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Background: The recent approval of monoclonal antibodies for the treatment 
of Alzheimer’s disease (AD) in several countries has accelerated the need for 
affordable, simple and scalable methods to identify patients who are eligible 
for treatment with the new disease-modifying therapies (DMT). Blood-based 
biomarkers offer less invasive alternatives to established gold standards. 
We have clinically validated a predictive model combining plasma Aβ42/Aβ40, 
apolipoprotein E (APOE) genotype and age, in two independent real-world 
cohorts to identify brain amyloid deposition.
Methods: We conducted a clinical validation study involving 450 patients with 
mild cognitive impairment (MCI) from two real-world cohorts (HCSC, Madrid, 
Spain and HUSM, Lleida, Spain). Plasma Aβ42/Aβ40 was measured by ABtest-
MS, an antibody-free liquid chromatography-mass spectrometry method. 
CSF Aβ42/Aβ40 and p-tau181/Aβ42 (gold standards) were quantified with the 
Lumipulse® platform. The model was trained in the HCSC cohort and validated 
in the HUSM cohort. Finally, an overall analysis in the combined population 
was performed. A dual cutoff approach was used to classify the patients as 
positive or negative. Statistical analysis included bootstrap resampling and 
model calibration.
Results: In the HCSC, HUSM, external validation and combined analysis, 
AUCs were 0.89 (95% confidence intervals-CI: 0.84–0.93), 0.88 (0.84–0.93), 
0.88 (0.83–0.92) and 0.88 (0.84–0.91), with corresponding accuracies 
of 82.3, 81.6, 82.3, and 81.1%, respectively. After the combined analysis, 
positive and negative predictive values (PPV and NPV) were established at 
87.5%, resulting in cutoff values of 0.30 and 0.67 for the likelihood of amyloid 
negativity and positivity, respectively, for a prevalence of 62%. Probability 
values lower than 0.30 indicate low probability of brain amyloid deposition, 
while values greater than 0.67 indicate high probability. Less than 28% of 
the participants fell into the intermediate zone. Additional cutoffs were 
derived for different prevalence values. Predictive model calibration showed 
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excellent agreement with observed data, confirming accurate predictions 
(slope = 0.98, intercept = −0.01).
Conclusion: This predictive model has demonstrated high accuracy for the 
identification of brain amyloid deposition in patients with MCI. Derived cutoffs 
enabled over 70% reduction in invasive testing, supporting efficient and cost-
effective identification of candidates for DMTs.

KEYWORDS

ABtest-MS, Alzheimer’s disease, amyloid-β, Aβ42/Aβ40 ratio, blood biomarkers, 
validation, mass spectrometry, mild cognitive impairment

1 Introduction

As the leading cause of dementia worldwide, Alzheimer’s disease 
(AD) continues to rise in incidence (Alzheimer’s Association, 2024), 
placing an increasing strain on healthcare systems, which struggle to 
meet the growing demand.

Recently, several countries have granted regulatory approval to the 
monoclonal antibodies lecanemab and donanemab for the treatment 
of early symptomatic AD patients with confirmed amyloid-beta (Aβ) 
pathology (van Dyck et al., 2023; Sims et al., 2023). These disease-
modifying therapies (DMTs) have redefined AD management strategies 
and underscore the need to accelerate development of accurate 
diagnostic procedures to correctly identify patients eligible for these 
therapies. According to current Appropriate Use Recommendations, 
confirmation of Aβ pathology is required prior to treatment initiation 
(Cummings et al., 2023; Rabinovici et al., 2025; Rosen and Jessen, 
2025). This can be established through a positive amyloid positron 
emission tomography (PET) scan based on visual read or via 
cerebrospinal fluid (CSF) biomarkers consistent with AD pathology. 
Nevertheless, both amyloid PET imaging and CSF biomarker analysis 
are costly, not universally accessible, and—in the case of CSF—require 
an invasive lumbar puncture, limiting their applicability for large-scale 
screening. As anti-amyloid therapies become more widely implemented 
in clinical practice, the need to efficiently identify suitable candidates 
will increase substantially, placing considerable strain on healthcare 
resources in terms of time, cost and infrastructure. In this scenario, 
blood-based biomarkers (BBMs) offer a promising alternative (Hampel 
et al., 2023; Hansson et al., 2023; VandeVrede and Schindler, 2024). Due 
to their minimally invasive nature, lower cost, and growing evidence 
supporting their accuracy in detecting cerebral amyloid pathology, 
BBMs represent a scalable and clinically feasible strategy for early 
identification of individuals who may benefit from DMTs.

Among the most promising BBMs, Aβ42/Aβ40 has shown highly 
accurate detection of brain amyloid deposition. In addition, mass-
spectrometry (MS) assays have shown superior accuracy compared to 
most immunoassays (Janelidze et al., 2021).

