHAP for 
transparent clinical interpretation

In order to provide a guarantee that the trained model not only 
achieves good predictive performance but also stays interpretable and 
reliable in a clinical setting, SHAP (SHapley Additive exPlanations) 
was used as a post-hoc explanation method. SHAP is based on 
cooperative game theory and assigns a unified measure of feature 
importance by computing the contribution of each feature to an 
individual prediction. In contrast to classical feature importance 
measures that either consider global effects or are restricted to certain 
types of models, SHAP values measure both global interpretability 
across the whole dataset as well as local interpretability at the 

individual prediction level. The fundamental concept of the SHAP 
framework is to decompose the model’s output prediction f(x) into a 
sum of feature contributions in a linear fashion, as is demonstrated in 
the following Equation 6 (Akila and Nayahi, 2024):

	
( ) ( ) φ∅

=
= +∑

1

M

i
i

f x f x
	

(6)

In this equation, ( )f x  represents the predicted output for a 
specific input vector x , while ( )∅f x denotes the expected value of the 
model’s output when no features are known. The term φi corresponds 
to the SHAP value for feature i, representing its marginal contribution 
to the prediction in the context of all possible feature coalitions, and 
M is the total number of features in the input space. This formulation 
ensures a consistent and mathematically grounded attribution of 
responsibility to each feature, enabling a breakdown of model behavior 
that is both fair and theoretically sound. By using SHAP on the last 
tuned XGBoost model trained on the picked top ten vocal features, 
the study was capable of producing both global and local 
interpretability plots. The global SHAP summary plot indicated the 
most contributing features across the dataset, enabling an 
understanding of how each feature tended to affect the model’s 
predictions for Parkinson’s disease diagnosis. Meanwhile, local SHAP 
force plots were employed to examine the model’s reasoning on 
individual samples, comprising both Parkinsonian and healthy voice 
recordings. This two-level analysis not only helps identify potential 
biases in the model but also offers clinicians and stakeholders 
transparent explanations that legitimize the decision-making on a 
case-by-case basis. Such transparency is particularly critical in medical 
applications, where trust in automated predictions has direct 
implications for clinical uptake. Furthermore, the capacity to identify 
which acoustic features most significantly contribute to a diagnosis 
improves scientific understanding of voice pathology in Parkinson’s 
disease, providing a valuable link between machine learning outputs 
and biomedical relevance. In all, the incorporation of SHAP in the 
pipeline takes the model from a black-box classifier to an interpretable 
diagnostic tool, unlocking the way for ethically sound and clinically 
deployable AI systems in neurodegenerative disease detection.

3 Numerical experimentation and 
results

To assess the diagnostic performance and generalizability of the 
newly proposed XGBoost-based system for detection of Parkinson’s 
disease, an extensive set of numerical experiments was conducted. The 
goal of the experiments was to measure the impact of each 
methodological aspect—namely, data preprocessing, class imbalance 
handling, feature selection, hyperparameter optimization, and 
threshold optimization—on the overall system efficacy. The evaluation 
employed standard classification metrics, such as accuracy, precision, 
recall, F1-score, and Area Under the Receiver Operating Characteristic 
Curve (ROC-AUC), with the F1-score as the major selection metric 
because of the imbalanced nature of the dataset. The experimental 
workflow started with a baseline XGBoost classifier that was trained 
using all 22 features with default hyperparameters and a default 
classification threshold of 0.5. As shown in Table 2, this simple model 
achieved a good accuracy of 92%, perfect recall of 1.00 for the patients 

TABLE 1  Optimal hyperparameter values.

Hyperparameter Optimal 
value

Description

Colsample_bytree 0.62 Fraction of features sampled per tree

Gamma 0.0 Minimum loss required to make a 

further split

Learning_rate 0.29 Step size shrinkage to prevent 

overfitting

Max_depth 5 Maximum tree depth per boosting 

round

n_estimators 500 Number of boosting rounds

Reg_alpha 0.0 L1 regularization term on weights

Reg_lambda 5.0 L2 regularization term on weights

Subsample 0.6 Fraction of samples used per tree
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with Parkinson’s disease, and F1-score of 0.95, reflecting high 
sensitivity but comparatively lower performance with respect to the 
healthy class (precision 0.64, F1-score 0.78), potentially resulting in 
false positives. These findings motivated further methodological 
improvements to improve the trade-off between sensitivity and 
specificity while preserving interpretability.

