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Intervening in aging processes is hypothesized to extend healthy years of life and treat age-
related disease, thereby providing great benefit to society. However, the ability to measure
the biological aging process in individuals, which is necessary to test for efficacy of these
interventions, remains largely inaccessible to the general public. Here we used NHANES
physical activity accelerometer data from a wearable device and machine-learning
algorithms to derive biological age predictions for individuals based on their movement
patterns. We found that accelerated biological aging from our “MoveAge” predictor is
associated with higher all-cause mortality. We further searched for nutritional or
pharmacological compounds that associate with decelerated aging according to our
model. A number of nutritional components peak in their association to decelerated aging
later in life, including fiber, magnesium, and vitamin E. We additionally identified one FDA-
approved drug associated with decelerated biological aging: the alpha-blocker doxazosin.
We show that doxazosin extends healthspan and lifespan in C. elegans. Our work
demonstrates how a biological aging score based on relative mobility can be
accessible to the wider public and can potentially be used to identify and determine
efficacy of geroprotective interventions.
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INTRODUCTION

The aging human population and associated increase in age-related diseases present a growing burden to
the healthcare system and society (Partridge et al., 2018). Genetics, dietary factors, and pharmaceuticals
can all be considered geroprotective. These can potentially decelerate the aging processes, and thereby the
progression of age-related disease (Figure 1A). However, variation in rates of aging in humans, and the
ethical, practical and financial limitations to perform human lifespan studies, make it difficult to translate
fundamental findings into clinical practice (Partridge et al., 2018). Therefore, the ability to predict
biological age as a measure of health and longevity is an attractive prospect.

A variety of biological age predictors have been generated already, using parameters such as
telomere length, gene expression profiles, or metabolomics (reviewed by Jylhävä et al., 2017). A
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FIGURE 1 | Machine learning to predict age from wearable device movement data. (A) Schematic representing the typical aging process (black figures),
accompanied by reduced locomotive capacity. Genetics, drugs, and nutrition are able to promote healthy aging, or, in the case of drugs and nutrition, can promote
healthy aging and thereby improved locomotive capacity (blue figures). (B) Schematic showing machine learning strategy to build age predictors from wearable devices
that measure accelerometer readings. The two publically available NHANES datasets that included accelerometer data were used. The 2003–2004 dataset was
used for model building and validation. The 2005–2006 dataset was used for validation and exploration of associations with accelerated or decelerated biological aging.
(C) The distribution of ages and total counts of individuals for each dataset, following data quality filtering steps. Left panel is the 2003–2004 dataset and right panel is the
2005–2006 dataset. (D) Example of accelerometer readings in the data for a typical 18 year old (left hand panels) and typical 80 year old (right hand panels). The data
covers seven days of readings (top panels), and a single day contains readings from themoment the individual attached the device in themorning until they removed it in
the evening (bottom panels). (E) Example of hourly maximum intensity (top panels) and hourly variance (bottom panels) for the 18 and 80 year olds depicted in panel
D. Themaximum intensity and variance of readings per hour over the seven days were used as input for machine learning to predict age of the individual. (F) The strength
of each predictor (variance or maximum intensity), by day and hour in the dataset, for the random forest machine learning model. Strength of each predictor is interpreted
from the models percent increase of mean standard error (Percent Inc. MSE) calculated for each predictor. (G) The prediction of the models for the validation dataset.
Left panel is direct prediction on the raw accelerometer data form the validation dataset, with r � 0.75, p < 0.01, and an RMSE of 13.58 years. Right panel is the
normalization of the prediction based on a priori knowledge of the participant’s ages, resulting in r � 0.94, p < 0.01, and an RMSE of 7.54 years
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composite biomarker predictor has also been developed, utilizing
18 biomarkers over multiple organ systems in young adults
(Belsky et al., 2015). Perhaps the best described “aging clock”
is based on epigenetic age viaDNAmethylation (Bocklandt et al.,
2012; Hannum et al., 2013; Horvath, 2013). DNA methylation
clocks have then been used to assess behavioral lifestyle factors for
their effect on biological age (Quach et al., 2017). This allowed
factors such as diet, exercise and intake of pharmaceuticals to be
evaluated for their influence on longevity. These existing age
predictors have added great value to the field, yet most require
blood or tissue samples and are therefore inaccessible to the
general public.