Here, we  present the clinical validation of a predictive model 
which includes plasma Aβ42/Aβ40 quantified using ABtest-MS, an 
antibody-free MS-based method, age and apolipoprotein E (APOE) 
genotype. As previously reported, ABtest-MS has demonstrated 
strong clinical performance across the AD continuum in controlled 
research cohorts (Jang et al., 2021; Janelidze et al., 2022; Pascual-Lucas 
et al., 2023). However, validating biomarkers in real-world cohorts, 
which encompass greater demographic and clinical diversity, is crucial 
to establishing their broader applicability in clinical practice for 
identifying eligible patients for DMTs. This study evaluated the 
diagnostic accuracy of this predictive model in detecting amyloid 
pathology in individuals with mild cognitive impairment (MCI) from 
two real-world cohorts, using approved CSF biomarker measurements 
as the gold standard for Aβ positivity (Janelidze et al., 2017; Hansson 
et al., 2018; Keshavan et al., 2021). Furthermore, we aimed to define 
clinically relevant cutoff values that maximize the probability of 
accurately detecting brain amyloid deposition to support physicians 
in their decision-making.

2 Methods

2.1 Participants in the study

Plasma samples from two different cohorts of participants were 
used in this validation study. Samples from the Hospital Clínico 
Universitario San Carlos cohort (HCSC cohort, Madrid, Spain) were 
used for model training, whereas samples from the Hospital 
Universitari Santa Maria cohort (HUSM cohort, Lleida, Spain) were 
used for validation purposes. This clinical validation study was 
approved by the Ethics Committees of both hospitals. Both were 
considered ‘real-world’ cohorts as they originated from secondary care 
specialized memory units.

A total of 450 patients were considered for analysis, with 190 from 
the HCSC cohort and 260 from the HUSM cohort. In both cases, 
patients were referred to the memory unit from primary care or other 
specialized units at HCSC and HUSM, respectively. All patients were 
diagnosed with MCI according to the recommendations from the 
National Institute on Aging and Alzheimer’s Association (NIA-AA) 
workgroups on diagnostic guidelines for AD (Albert et al., 2011).

In this study, the five-year maximum storage time for plasma 
samples at −80 °C was determined by the longest storage 
duration within the training cohort (HCSC cohort). To avoid 
potential bias due to differences in storage time, samples stored 
for more than 5 years in the validation cohort (HUSM cohort) 
were excluded from the analysis.

Abbreviations: Aβ, Amyloid-β; AD, Alzheimer’s disease; APOE, Apolipoprotein E; 

AUC, Area under the ROC curve; CI, Confidence interval; CSF, Cerebrospinal fluid; 

LC–MS, Liquid chromatography-mass spectrometry method; IQR, Interquartile 

range; LOESS, Locally estimated scatterplot smoothing; MCI, Mild cognitive 

impairment; MMSE, Mini-mental state examination; MS, Mass spectrometry; NPV, 

Negative predictive value; p-tau, Phosphorylated tau; PET, Positron emission 

tomography; PPV, Positive predictive value; ROC, Receiver operating characteristic; 

SCD, Subjective cognitive decline; SD, Standard deviation.
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2.2 CSF measurements

CSF measurements were performed at the laboratories of the 
respective hospitals as part of routine clinical practice. In the HCSC 
cohort, CSF Aβ40, Aβ42, p-tau181 and total tau were analyzed in the 
Lumipulse® G600 II platform from Fujirebio (Tokyo, Japan). External 
quality controls (QC) from the University of Gothenburg (The 
Alzheimer’s Association QC program for CSF and blood biomarkers) 
were tested quarterly to assure correct assay performance. The cutoff 
value of Aβ42/Aβ40 that defined CSF-Aβ positivity was ≤ 0.068 
(Leitão et  al., 2019). In the HUSM cohort, CSF Aβ42, Aβ40 and 
p-tau181 were also measured with the Lumipulse® G600 II platform. 
External QC were routinely checked to monitor system performance. 
In this case, the cutoff value of Aβ42/Aβ40 that defined CSF-Aβ 
positivity was ≤ 0.069 (Dakterzada et al., 2021). The positivity criteria 
routinely applied at each center were maintained, given that the 
differences were marginal (1.4%). For those patients which had no 
available CSF Aβ42/Aβ40 measures (n = 30), a cutoff point of CSF 
p-tau181/Aβ42 ≥ 0.0815 was used. This value corresponds to the 
maximum Youden’s Index for CSF p-tau181/Aβ42 after receiver 
operating characteristic (ROC) analysis in those patients having both 
measurements (area under the ROC curve, AUC=0.99, data 
not shown).