One of the first critical interventions added to the pipeline was the 
use of BorderlineSMOTE, a focused oversampling method that creates 
synthetic samples in the vicinity of the decision boundary of the 
minority class. Before this method was applied, there was an evident 
class imbalance, as plotted in Figure  2, showing the original 
distribution with a bias toward Parkinson’s disease samples. Following 
the application of BorderlineSMOTE, the balanced distribution can 
be seen in Figure 3, where healthy and Parkinson’s cases are more 
balanced in the training set. This balancing process was shown to 
be critical in enhancing model fairness and classification robustness, 
particularly for the underrepresented class. As further indicated in 
Table 3, skipping SMOTE resulted in a palpable drop in performance 
for the healthy class, lowering its recall to 0.83 and yielding a macro 
F1-score of 0.89. This justified the need for handling class imbalance 
before model fitting, considering its effect on the generalizability of 
the classifier and clinical usability in identifying healthy 
patients accurately.

Another important enhancement was the optimization of the 
classification threshold of the model. Instead of the standard 0.5 
threshold, the predicted probabilities were explored over the range 0.3 
to 0.7 to determine the value that achieved the highest F1-score. This 
optimization is important in imbalanced conditions where the cost of 
false positives and false negatives are asymmetric. The performance 
over this range is plotted in Figure 4, where the curve of the F1-score 
peaks at a threshold of around 0.45, verifying that the default threshold 
does not result in the best trade-off between sensitivity and specificity. 
In addition to these results, Table 4 shows the classification report 
without threshold optimization, with lower precision and F1-score for 
class 0, reflecting worse performance in the detection of healthy 
subjects. This threshold optimization thus played an essential role in 
attaining clinical reliability with high sensitivity without unduly 
sacrificing specificity—a key consideration in early-stage 
Parkinson’s detection.

The second improvement tested was the use of Bayesian search for 
hyperparameter optimization. The necessity of this step is apparent 
when considering the results recorded in Table 5, which records the 
model’s performance when default parameters were retained. 
Although performance was generally good (accuracy 96%, F1-score 
0.96, AUC 0.9865), these metrics were marginally lower than those 
obtained following Bayesian tuning. This tuning procedure modified 
learning rate, maximum tree depth, gamma, subsampling ratios, and 

number of estimators, and was directed toward areas of the search 
space that had shown good prior performance. This probabilistic 
optimization was worthwhile not only in terms of marginal 
improvements in classification performance but also in the generation 
of a more stable and generalizable model. The difference in 
performance, although modest, serves to underscore that even a 

FIGURE 2

Shows the original class imbalance before BorderlineSMOTE, 
highlighting that Parkinson’s disease samples significantly outnumber 
healthy ones.

FIGURE 3

Shows the class distribution after BorderlineSMOTE, clearly 
demonstrating balanced representation of both classes.

TABLE 2  Classification report XGBoost alone.

Class/summary Value Precision Recall F1-score Support

0 1.00 0.64 0.78 11

1 0.90 1.00 0.95 38

Accuracy 0.92 49

Macro Avg. 0.95 0.82 0.86 49

Weighted Avg. 0.93 0.92 0.91 49

AUC score 0.9449
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strong algorithm such as XGBoost is improved by diligent tuning, 
particularly when being used in high-risk fields such as 
clinical diagnostics.

The culmination of these enhancements produced the ultimate 
optimized model, which combines BorderlineSMOTE for handling 
imbalance, XGBoost feature selection for keeping the top 10 predictive 
features, Bayesian hyperparameter tuning for model robustness, and 
F1-driven threshold optimization for balanced classification. This fully 
optimized model performed outstandingly on the held-out test set, 
with an accuracy of 98%, macro F1-score of 0.97, and AUC of 0.991, 
as shown in Table 6. Class-wise results were also impressive, with 
healthy patients classified with precision of 0.92 and recall of 1.00, 
while Parkinson’s patients scored perfect precision (1.00) and recall of 
0.97. These results are further corroborated by the confusion matrix 
plotted in Figure 5, which shows negligible false classifications, thus 
attesting to the reliability of the system predictions. Moreover, Figure 6 
is the ROC curve generated by the last optimized XGBoost model and 
gives a comprehensive visualization of the classifier’s discrimination 
power across various probability thresholds. The shape of the curve, 
which rises sharply and closely follows the top-left boundary, 
guarantees that the model does achieve a great trade-off between 
sensitivity and specificity. This is crucial in a clinical diagnostic 
program such as detection of Parkinson’s disease, wherein both false 
negative and false positive are clinically significant. The model displays 
the potential for classifying nearly all the positive examples accurately 
while simultaneously minimizing misclassifying healthy subjects. 
Area Under the Curve (AUC) reaches 0.991, indicating excellent 
performance and validating the robustness of the model for 
discriminating Parkinson’s cases from controls. Such a high AUC 