Arguably the most downstream measure of healthy aging is
one’s ability to move. Mobility translates to independence in the
ability to care for one’s self and therefore quality of life. In
addition, movement can be considered the culmination of
many molecular and physiological processes of aging summed
together. The popularity of wearable movement tracker devices
provides accessible and accurate movement data for a large
portion of the population. Movement parameters from a
wearable device have been associated with mortality
(Chudasama et al., 2019), as well as biological aging to predict
frailty, risk of chronic disease, and mortality (Pyrkov et al., 2018a;
Pyrkov et al., 2018b; Rahman and Adjeroh, 2019).

Here, using publicly available NHANES data we develop a
predictive model for biological age based on movement measured
by a wearable device. We then used this model to identify and assess
efficacy of longevity interventions. Namely, we identify nutritional
components associated with healthy aging, as well as a pharmaceutical
drug; doxazosin. Finally, we confirm that doxazosin causally
influences longevity and promotes greater movement later in life
via lifespan and healthspan measurements in the worm C. elegans.

METHODS

Dataset Downloading and Processing
NHANES data from 2003–2004 and 2005–2006 were used in this
study: https://wwwn.cdc.gov/nchs/nhanes/. Accelerometer data
was available in the PAXRAW_C and PAXRAW_D files, and the
demographic data was available in DEMO_C and DEMO_D files.
The nutritional data was accessed using the DR1TOT_D file and
use of prescription drugs were accessed with the RXQ_RX_D file.
For use in model building, the 2003–2004 accelerometer data was
downloaded from the NHANES repository, filtered to ensure that
data was present for each minute of the seven days, devices were
calibrated, daily data contained sufficient accelerometer entries
(10% data >0), and participants were aged 18 and older. This
resulted in high quality dataset of 7 days of accelerometer data for
2,634 adults. For use in model validation, the 2005–2006
NHANES accelerometer data was preprocessed identically and
resulted in data for 2,505 adults. Linked mortality data on the
participants from NHANES was accessed at the link below. See
supplementary materials for extended methods on data access
and processing.

ftp://ftp.cdc.gov/pub/Health_Statistics/NCHS/datalinkage/
linked_mortality/

Random Forest Model Generation, Age
Prediction, and Calculation of Age
Acceleration
The final 2003–2004 accelerometer data was split into training
(70%) and testing (30%) datasets using the caret package in R
(Kuhn et al., 2016). A random forest model was generated on
centered and scaled data from the training dataset using the
randomForest package in R (Breiman and Cutler, 2018). Model
parameters were assessed using the randomForest and
randomForestExplainer packages in R (Breiman and Cutler,
2018; Paluszynska et al., 2020). The model was validated using
the 2005–2006 validation dataset. Finally, to ensure a linear
relation between predicted and chronological age, an
individual’s predicted age was normalized by dividing by the
median predicted ages of individuals of similar chronological ages
and multiplying again by the individual’s actual chronological
age. Age acceleration and deceleration was then evaluated by
subtracting an individual’s chronological age from their
normalized biological age prediction. See supplementary
materials for extended methods.

Nutritional and Pharmacological
Associations to Biological Age
For correlating nutritional intake to biological age, the 2005–2006
nutrition survey data was downloaded from the NHANES
repository and correlations and significant association to
deltaAges was assessed using Pearson’s product moment
correlation coefficient of binned age groups. Results were
clustered using the hclust function in R based on Euclidean
distance. Comparisons were further performed between either
very high (>10 years) or very low (<10 years) biological age
differences (deltaAge) using Student’s t-test. See supplementary
materials for extended methods. To screen for drugs that are
associated to lower biological aging, the 2005–2006 prescription
medication data was downloaded from the NHANES repository
and individuals of an advanced age (70–85+). For each drug, the
deltaAges of users were compared to the deltaAges of all
individuals to identify a significant difference using the non-
parametric Kolmogorov-Smirnov test. p values were corrected
for using the Benjamini and Hochberg method. See
supplementary materials for extended methods.

Statistics
The R programming environment was used for all data
processing steps and statistics in this study (R Core Team,
2013). For assessing the random forest model, RMSE was
calculated using the Metrics package (Hammer et al., 2018).
Pearson’s product moment correlation was used to assess the
random forest model and nutritional impact on age
acceleration/deceleration. Aging acceleration/deceleration
was calculated considering the predicted age minus the
normalized biological age. Comparisons of the ratios of
accelerated, normal, or decelerated aging relative to
mortality was performed using a 3-sample test for equality
of proportions without continuity correction. Students t-test
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was used for two sampled comparisons. The non-parametric
test of Kolmogorov-Smirnov was used for comparison of
deltaAges of drug users. Throughout this study, p-values
less than 0.05 were considered significant. When multiple
comparisons were performed in large number multiple
hypothesis testing corrections were applied to p-values
using the Benjamini and Hochberg method.