2.3 Plasma Aβ measurements

Plasma was collected at each center in accordance with its 
respective standard operating procedures (SOPs). Plasma Aβ40 and 
Aβ42 were measured using ABtest-MS, an antibody-free high 
performance liquid chromatography-differential mobility 
spectrometry-triple quadrupole mass-spectrometry (HPLC-
DMS-MS/MS) method developed by Araclon Biotech (Zaragoza, 
Spain). Briefly, analytes were extracted directly from plasma and no 
immunoprecipitation procedure was conducted. Intact Aβ40 and 
Aβ42 species were measured since no enzymatic digestion was 
performed. Deuterated internal standards (2H-Aβ40 and 2H-Aβ42, 
Bachem AG, Bubendorf, Switzerland) were spiked in all samples. 
Response ratios corresponding to the endogenous species in study 
samples (14N-Aβ40/2H-Aβ40 and 14N-Aβ42/2H-Aβ42) were 
interpolated into the calibration curves, which were constructed after 
spiking with the corresponding 15N-Aβ analogs. Further details about 
the analytical procedure and instrumental acquisition parameters are 
described in the literature (Pannee et al., 2021; Cullen et al., 2021; 
Janelidze et al., 2022; Allué et al., 2023). Samples from HCSC were 
analyzed in August 2024, while samples from HUSM were analyzed 
in October 2024. In accordance with the study design, Araclon Biotech 
personnel were kept blinded throughout the entire process to sample 
characteristics and associated information.

2.4 APOE genotyping

Genomic DNA was extracted from whole blood using the 
ReliaPrep Blood gDNA MiniPrep System (Promega, Madison, WI, 
USA), according to the manufacturer’s instructions. APOE genotype 
was determined using TaqMan SNP genotyping assays (Thermo, 
Waltham, MA, USA) targeting rs429358 (position 112) and rs7412 

(position 158). Genotyping was performed on a StepOnePlus Real-
Time PCR System (Applied Biosystems, Waltham, MA, USA) with 
TaqMan Genotyping Master Mix, following the manufacturer’s 
protocol. Positive and negative controls were included in each 
analytical run for quality control.

2.5 Statistical analysis

Statistical analyses and graphical representations of the data 
were conducted using GraphPad Prism v5.03 (GraphPad Software, 
San Diego, CA, USA), SPSS v18 (IBM, Armonk, NY, USA) and R 
statistical software (v 4.4.2, https://www.R-project.org/). To 
compare different groups, the Chi-square test was used for 
categorical variables and the Mann–Whitney U test for continuous 
ones. Bootstrap resampling was performed using the boot package 
in R. Logistic regression and ROC curve analysis was performed 
with SPSS v18. Linear associations between the biomarker 
concentrations in plasma and cerebrospinal fluid was estimated 
using Deming regression in R (deming package). Monte Carlo 
simulations were performed in R to evaluate how the addition of 
random noise (from 2.5 to 10%) to plasma Aβ42/Aβ40 
measurements impacts the classification performance of the 
predictive model. For each noise level, 1,000 Monte Carlo iterations 
were generated by perturbing the measurements, refitting the 
model, and computing the AUC. Model calibration,—specifically, 
moderate calibration using a flexible calibration curve based on 
Locally Estimated Scatterplot Smoothing (LOESS)— was also 
carried out in R with the val.prob.ci.2 function from the 
CalibrationCurves package, in order to assess concordance between 
predictions and observed proportions. A two-tailed p value of <0.05 
was considered statistically significant.

3 Results

3.1 Demographic characteristics

The baseline characteristics of HUSM and HCSC cohorts divided 
according to CSF-amyloid status are summarized in Table 1. In the 
HUSM cohort, individuals with CSF-Aβ(+) status were older than 
their CSF-Aβ(−) counterparts (median [interquartile range, IQR]: 
74.0 [71.0–77.0] vs. 70.0 [65.0–74.3]; p < 0.0001) and showed lower 
performance on the Mini-Mental State Examination (MMSE: 26.0 
[24.0–27.8] vs. 27.0 [24.3–28.0]; p = 0.020). Gender distribution did 
not differ significantly between groups (p = 0.213), while APOE ε4 
allele distribution was significantly different (p < 0.0001).

Similarly, in the HCSC cohort, CSF-Aβ(+) individuals were older 
than their CSF-Aβ(−) counterparts (72.5 [68.3–76.0] vs. 66.5 [61.0–
72.0]; p < 0.0001) and performed worse on the MMSE (27.0 [25.0–
29.0] vs. 28.0 [26.0–30.0]; p = 0.001). Gender distribution remained 
comparable (p = 0.381), whereas the distribution of APOE ε4 alleles 
differed significantly between groups (p < 0.0001). The prevalence of 
CSF-Aβ positivity differed between cohorts: 70% in the HUSM cohort 
compared to 51% in the HCSC cohort. In both cohorts, significant 
differences were observed in plasma and CSF biomarker values 
between CSF-Aβ(+) and CSF-Aβ(−) individuals, except for Aβ40. 
Supplementary Table 1 shows baseline characteristics by cohort.
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3.2 Clinical performance in the 
identification of CSF-Aβ(+) individuals