score not only implies improved learning from the data but also strong 
generalizability and stability, even when the operating threshold is 
altered (Hassan and Ahmed, 2023). This also contributes to the clinical 
viability of the model proposed, meaning that it can readily adapt to 
varying use-case settings, such as early screening versus confirmatory 
diagnosis, by merely varying the decision threshold accordingly.

Figure 7 is the SHAP summary plot, giving a detailed explanation 
of the model’s internal decision-making process by prioritizing 
features based on their contribution to individual predictions. The plot 
indicates that some of the prominent vocal biomarkers always make 
the maximum contribution to the model output, adding confidence 
to the biological reasonableness of the model. They are MDVP: 
Fhi(Hz), spread2, and spread1, the most effective features. High 
MDVP: Fhi(Hz) and spread2 values—values which have been shown 
to reflect vocal instability and neuromuscular control—presumably 
skew predictions towards the Parkinson’s class, something which 
strongly aligns with previous clinical findings. The color grading in 
the plot also helps facilitate interpretation by showing the influence of 
high or low feature values on the model’s confidence level for a given 
prediction. Other features like DFA and Shimmer: APQ3 contribute 
less, but their consistent direction of effect confirms that they are a 
facilitatory factor in model logic. Transparency at this level is such that 
the predictions will not be  on the basis of chance statistical 
relationships but by physiologically meaningful patterns, and thus not 
merely correct, but understandable, and clinically trustworthy.

Further to validate the efficacy of the proposed XGBoost-based 
diagnostic model for Parkinson’s Disease, the comparative study was 
conducted against some classical and recent classification algorithms 
commonly employed in medical diagnosis systems, e.g., Support 
Vector Machine (SVM) with radial basis kernel, Random Forest, 
K-Nearest Neighbors (KNN), Logistic Regression, and Deep Neural 
Networks (DNN). As shown in Table 7, despite models such as DNN 
and Random Forest achieving competitive results with accuracies of 
94 and 93%, respectively, and good F1-scores and ROC-AUC scores, 
they lagged behind the suggested XGBoost model in all key 
performance metrics in a consistent manner. Specifically, the XGBoost 
pipeline, in addition to BorderlineSMOTE for class imbalance 
handling, dimensionality reduction through gain-based feature 
selection, fine-tuning with Bayesian hyperparameter optimization, 
and calibrated thresholding with F1-score maximization, achieved a 
higher accuracy of 98%, an F1-score of 97%, and a ROC-AUC of 
99.10%. These improvements emphasize the methodological strength 
of the proposed method in capturing complex nonlinear interactions 
between the biomedical features extracted from the vocal signal 
without compromising discrimination between Parkinsonian and 
normal cases. The better interpretability and stability of the XGBoost 

TABLE 3  Classification report without SMOTE.

Class/summary Value Precision Recall F1-score Support

0 0.83 0.83 0.83 12

1 0.95 0.95 0.95 37

Accuracy 0.92 49

Macro Avg. 0.89 0.89 0.89 49

Weighted Avg. 0.92 0.92 0.92 49

AUC score 0.9685

FIGURE 4

F1-score variation across different probability thresholds for the final 
model.
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TABLE 4  Classification report without threshold.

Class/summary Value Precision Recall F1-score Support

0 0.86 1.00 0.92 12

1 1.00 0.95 0.97 37

Accuracy 0.96 49

Macro Avg. 0.93 0.97 0.95 49

Weighted Avg. 0.97 0.96 0.96 49

AUC score 0.9910

TABLE 5  Classification report without Bayesian optimization.

Class/summary Value Precision Recall F1-score Support

0 0.86 1.00 0.92 12

1 1.00 0.95 0.97 37

Accuracy 0.96 49

Macro Avg. 0.93 0.97 0.95 49

Weighted Avg. 0.97 0.96 0.96 49

AUC Score 0.9865

TABLE 6  Classification report final.

Class/Summary Value Precision Recall F1-score Support

0 0.92 1.00 0.96 12

1 1.00 0.97 0.99 37

Accuracy 0.98 49

Macro Avg. 0.96 0.99 0.97 49

Weighted Avg. 0.98 0.98 0.98 49

AUC score 0.991

FIGURE 5

Normalized confusion matrix for the final XGBoost model after all 
enhancements.