C. elegans Healthspan and Lifespan
Measurements
N2 Bristol C. elegans were obtained and maintained as previously
described (Liu et al., 2020). For mobility crawling measurements,
doxazosin mesylate was dissolved in DMSO and added to plates
before pouring at a concentration of 33 µM. Worms were
synchronized and grown to day 9 or 10 of adulthood.
Crawling speed was measured and analyzed as previously
described (McIntyre et al., 2021). See supplementary materials
for extended methods. Statistical analysis compared treated and
untreated conditions using a Mann-Whitney U test. Mobility
assays were performed at least twice, one of which is represented
in the data shown. Statistics for mobility experiments and
replicates are represented in Supplementary Table 3.

Lifespan and motility assays were prepared and analyzed on a
microfluidic chip (Infinity Chips, NemaLife Inc., TX, United States)
and Infinity Code Software as previously described (Rahman et al.,
2020). Doxazosin was tested at 3.3 and 33 μM, as drugs added in
microfluidic systems have been shown to act more potently than
drugs mixed in agar (Hewitt et al., 2018). Each microfluidics assay
was conducted in triplicate (three biological replicates), and each
biological replicate consisted of two technical replicates. One
technical replicate is a population of ∼60 animals in a
microfluidic growth chamber. See supplementary materials for
extended methods. Kaplan-Meier curves from the lifespan assays
were generated using GraphPad Prism. Log-rank testing was used to
compare the survival curves between the non-exposed control and
doxazosin-treated populations. Statistics for all lifespan experiments
and replicates are represented in Supplementary Table 4. Statistical
comparisons of motility were performed in GraphPad Prism using
two-way ANOVA. Statistics for motility experiments and replicates
are represented in Supplementary Table 5.

RESULTS

A Machine Learning Approach to Predict
Age FromWearable Device Movement Data
To obtain datasets containing both in-depth characterization of
demographic information from individuals and also continuous
movement data from a wearable device, we turned to the NHANES
data repositories (https://wwwn.cdc.gov/nchs/nhanes/). Data from
a single individual can include what drugs they have taken, foods
eaten, along with demographic data including age. For earlier
survey periods of NHANES, there is also well-documented
mortality information for the individuals. The NHANES study
periods of 2003–2004 and 2005–2006 are particularly interesting in
this regard, as these two study rounds additionally requested

individuals to wear a device around their upper thigh
measuring their activity levels for a week (ActiGraph AM-
7164). Accordingly, we downloaded the accelerometer and
demographic data from these study periods, which consisted of
several thousands of individuals for each respective study year. We
used the 2003–2004 data for model building and testing, then the
2005–2006 data for external validation and exploration of possible
effectors influencing the biological aging rate (Figure 1B).

The accelerometer data consisted of a seven-day measurement
period with daily entries, and we filtered the data to include only
individuals with calibrated instruments that included data for the
whole seven days of the study period. Together, this resulted in
high quality datasets of 2,634 and 2,505 adults for the 2003–2004
and 2005–2006 datasets, respectively, which covered a broad
range of ages from 18 to 85+ (Figure 1C). These data
included intensity values at the resolution of minutes for
differently aged individuals (Figure 1D), so we aimed to focus
the dataset using summary statistics. We reasoned that maximum
intensity for each hour could capture elements of vitality in the
individual, and the variance of the data for each hour could
capture the diversity of movements performed by an individual.
Indeed, we found clear differences between these two parameters
when assessing different age groups (Figure 1E). This effectively
served to reduce our datasets to a summarized form to more
efficiently build our MoveAge predictor.

To build the biological age predictor, we split the 2003–2004
dataset into separate training and testing subsets in a 70:30 ratio,
and, using the training subset, trained a random forest model to
predict an individual’s age from their summarized accelerometer
data. We used random forest based on our and others’ previous
experiences building age-predictive models (Janssens et al., 2019;
Schultz et al., 2020; Shokhirev and Johnson, 2021). Exploring the
random forest model’s parameters, we found both maximum
activity and variance to have strong predictive abilities for age,
with variance throughout the hour having greater influence on
the predictive ability of the model (Figure 1F). The time of day
also had an influence on the predictor’s strength in the model,
with afternoon variance throughout each day of the week having
greatest influence (Figure 1F).