HCSC cohort: a moderate positive association was observed 
between plasma and CSF Aβ42/Aβ40 levels (Spearman’s rho = 0.524, 
p < 0.0001). Deming regression yielded a slope of 0.74, suggesting that 
increases in plasma levels were accompanied by proportional increases 
in CSF levels (Supplementary Figure 1a). Plasma Aβ42/Aβ40 was 
12.6% lower in CSF-Aβ(+) individuals (p < 0.0001) and yielded an 
AUC after ROC curve analysis of 0.81 (95% confidence interval [CI], 
0.75–0.87) for the identification of CSF-Aβ status 
(Supplementary Table 2). The inclusion of the rest of the covariates, 
age and presence of APOE ε4 copies (dichotomized), produced a 
marked decrease in Akaike Information Criterion (AIC) value 
yielding a final AUC of 0.89 (95% CI, 0.84–0.93) and an accuracy 
of 82.3%.

In HUSM cohort, plasma and CSF levels were also positively 
associated (Spearman’s rho 0.470, p < 0.0001). Deming regression 
slope was 1.24 (Supplementary Figure 1b). Plasma Aβ42/Aβ40 was 
12.9% lower in CSF-Aβ(+) individuals (p < 0.0001) and yielded an 
AUC value of 0.80 (95% CI, 0.75–0.86) after ROC analysis. Again, 
introduction of age and APOE genotype, produced a significant 
decrease of AIC value (Supplementary Table 2) yielding a final AUC 

of 0.88 (95% CI, 0.84–0.93) and an accuracy of 81.6%. Table 2 shows 
the relevant metrics obtained from the analysis of both cohorts 
separately. All the metrics are calculated at the maximum 
Youden’s Index.

Next, we performed an external validation analysis. Regression 
coefficients (β1 to β4) corresponding to model covariates plus the 
intercept, obtained after the analysis of HCSC data (training cohort) 
were applied to HUSM participant data (validation cohort). Table 2 
shows the metrics obtained in this external validation exercise. Some 
differences are observed in certain performance metrics between 
cohorts, mainly due to the large difference in CSF-Aβ positivity (51 vs. 
70%). An AUC value of 0.88 (95% CI, 0.84–0.91) and an accuracy of 
82.3% were achieved in the validation cohort.

Figure  1 shows the ROC curves obtained after separate and 
combined analysis of both cohorts. The analysis of the combined 
cohorts yielded an AUC value of 0.88 (95% CI, 0.83–0.92) and an 
overall accuracy of 81.1% for the predictive model (Table 2). The 
regression model did not account for information regarding the 
cohort of origin of the samples. CSF-Aβ positivity prevalence in this 
combined analysis was 62%. The positive and negative predictive 
values (PPV and NPV, respectively) varied in the expected direction 
according to prevalence, as anticipated given the known dependence 
of these metrics on disease prevalence (pre-test probability). Figure 2 

TABLE 1  Baseline characteristics of the study participants.

Characteristic HUSM HCSC

CSF-Aβ(+) 
(n = 182)

CSF-Aβ(−) 
(n = 78)

p-value CSF-Aβ(+) 
(n = 96)

CSF-Aβ(−) 
(n = 94)

P-value

Age, years 74.0 [71.0–77.0] 70.0 [65.0–74.3] <0.0001 72.5 [68.3–76.0] 66.5 [61.0–72.0] <0.0001

Female, No. (%) 116 (63.7) 43 (55.1) 0.213 57 (59.4) 49 (52.1) 0.381

MMSE, score 26.0 [24.0–27.8] 27.0 [24.3–28.0] 0.020 27.0 [25.0–29.0] 28.0 [26.0–30.0] 0.001

APOE ε4 carriers, 

No. (%) 104 (57.1) 11 (14.1) <0.0001 53 (55.2) 18 (19.1) <0.0001

APOE ε4, No. (%) <0.0001 <0.0001

0 allele ε4 78 (42.9) 67 (85.9) 43 (44.8) 76 (80.9)

1 allele ε4 91 (50.0) 9 (11.5) 42 (43.8) 18 (19.1)

2 alleles ε4 13 (7.1) 2 (2.6) 11 (11.5) 0 (0)

Sample storage time, 

years 1.5 [0.9–2.2] 1.5 [0.8–2.3] 0.910 0.8 [0.33–1.3] 0.6 [0.4–1.3] 0.878

Plasma Aβ40, pg/mL 226.3 [199.9–255.9] 226.0 [206.1–265.1] 0.230 233.9 [206.4–264.2] 216.7 [201.2–252.2] 0.144

Plasma Aβ42, pg/mL 44.0 [38.1–50.4] 50.9 [45.3–58.6] <0.0001 43.0 [37.6–48.2] 47.6 [42.3–53.4] <0.0001