FIGURE 6

Receiver operating characteristic (ROC) curve of the final XGBoost 
model after applying BorderlineSMOTE, top-10 feature selection, 
Bayesian hyperparameter optimization, and F1-based threshold 
tuning.

model compared to linear models like Logistic Regression and 
distance-based models like KNN further support its clinical utility. 
This comparative advantage signifies that integration of optimally 
selected preprocessing techniques and optimization procedures in the 

machine learning workflow not only enhances classification 
performance but also enhances its potential for application in clinical 
settings of real-world practice where precision and reliability are both 
of vital concern.
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The high diagnostic accuracy, precision, and recall achieved 
by the proposed model are particularly significant in the context 
of neurodegenerative disorders affecting the elderly. Given that 
Parkinson’s Disease predominantly impacts individuals over the 
age of 60, a reliable, non-invasive, and easily deployable tool such 
as this voice-based XGBoost classifier holds strong clinical 
relevance for early-stage screening in aging populations. The 
ability to achieve near-perfect F1-scores and ROC-AUC values 
underscores the model’s potential for integration into geriatric 
care workflows, especially in remote or under-resourced clinical 
settings where access to specialized neurological assessment is 
limited. Furthermore, the incorporation of SHAP-based 
explainability ensures transparency in decision-making, a feature 
crucial for building clinical trust in AI-driven systems applied to 
age-related disorders. These findings highlight the translational 
potential of the proposed framework in supporting timely, 
scalable, and ethically responsible diagnostic interventions for 
Parkinson’s Disease within the broader domain of aging 
neuroscience. It is noteworthy that enforcing subject-level 
splitting and fold-wise feature selection produced results 
consistent with those reported, confirming the robustness of the 
proposed pipeline.

4 Conclusion and future work

This research demonstrated a clinically translatable, interpretable 
machine learning pipeline for the early diagnosis of Parkinson’s 
disease from non-invasive biomedical voice biomarkers. By 
overcoming major challenges in class imbalance, feature redundancy, 
and decision threshold optimization, the model attained very high 
diagnostic accuracy (98%), a weighted F1-score of 0.98, and an 
ROC-AUC of 0.9910. These performance metrics are not only 
statistically significant but of paramount importance in clinical 
practice, particularly in aging cohorts at higher risk for 
neurodegenerative disorders. Every step of the pipeline, from 
BorderlineSMOTE-based resampling to Bayesian hyperparameter 
optimization, was painstakingly selected to improve both predictive 
robustness and clinical viability. In particular, the use of SHAP-based 
explainability delivered transparent, case-level interpretability, 
revealing vocal features like MDVP: Fhi(Hz), spread1, and spread2 to 
be  top predictors. These results are consistent with recognized 
pathophysiological degradation in neuromotor control over the vocal 
apparatus in the context of aging-related neurological deterioration. 
The proposed model thus delivers not only high diagnostic value but 
also mechanistic insight into voice-based symptomatology in 

FIGURE 7

SHAP summary plot for the optimized XGBoost model. The visualization highlights the global importance and direction of influence of the top features 
on the model’s predictions.

TABLE 7  Comparative performance of proposed model and existing methods for Parkinson’s disease detection.

Method Accuracy (%) F1-score (%) ROC-AUC (%)

SVM (RBF Kernel) 91.00 90.50 90.20

Random forest 93.00 91.80 93.40

K-nearest neighbors (KNN) 89.00 88.00 88.50

Logistic regression 90.00 89.20 89.80

Deep neural network (DNN) 94.00 92.70 94.10

Proposed XGBoost (optimized) 98.00 97.00 99.10
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Parkinson’s Disease, making a valuable contribution to the overall 
understanding of aging neuroscience and its translation to early-stage 
neurodegenerative diagnosis.

Future efforts will be directed towards evolving this model into a 
deployable, lightweight diagnostic aid available on mobile or web 
platforms. Specifically, continued efforts will be directed at minimizing 
false negatives, which are clinically harmful in neurodegenerative 
contexts. This will entail threshold recalibration and perhaps the 
application of cost-sensitive learning. Moreover, the addition of 
complementary modalities like gait analysis or handwriting dynamics 
may enhance diagnostic performance over a broader spectrum of PD 
symptom domains, substantiating multimodal screening approaches 
for aging-related movement disorders.
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