Finally, we assessed our model on the 30% validation dataset
reserved for this purpose, and found a strong correlation of 0.75 (p <
0.01) between predicted and chronological age to exist, with a root
mean square error (RMSE) of 13.58 years (Figure 1G). Noting that
the model tended to slightly overestimate the ages of younger
individuals while underestimating the ages of older individuals,
we performed a final normalization with a priori knowledge of
the chronological age of an individual. Namely, an individual’s
predicted biological age was normalized relative to other
predicted biological ages of people with the same chronological
age. This normalization allowed us to use a more accurate
comparison of age acceleration and deceleration per individual,
and logically improved our predicted vs. chronological age
correlation to 0.94 (p < 0.01), with a RMSE of 7.54 years
(Figure 1G). As our RMSE values ranged between the RMSE
errors of DNA methylation-based epigenetic aging clocks (∼2.9–6
RMSE) (Galkin et al., 2020) and blood-based biomarkers of aging
from NHANES (∼14–17.5 RMSE) (Pyrkov and Fedichev, 2019), we
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FIGURE 2 | Accelerated biological aging from accelerometer data is linked to higher mortality. (A) The model prediction of the 2005–2006 dataset used for
validation and exploration. Left panel is direct prediction on the raw accelerometer data, r � 0.69, p < 0.01, and an RMSE of 14.52 years. Right panel is the
normalization of the prediction based on a priori knowledge of the participant’s ages, r � 0.93, p < 0.01 and an RMSE of 8.02 years. (B) Counts of individuals in the
2005–2006 dataset known to be deceased using follow up data from NHANES. (C) Distribution of deltaAges of individuals above the age of 60. Calculation of
deltaAge is based on the difference between an individual’s predicted biological age and actual chronological age. Dashed lines depict quartiles of the distribution, used
to define accelerated, normal, and decelerated aging. (D) Ratios of individuals that were alive or deceased in the NHANES follow up assessments, segmented on
accelerated, normal, and decelerated aging. Individuals with accelerated aging were more likely to be found deceased, and individuals with decelerated aging were less
likely to be found deceased, compared to normal. Significance was calculated using a 3-sample test for equality of proportions without continuity correction p < 0.05. (E)
Comparison of deltaAges for individuals alive or deceased, for each decade of life. Statistics compare deltaAges of the two groups using Student’s t-test *p < 0.05 **p
0.01. (F) The deltaAges of individuals alive (grey) relative to top causes of death (blue). Individuals who died from chronic lower respiratory diseases (J40−J47) showed
the highest trend towards significantly accelerated aging relative to those who had not died. “Alive” pertains to the NHANES entry presumed alive i.e., alive or no cause of
death found. “Nephrosis related” pertains to nephritis, nephrotic syndrome and nephrosis. (G) Schematic whereby, relative to chronological age, a higher biological age
from the MoveAge predictor corresponds to an accelerated, unhealthy aging phenotype, and a lower biological age corresponds to a decelerated, healthy aging
phenotype.
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reasoned that our model was sufficiently trained to proceed with our
study. We termed our final model MoveAge.

Accelerated Biological Aging From the
MoveAge Model Is Linked to Higher
Mortality
To further validate our model, and explore the relevance of
MoveAge, we turned to the 2005–2006 NHANES
accelerometer dataset and proceeded to predict the biological
ages of individuals based on their movement patterns. Here we
confirmed the accuracy of our model, with predicted ages
correlating with actual chronological ages at 0.69 (p < 0.01),
with an RMSE of 14.52 years before normalization. After
normalization, our model achieved a correlation of 0.93 (p <
0.01) and an RMSE of 8.02 years (Figure 2A).

To further assess how age acceleration or deceleration
predicted by our model correlated to biological aging, we
related our predictions to the available mortality data within
NHANES. Because the 2005–2006 NHANES surveying took
place over a decade ago, mortality is recorded in the older age
groups of the population (Figure 2B). We then calculated the
deltaAge for each individual as the difference between actual
chronological age and our predicted biological age, so as to
evaluate its relationship to mortality (Supplementary Table 1).