Plasma Aβ42/Aβ40 0.195 [0.180–0.212] 0.221 [0.209–0.240] <0.0001 0.185 [0.174–0.204] 0.216 [0.198–0.227] <0.0001

CSF p-tau181, pg/mL 94.0 [69.1–127.5] 39.5 [29.7–48.3] <0.0001 96.2 [73.4–143.2] 38.8 [29.5–50.3] <0.0001

CSF t-tau, pg/mL 581.0 [444.0–769.5] 249.0 [192.0–332.5] <0.0001 635.5 [473.8–863.3] 281.0 [215.0–367.3] <0.0001

CSF Aβ40, pg/mL

10726.0 [8147.0–

13469.0]

10799.0 [8047.3–

12982.0] 0.996

13384.0 [10552.3–

16648.8]

12405.0 [9258.5–

15813.3] 0.131

CSF Aβ42, pg/mL 438.5 [327.8–581.8] 917.5 [725.3–1233.3] <0.0001 641.0 [510.0–779.5] 1280.0 [937.8–1686.8] <0.0001

CSF Aβ42/Aβ40 0.043 [0.035–0.049] 0.089 [0.081–0.102] <0.0001 0.049 [0.042–0.058] 0.109 [0.099–0.114] <0.0001

CSF p-tau181/Aβ42 0.216 [0.149–0.321] 0.041 [0.032–0.051] <0.0001 0.150 [0.108–0.246] 0.029 [0.025–0.035] <0.0001

HUSM, Hospital Universitari Santa Maria; HCSC, Hospital Clínico Universitario San Carlos; APOE, apolipoprotein E; MMSE, Mini-Mental State Examination; CSF, cerebrospinal fluid; Aβ, 
Amyloid-beta; p-tau181, phosphorilated protein Tau at threonine 181. Data are median and interquartile range [IQR] values, except for the variables female and APOE (number of alleles or 
dichotomized) which are the number of cases (%). Differences between groups were tested using Mann–Whitney and Chi-square tests, as appropriate. p-values in bold correspond to 
statistically significant results.
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shows the distribution of predicted probabilities after combined 
analysis, by CSF-Aβ status.

The concordance plot between predicted probabilities and CSF 
Aβ42/Aβ40 values for those individuals with available Aβ42/Aβ40 
measurements (420 out of 450, since CSF-Aβ positivity was based on 
p-tau181/Aβ42 in 30 individuals) is shown in Figure 3. The number 
of false negatives (51, 11.3%) is slightly higher than false positives (34, 
7.5%), using a single cutoff value (Youden’s maximum).

To evaluate the robustness of our predictive model against 
additional and unknown sources of variability, we conducted Monte 
Carlo simulations introducing random measurement noise into the 

plasma Aβ42/Aβ40 ratio in the combined cohort. The original AUC 
of 0.88 corresponding to the predictive model, already reflects the 
intrinsic variability of the plasma Aβ42/Aβ40 measurements, 
including random and systematic errors introduced from sample 
extraction to LC–MS analysis. In our simulation, the additional noise 
levels of 2.5, 5, 7.5, and 10% were superimposed on top of this inherent 
variability, effectively modeling a scenario in which the analytical 
assay performs with progressively lower precision. As shown in 
Table 3 and Figure 4, the introduction of additional noise had no 
meaningful effect on the AUC of the predictive model.

Once combined analysis was performed, PPV and NPV of 87.5% 
were chosen in order to stablish two cutoff points. This value of 87.5% 
is a good trade-off between high accuracy and a minimized number 
of individuals remaining in the uncertainty or grey zone. For these 
individuals, additional testing, such as lumbar puncture for CSF 
biomarker analysis or Aβ-PET scans, should be necessary in order to 
confirm or discard Aβ pathology. The evolution of PPV and NPV 
along the whole range of probability values (0 to 1) is shown in 
Figure 5. Setting both predictive values at 87.5% generates two cutoffs, 
a negativity cutoff at p = 0.296 and a positivity cutoff at p = 0.672 
(rounded at 0.30 and 0.67, respectively) for a final prevalence of 62%. 
According to this, individuals with probability values ≤ 0.30 have a 
low likelihood of amyloid plaques and individuals with probability 
values ≥ 0.67 have a high likelihood of amyloid plaques. Those 
individuals with intermediate probability (0.30 < p < 0.67) fall into the 
uncertainty or grey zone.

TABLE 2  Model performance metrics.

Cohort Sensitivity Specificity PPV NPV AUC Accuracy (%) Prevalence (%) N

HCSC (T) 0.92 0.71 0.77 0.89 0.89 82.3 51 190

HUSM (V) 0.81 0.85 0.93 0.66 0.88 81.6 70 260

Ext-Val 0.83 0.81 0.91 0.67 0.88 82.3 70 260

Combined 0.82 0.80 0.87 0.73 0.88 81.1 62 450

HUSM, Hospital Universitari Santa Maria; HCSC, Hospital Clínico Universitario San Carlos; (T), Training cohort; (V), Validation cohort; Ext-Val, External validation; Combined, 
HUSM+HCSC; PPV, Positive Predictive Value; NPV, Negative Predictive Value; AUC, Area Under the ROC Curve; N, number of participants. All the metrics are calculated at the maximum 
Youden index.