With these elements in hand, we selected the individuals above
the age of 60, where mortality becomes more prominent in the
data (Figure 2B), and compared the quartile distributions of
deltaAges to define groups that had accelerated, normal, or
decelerated biological aging (Figure 2C). Comparing the ratio
of live to dead from each of the three groups, we found a
significant difference whereby individuals with accelerated
aging had a greater proportion of mortality (0.47), individuals
with decelerated aging had a lower proportion of mortality (0.34)
and individuals without altered biological aging had a proportion
somewhere in between (0.41) (p � 0.018) (Figure 2D). This
suggested that our predictions based on movement data captured
a biological aging process.

Having observed that higher mortality was present in elderly
individuals with accelerated aging, we asked how deltaAge relates
to mortality for each decade-sized age bin in our age distributions.
For individuals of ages ranging from 18–29, and 30–39, we found
no differences in mortality between individuals with age
acceleration (Figure 2E). This is likely due to the fact that
very few individuals had died in the follow up period, and the
few that had were unlikely to be attributable to age-related causes
(Figure 2E). However, starting from the 4th decade of life, we
found a significant difference, whereby individuals with
accelerated aging as predicted from MoveAge had higher
incidences of mortality (p � 0.011, Figure 2E). This
significance was maintained at the 5th (p � 0.023), 6th (p <
0.01), and 7th (p < 0.01) decades of life, with a trend still
remaining, though not significant, in the 8th decade
(Figure 2E). This suggested that starting from the 40s and
proceeding into the next three life decades, accelerated aging
plays an increasingly prominent role in determining an
individual’s remaining lifespan.

Finally, we asked whether certain causes of death were more
linked to accelerated aging as predicted by our model. To address
this, we compared the causes of death for each mortality entry to
our deltaAge measures. Here we found certain diseases associated
with accelerated aging as captured by our model, such as chronic
lower respiratory disease, though none were significant with the
population size assessed (Figure 2F). Altogether, we conclude
that our MoveAge biological age prediction captures the
biological aging process in individuals, with higher mortality
in individuals with accelerated aging (Figure 2G).

Identification of Nutritional Components
Associated With Decelerated Aging
One of the main aims of developing our MoveAge model was to
explore nutritional and pharmacological trends that are
associated with aging deceleration. To address the nutritional
aspect of this, we accessed the dietary intake data available for
each NHANES participant. This information is derived from
questionnaires that are used to estimate intakes of nutrients, and
macromolecule food components. We reasoned that there might
be nutritional components whose greater abundance is associated
with either aging acceleration or deceleration, and that this could
be detected by comparing an individual’s intake to their
calculated deltaAge across the population (Figure 3A). Doing
so for each decade of life would allow detection of when
temporally a food component might affect biological age.

To explore the possibility that dietary components are
associated to aging, we proceeded to calculate for each dietary
component, at each decade of life, the correlations between
deltaAge and the abundance of intake (Supplementary
Table 2). We clustered the data to identify patterns occurring
across the decades of life (Figure 3B). This revealed how food
components had greater or lesser importance for age deceleration.
Notably, we found that most food groups had little association with
decelerated aging at early ages (Figure 3C). However, a cluster of
food components tended to peak after increasing steadily in
importance throughout life (Figure 3C, cluster 1). Higher
intakes of these specific foods were associated to younger
biological ages, growing in importance from the 4th and 5th
decade, reaching maximal association at the 6th.

We further explored the components of this cluster, and found
the three most significant food components associated with
decelerated aging at the 6th decade of life were fiber (r � −0.18,
p < 0.01), magnesium (r � −0.17, p < 0.01), and vitamin E (r �
−0.13, p < 0.01) (Figures 3D–F, left panels). Higher intake of these
foods was associated to decelerated aging. This could further be
exemplified by comparing individuals with either very high
(>10 years) or very low (<10 years) deltaAges. Doing so
revealed a significant association with decelerated aging for all
three food components (Figures 3D–F, right panels). Together,
these findings are in line with general observations known to
benefit health in humans, such as how higher fiber intake is linked
to lower mortality (Gopinath et al., 2016), magnesium deficiency is
associated to age-related diseases in the elderly (Barbagallo and
Dominguez, 2018), and vitamin E may benefit the lifespan of
certain human populations (Hemilä and Kaprio, 2011). We
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therefore conclude that our MoveAge model is useful for the
potential identification of factors associated with decelerated aging.

Retrospective Human in vivo Screening for
Drugs Associated With Decelerated Aging
Identifies Geroprotector Doxazosin
Our final aimwas to identify if specific drugs that individuals in our
dataset were taking may also be associated to decelerated aging.

This approach would, in effect, constitute a human in vivo
screening for compounds promoting healthy aging. While false
positives may result from this approach in the form of compounds
only associated, rather than causing, age deceleration (e.g.,
antibiotics or antihistamines, which are the main drugs that
otherwise healthy individuals may take), it could nonetheless
reveal compounds that contribute to healthy aging (Figure 4A).

To identify compounds associated to decelerated aging, we
focused on the 70+ population who was both elderly and most

FIGURE 3 | Identification of nutritional components associated with decelerated aging. (A) Schematic depicting how nutrient intake may be related to deltaAge.
Upper panel shows a negative correlation, where increased intake correlates with decelerated aging. Lower panel depicts how this trend may change in time. For
example, as depicted, a specific nutrient may correlate with accelerated aging, or not correlate with deltaAge, early in life but correlate with decelerated aging later in life.
These nutrients could be interesting as potential healthy aging interventions. (B) Clustering of nutrients covered in the dietary interview of NHANES based on
correlation with deltaAge, assessed in a decade-based manner. This analysis reveals five clusters. Food IDs correspond to the NHANES DR2TOT-D nutrition codes. (C)
Clusters identified in panel B showing nutritional component abundance correlation with deltaAge across age bins. Cluster one includes nutrient components following
the trend that correlates with decelerated aging in the 6th decade of life. (D) Fiber, an example of a nutrient from cluster one of panel B. Left panel depicts the negative
correlation of deltaAge to fiber intake at the 6th decade of life (r � −0.18, p < 0.01).Right panel shows a comparison of fiber intake level of individuals with a deltaAge less
than −10 compared to a deltaAge greater than 10, whereby increased fiber intake is associated to decelerated aging (Student’s t-test, p < 0.01). (E) Magnesium, an
example of a nutrient from cluster one of panel B. Left panel depicts the negative correlation of deltaAge tomagnesium intake at the 6th decade of life (r � −0.17, p < 0.01).
Right panel shows a comparison of magnesium intake level of individuals with a deltaAge less than −10 compared to a deltaAge greater than 10, whereby increased
magnesium intake is associated to decelerated aging (Student’s t-test, p < 0.01). (F) Vitamin E, an example of a nutrient from cluster one of panel B. Left panel depicts the
negative correlation of deltaAge to vitamin E intake at the 6th decade of life (r � −0.13, p < 0.01).Right panel shows a comparison of vitamin E intake level of individuals with
a deltaAge less than −10 compared to a deltaAge greater than 10, whereby increased vitamin E intake is associated to decelerated aging (Student’s t-test, p < 0.01).
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likely to be taking pharmaceuticals (Figure 4B). Then, for each drug,
we compared the distribution of deltaAges of users of that drug,
relative to the distribution of deltaAges of others in this same
demographic. This allowed us to generate both a significance level

comparing these distributions, and amedian fold change in delta ages
that could be represented as a volcano plot (Figure 4C). With these
metrics we could rank the compounds based on their p-values
(Figure 4D), and, a non-stringent significance criteria (p < 0.05)