FIGURE 1

ROC curves obtained after the analysis of each cohort separately and 
after combination.

FIGURE 2

Distribution of model predicted probabilities after combined analysis 
(450 participants).

FIGURE 3

Concordance plot between predicted probabilities and CSF Aβ42/
Aβ40 values. A single probability cutoff (calculated at the maximum 
Youden Index) of 0.591 was used. A mean value of 0.0685 was used 
to define CSF positivity (average of cutoff values used in each cohort 
separately).
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After exclusion of subjects in the grey zone (27%) a sensitivity of 
94.4% and specificity of 74.3% were obtained. In order to study 
model performance in different prevalence scenarios and starting 
from the combined sample (450 individuals and 62% of prevalence), 
1,000 random populations were generated with bootstrap analysis at 

fixed prevalence values of 40, 50 and 60% (3.000 populations in 
total). The results of these analyses are shown in Table 4. Again, 
predictive values of 87.5% were fixed and metrics calculated after 
excluding subjects falling in the grey zone. For a prevalence value of 
60%, selected for practical purposes according to published 
references for the MCI population (Janssen et al., 2021; Hu et al., 
2022), results must be  interpreted as follows: p  ≤ 0.30 (30%) 
indicates low probability of brain amyloid plaques, p ≥ 0.69 (69%) 
indicates high probability of amyloid plaques and intermediate 
probability (0.30 <  p  < 0.69, between 30 and 69%) indicates an 
indeterminate result. These results show that more than 70% of 
invasive and expensive tests could be avoided while maintaining a 
high classification accuracy. Alternative results after setting 
predictive values at 85% are shown in Supplementary Table 3 and 
Supplementary Figure 2. For a prevalence of 60%, the proportion of 
individuals falling within the grey zone decreases to 15.3%, with 
sensitivity and specificity remaining comparable to the previous 
scenario (predictive values of 87.5%), albeit with a slightly reduced 
overall accuracy (85%).

Finally, model calibration (Van Calster et al., 2016; Riley et al., 
2024) was performed to assess the agreement between model 
predictions and observed proportions. Due to sample size limitations, 
we conducted 1.000 bootstrap cycles, performing calibration at each 
iteration. A population with a prevalence of 60% was considered in 
the calculations. The average calibration curve is shown in Figure 6. 

FIGURE 4

Boxplots with individual data points generated to visualize the distribution of AUC values across noise levels. Red dashed line indicates the original 
analysis without adding extra noise. Boxes represent the interquartile range (IQR), the line indicates the median, and whiskers extend to 1.5 × IQR.

TABLE 3  Model performance (AUC) after random noise addition to Aβ42/Aβ40 measurements.

Added noise (%) AUC (Mean) SD ΔAUC

Original 0.88 - -

2.5 0.87 0.002414 −0.0022

5.0 0.87 0.004489 −0.0080

7.5 0.86 0.005656 −0.0148

10.0 0.85 0.006611 −0.0220

SD, standard deviation. Symbols; Δ: increment. AUC values rounded to two decimal figures.

FIGURE 5

Evolution of PPV and NPV along the probability range. Both 
predictive values were fixed at 87.5% (black horizontal dashed line). 
According to this graph, 27.1% of the patients would fall in the grey 
zone (0.30 ≤ p ≤ 0.67) and would need additional testing.
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The slope and intercept values (0.98 and −0.01, respectively) are very 
close to their target values (1 and 0, respectively), and the flexible 
calibration curve closely approximates the ideal calibration line 
indicating that the model is, on average, properly calibrated.

4 Discussion

In this work, we  have clinically validated a predictive model 
composed of plasma Aβ42/Aβ40, age and APOE genotype (presence 
or absence of APOE ε4 alleles) to infer the brain amyloid status of 
individuals with MCI. A distinctive feature of this study was that Aβ40 
and Aβ42 were quantitated using ABtest-MS. This analytical 
procedure is based on antibody-free direct extraction from plasma, 
followed by detection and quantitation of both intact peptides by 
micro-HPLC coupled to DMS, a variant of ion mobility spectrometry, 
and triple quadrupole tandem mass spectrometry (MS/MS). In 
previous studies, ABtest-MS has demonstrated good clinical 
performance across the AD continuum (Jang et  al., 2021). As an 
example, we  identified brain amyloid status (as determined by 
18F-Florbetaben PET) with high accuracy in a well-characterized 
cohort of individuals with subjective cognitive decline (SCD), and 
externally validated these results in a completely independent cohort 

(Pascual-Lucas et al., 2023). In this work, we have extended these 
findings to the MCI population, specifically, to two real-world clinical 
cohorts from two specialized memory units.