FIGURE 4 | In vivo screening in humans for drugs associated with decelerated aging identifies geroprotector doxazosin. (A) Schematic to demonstrate use of
pharmaceuticals may promote healthy aging or “rejuvenate” from a state of accelerated aging (black) to a state of decelerated aging (blue). (B)Number of drugs taken per
person, for each decade of life, in the NHANES 2005–2006 dataset. (C) Volcano plot including all drugs from all users over the age of 70, whereby the x-axis is themedian
change in deltaAges of users of any given drug, relative to non-users, and the y-axis is the significance of this difference (−log10 p-value, Kolmogorov-Smirnov test).
Dashed lines correspond to p < 0.05 and p < 0.01. (D)Based on panel C, drugs ranked by their decelerating or accelerating effect on aging. Rank is given to each drug by
multiplying their log10 p value by the sign of deltaAge (negative or positive). (E) The top compounds from panels C and D associated with either accelerated or
decelerated aging. Only one compound is significant at p < 0.01: doxazosin. (F) The distribution of deltaAges of doxazosin users relative to all individuals (depicting top
result from panel C). Density plot overlaid on top of histogram (n � 10 for doxazosin and 1922 for all other drugs). (G)Mobility as determined by crawling speed on day 9 of
life, forC. elegans grown on DMSO control (0.2%), or 33 μMdoxazosin. Worms treated with doxazosin are significantly more mobile than untreated (n � ∼80–130 worms
per condition, p < 0.001, Mann-Whitney U Test). Replicates and statistics of mobility experiments can be found in Supplementary Table 3. (H) Survival curves showing
that 3.3 μM doxazosin, extends lifespan in wild type (N2) C. elegans (n � ∼450 worms per condition, p < 0.0001, Log-rank test). Results are pooled from three
independent experiments. Individual replicates and statistics can be found in Supplementary Table 4. (I)Worm activity healthspan as measured by motility on days 2,
5, 9, and 12 of adulthood. On days 9 and 12, the percentage of highly active worms is significantly higher for the population treated with 3.3 μMdoxazosin (n � 18 videos
analyzed per condition, p < 0.05, Two-way ANOVA). Results represent pooled data from three independent experiments. Individual replicates and statistics of motility
experiments can be found in Supplementary Table 5.
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could generate a list of compounds that were most associated with
decelerated aging (doxazosin, amoxicillin, verapamil) or accelerated
aging (omerprazole, captopril) (Figure 4E). While no drug of the
500 + FDA approved drugs we assessed passed significance following
a correction for multiple hypothesis testing (Benjamini and
Hochberg), one compound—doxazosin—passed significance using
a stringent unadjusted p-value cutoff (p < 0.01) (Figure 4E). Users of
doxazosin weremore likely to have negative deltaAges, representing a
possible age-deceleration due to the drug, when compared to all
others in the same demographic population (Figure 4F).

As stated above, the association between doxazosin and
decelerated age does not necessarily mean it causally benefits
healthy aging. We therefore turned to C. elegans to test if
doxazosin was causally geroprotective. We used C. elegans
because it is a well-described aging model organism, and has
been used to identify and understand other lifespan extending
drugs, such as metformin and others (Cabreiro et al., 2013; Ye
et al., 2014). We based our original screen on movement data, so
we aimed to determine if doxazosin could improve the worms’
healthspan, which we initially tested using a measure of age-
related mobility later in life. When worms were grown on agar
plates that contained 33 μM doxazosin, a dose previously shown
to extend lifespan in worms (Ye et al., 2014), they crawled across
the plate at significantly higher speeds than those treated with the
vehicle at day 9 or 10 of adulthood (p < 0.001) (Figure 4G;
Supplementary Table 3). We then used a microfluidics platform
totest lifespan and healthspan. Here we used multiple doses of
doxazosin (3.3 and 33 μM) as previous observations show that
microfluidics devices provide more direct drug contact than agar
plates, and therefore a lower dose is needed (Hewitt et al., 2018).
Indeed, we saw the greatest beneficial effects at 3.3 μM (Figures
4H,I; Supplementary Tables 4, 5). We confirmed that doxazosin
extended worm lifespan (p < 0.0001) (Figure 4H; Supplementary
Table 4) and simultaneously studied worm motility so as to
measure healthspan via locomotion. With automated locomotion
measurements, we calculated what percentage of worms
remained highly active (defined as moving a distance greater
than their body length in a 30 s window). Upon doxazosin
treatment, we observed a higher percentage of highly active
animals throughout life, particularly in the later ages tested,
confirming their improved healthspan (Figure 4E;
Supplementary Table 5). Altogether, we conclude that
doxazosin extends both lifespan and healthspan in C. elegans.

DISCUSSION

In this study, we built a model to predict human biological age
based on movement data available from a wearable device. The
difference between chronological age and the predicted age
produced by our model (deltaAge) allowed us to define an
individual’s aging as decelerated (healthy aging), normal, or
accelerated (unhealthy aging), and accelerated aging in
middle-to older-age populations was significantly associated
with mortality. Using this model, we searched for nutritional
components and pharmaceutical drugs associated with
decelerated aging. We identified a group of nutritional

components, and one pharmaceutical: doxazosin. We causally
connected doxazosin to healthspan and longevity in C. elegans by
demonstrating that doxazosin treatment extends age-related
movement ability and lifespan in worms.