In this study, ABtest-MS has demonstrated a high predictive 
ability to identify CSF-Aβ(+) individuals from two real-world cohorts. 
Validating diagnostic methods in real-world cohorts provides a 
significant advantage by evaluating their performance in diverse, 
clinically representative populations, thus improving the 
generalizability and translational applicability of the results (Schöll 
et al., 2024). Unlike well-characterized convenience cohorts, which 
typically consist of participants with more homogeneous and clear-cut 
diagnostic characteristics, real-world cohorts better capture the 
complexity and variability of typical clinical practice. These cohorts 
include individuals with a broader spectrum of comorbidities and 
atypical clinical presentations. Such diversity allows for a more 
accurate reflection of how diagnostic tools will perform in routine 
healthcare settings. However, this comes with notable challenges, that 
are reflected in our study cohorts. Both cohorts were drawn from real-
world secondary-care MCI populations assessed with comparable 
diagnostic procedures, following the recommendations from the 
NIA-AA workgroups on diagnostic guidelines for AD (Albert et al., 
2011), which supports the use of one for model training and the other 
for independent validation. At the same time, relevant differences 
were observed between cohorts: the HUSM cohort was older, had 
lower MMSE scores, and—most importantly—showed a higher 
prevalence of CSF-amyloid positivity. These contrasts indicate that the 
two cohorts capture somewhat different stages or referral patterns 
within secondary care, which strengthens the robustness of the 
validation design by testing the model in real routine clinical 
practice settings.

Previous studies have highlighted the vulnerability of the Aβ42/
Aβ40 ratio in plasma to minor measurement or pre-analytical 
deviations, which can easily lead to misclassifications due to the 
modest fold-change between amyloid-positive and negative 
individuals (Rabe et  al., 2023). In contrast, our Monte Carlo 
simulations showed that the multivariable predictive model—
combining the Aβ42/Aβ40 ratio with age and APOE genotype—not 
only achieves higher classification accuracy but is also remarkably 
resilient to random, largely unknown, and inherently uncontrollable 
sources of variability. Even after artificially introducing up to 10% 
additional random noise into the ratio, the model’s AUC decreased 
only marginally, reflecting its intrinsic capacity to buffer these 
unpredictable fluctuations. This robustness provides a strong rationale 
for using the multivariable model instead of the crude biomarker, as 
it both improves diagnostic performance and mitigates the impact of 
unavoidable variability in real-world conditions.

TABLE 4  Model performance metrics in the simulated populations.

Prevalence (%) Original Bootstrap [Mean (SD)]

62 40 50 60

Lower cutoff 0.296 0.545 (0.08) 0.413 (0.09) 0.299 (0.19)

Upper cutoff 0.672 0.922 (0.03) 0.858 (0.12) 0.686 (0.08)

Subjects in intermediate zone (%) 27.1 35.3 (9.1) 35.3 (16.3) 28.3 (15.6)

Sensitivity (%) 94.4 70.3 (6.4) 85.3 (4.6) 93.9 (2.6)

Specificity (%) 74.3 95.3 (1.4) 89.4 (3.4) 76.2 (9.6)

All the metrics are calculated after exclusion of individuals falling in the grey zone. SD, standard deviation.

FIGURE 6

Average calibration plot after 1.000 bootstrap iterations. Flexible 
calibration line approaches ideal calibration line (Slope = 0.98 and 
Intercept = −0.01) indicating good calibration.
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A target prevalence of 60% was selected, based on prior work 
(Janssen et al., 2021; Hu et al., 2022). This value is almost identical 
to the one obtained after combined analysis. Additionally, cutoff 
values at different prevalence values are explored, so they can 
be applied to different clinical settings (DeMarco et al., 2024). Using 
two cutoff points enhances diagnostic precision by reducing 
uncertainty in borderline cases (Schindler et al., 2024), therefore 
we adopted this approach. These findings suggest that implementing 
this diagnostic approach could significantly reduce the reliance on 
invasive and costly procedures, with over 70% potentially being 
avoided. Importantly, this reduction does not come at the expense 
of diagnostic performance, as high classification accuracy is 
maintained. Finally, we checked model calibration. Well-calibrated 
models, as in this case, are far more valuable in clinical practice as 
they provide realistic risk estimations even if the AUC of the model 
is lower than a non-properly calibrated model with higher AUC 
value (Van Calster et  al., 2019). Importantly, a well-calibrated 
predictive model provides probability estimates that reflect the 
actual risk of amyloid positivity, allowing neurologists and other 
dementia specialists to make more informed decisions with greater 
confidence. In this work, we have extensively evaluated the clinical 
performance of the method, ensuring a comprehensive analysis by 
considering different prevalence values and establishing various 
predictive power thresholds. This approach has allowed us to 
explore how changes in prevalence and predictive power can affect 
the clinical utility of the test, providing insights into its effectiveness 
and potential limitations under a range of real-world conditions.