Our model, MoveAge, was built using NHANES data on
movement patterns over one week, which we summarized to
hourly maximum intensity and hourly variance. One logical
drawback of this approach is that our model could be
capturing patterns of life, rather than biological vitality.
Activity in the afternoon and evening had the strongest
predictive power for the model, which, for example, could be
related to an individual’s work schedule rather than their health.
Additionally, our model may not capture all aspects of declining
health occurring during aging, such as increased incidence of
cancer or mental decline. However, our model, like the other
models produced using movement data to predict relative
physical mobility as a measure of biological age (Pyrkov et al.,
2018a; Pyrkov et al., 2019; Rahman and Adjeroh, 2019), is
associated with mortality in the population we tested. Those
with high deltaAges were significantly more likely to be deceased
in the follow-up data available through NHANES. Therefore, we
conclude that our model indeed captures aspects of biological
vitality in the predicted ages produced, which may also correlate
with lifestyle patterns.

After confirming that deltaAges from MoveAge associated
with mortality, we determined if any specific causes of death were
connected to accelerated aging. We found that of all the causes of
death recorded by NHANES, chronic lower respiratory diseases
was the most associated with increased deltaAge. This could
potentially be due to a reduction in the capacity to exercise or
move brought on by shortness of breath in these sorts of diseases.
As some of the most severe repercussions of COVID-19 infection
are respiratory complications (Hu et al., 2021), biological age
could be useful as a predictor for those most severely affected by
the disease (Pyrkov et al., 2021).

Our work builds on previous studies that have developed
biological age predictive models from wearable device movement
data (Pyrkov et al., 2018b; Pyrkov et al., 2019; Rahman and Adjeroh,
2019). We expand on this theme by utilizing MoveAge to identify
nutritional components and pharmaceuticals that are associated
with decelerated aging, and therefore could play a geroprotective
role. The nutritional components we identify associated with healthy
aging, but further research is necessary to determine their causal role
in aging deceleration. Even so, the increased significance of such
components later in age leads us to speculate about the possibility of
personalized nutrition advice to promote healthy aging. Perhaps if
an individual has signs of accelerated aging, addition of these sorts of
nutritional components could act as a prophylactic treatment,
slowing health degeneration.

In contrast to the nutritional components identified, we not
only associate doxazosin with decelerated aging, but also
demonstrate its causal role in longevity in C. elegans. Lifespan
extension in worms treated with doxazosin has been previously
described in a high throughput screen (Ye et al., 2014), and our
work confirms this in a high resolution microfluidic lifespan
assay. We additionally demonstrate doxazosin’s significant
benefits for healthspan, using both crawling mobility and
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motility assays, which we considered highly relevant as MoveAge
is based on age-based movement. These two healthspan assays
occur in distinct environments, suggesting a robust effect. We
also acknowledge that, while we do show that doxazosin extends
lifespan and healthspan in worms, further study is necessary to
confirm its causal geroprotective effects in humans.

As an alpha-adrenergic blocker, doxazosin inhibits the activation
of post-synaptic alpha-1 receptors by norepinephrine, thereby
opposing blood vessel contraction (Taylor, 1989). It is still
unclear how inhibition of the alpha-adrenergic receptor
(ADRA2A in humans) may influence lifespan in worms.
Suppression of the gene orthologous to ADRA2A in worms, octr-
1, increased the generalized unfolded protein response (UPR) (Y. Liu
et al., 2016) and the UPRER (Özbey et al., 2020), and activation of
both the UPR and UPRER are associated with extended lifespan in
worms (Taylor and Dillin, 2013; Janssens et al., 2019). Additionally,
in the original screen that identified doxazosin’s lifespan extension
capability, multiple other drugs targeting adrenoreceptors were
identified to extend lifespan (Ye et al., 2014). Lifespan effects and
oxidative stress were also significantly correlated in this class of drugs
(Ye et al., 2014). Taken together, these findings suggest that the
unfolded protein response and oxidative stress resistance pathways
could be interesting initial routes of investigation to understand
doxazosin’s mechanism of action. This could in turn provide deeper
insight into aging pathways and points of more directed
intervention.

In conclusion, our results confirm recent studies
demonstrating the capacity to accurately predict biological age
from accelerometer-based movement data, and provide an
additional biological age prediction model to the field. We
further build on existing work to demonstrate the capacity to
use such models to identify the geroprotective capacity of lifestyle
factors or pharmaceuticals in the population studied. Through
such analysis, we associate fiber, magnesium and vitamin E with
longevity, as well as the alpha-blocker doxazosin. We further
confirm doxazosin as a geroprotective compound, and in doing
so, demonstrate the power of using biological age predictors as in
vivo screening tools.
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