Our logistic model based on plasma Aβ42/Aβ40 demonstrates strong 
diagnostic performance under clinically realistic conditions. By fixing 
both positive and negative predictive values at 87.5%, every classified 
individual receives a test result with high confidence (87.5% accuracy), 
while indeterminate cases are excluded from accuracy calculations, as is 
standard in a dual cutoff strategy. The predictive value of biomarker tests 
varies according to the prevalence of amyloid positivity and must always 
be interpreted within the full clinical context (Schindler et al., 2024), as 
predictive values directly reflect the post-test probability of disease for an 
individual patient, whereas sensitivity and specificity are intrinsic test 
characteristics that provide no direct estimate of a patient’s likelihood of 
disease. When evaluated at a standard prevalence of 60%, commonly 
found in MCI populations, the model’s performance aligns with the 
recent Global CEO Initiative on Alzheimer’s Disease recommendations 
for triaging tests and approaches the 90% PPV and NPV for confirmatory 
testing (Schindler et  al., 2024). Nevertheless, these guidelines also 
recommend a grey zone <20%. While our model exceeds this threshold, 
in clinical practice, physicians accept a grey zone larger than 20% if it 
translates into higher accuracy and confidence for the individuals who do 
receive a test result, particularly in heterogeneous, real-world cohorts 
where indeterminate outcomes are naturally more frequent than in well-
controlled populations (Sarto et al., 2025). Consistent with this, similar or 
higher grey-zone rates are frequently reported in other studies with 
biomarkers such as p-tau217 that still achieve the 90% sensitivity and 
specificity criteria (Arranz et  al., 2024; Álvarez-Sánchez et  al., 2025; 
Wilson et al., 2025; Rudolph et al., 2025). Overall, these findings reinforce 
the robustness of the model and its ability to deliver highly reliable 
classifications in clinically relevant scenarios.

For a biomarker to be translated into clinical practice, it must 
be demonstrated that performance observed in well-characterized 
discovery cohorts also holds across heterogeneous real-world 
populations. The results presented here are in good agreement, in 

terms of classification accuracy, with previous studies using our 
model in discovery cohorts such as DPUK-Korea and FACEHBI 
(Jang et al., 2021; Pascual-Lucas et al., 2023), despite differences in 
cohort composition, including diagnostic groups and prevalence 
rates. The consistent predictive performance observed in these real-
world settings further supports the clinical utility of the model. 
Importantly, our approach offers several practical advantages: 
according to several recent publications, the plasma Aβ42/Aβ40 
ratio is not significantly affected by renal function or BMI, factors 
known to influence other biomarkers such us p-tau217 (Syrjanen 
et  al., 2022; Pichet Binette et  al., 2023; Lehmann et  al., 2023; 
Lehmann et al., 2024; Piura et al., 2025). In addition, the logistic 
regression model inherently adjusts for age and APOE genotype, 
thus eliminating the need for age-stratified interpretation. 
Altogether, these findings support the use of our model as a reliable 
and scalable strategy for estimating brain amyloid status, while 
deferring ambiguous cases to additional confirmatory evaluation 
(e.g., PET or CSF analysis).

This study has several limitations. While the number of participants 
cannot be considered small (n = 450), a larger sample size could further 
enhance the generalizability of the findings. A larger and more diverse 
cohort would allow for a broader representation of different 
populations and potential subgroups, helping to confirm whether the 
results could be consistently applied across diverse settings. Although 
the current sample provides valuable insights, future studies with 
larger, more ethnically diverse cohorts would further strengthen the 
external validity of the conclusions. Additionally, prospective validation 
of any predictive model is essential, and further studies are planned for 
this purpose.

A further limitation is the use of a single BBM, which reinforces 
the rationale for integrating additional plasma biomarkers into the 
model to potentially increase its predictive accuracy. Among the 
different available BBMs, p-tau217 has shown high performance 
and its combination with Aβ42/Aβ40 (Meyer et  al., 2024) may 
further enhance accuracy in future applications, as it often yields 
the numerically strongest models and improves overall model fit 
(e.g., AIC, BIC), reflecting the biological complementarity of these 
markers beyond what is captured by AUC values alone.

Exploring the contribution of other markers will be addressed 
in future studies.

5 Conclusion

We have demonstrated strong clinical performance of a predictive 
model based on Aβ42/Aβ40 ratio measurements obtained through 
ABtest-MS, for identifying brain amyloid deposition in individuals with 
MCI. Cutoff values for positive and negative results were determined 
across different prevalence scenarios, while ensuring high predictive 
accuracy. In a real-world population with a 60% CSF-Aβ(+) prevalence, 
more than 70% of invasive and costly tests could be avoided, facilitating 
rapid and cost-effective identification of candidates for DMTs.
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