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Lipids are involved in a broad spectrum of canonical biological functions, from energy
supply and storage by triacylglycerols to membrane formation by sphingolipids,
phospholipids and glycolipids. Because of this wide range of functions, there is an
overlap between age-associated processes and lipid pathways. Lipidome analysis
revealed age-related changes in the lipid composition of various tissues in mice and
humans, which were also influenced by diet and gender. Some changes in the lipid profile
can be linked to the onset of age-related neurodegenerative diseases like Alzheimer’s
disease. Furthermore, the excessive accumulation of lipid storage organelles, lipid
droplets, has significant implications for the development of inflammaging and non-
communicable age-related diseases. Dietary interventions such as caloric restriction,
time-restrictive eating, and lipid supplementation have been shown to improve
pertinent health metrics or even extend life span and thus modulate aging processes.
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INTRODUCTION

Lipids are an elementary component of all organisms and are involved in a variety of
organismal processes. The development of novel high throughput and sensitive detection
methods in combination with genetically modified model organisms led to a wide range of
discoveries in the field of lipid research in recent years (Vinayavekhin et al., 2010; Pamplona
et al.,, 2019). Due to the high variability of combinations of fatty acids, head groups and other
compounds, a high theoretical number of about 180,000 different lipid species could be
potentially involved in biochemical processes (Briigger, 2014). Importantly, previous studies
suggested an overlap between lipid-connected processes and pathways associated to aging (de
Diego et al., 2019).

During aging, lipid metabolism and cell membrane composition of different tissues undergo
substantial measurable changes that impact the functionality of relevant organs like the brain or heart
in humans (Almeida et al., 2021). Such age-associated alterations are determined by a variety of
factors like genetic background and gender (Nam et al., 2017; Wong et al., 2020). Indeed, these effects
contribute to the development of species-specific aging phenotypes, often associated with the
accumulation of molecular and cellular damage and a deterioration of functions, rendering the
individual more vulnerable to age related diseases and increasing the probability of death (Lemoine,
2020). The investigation of the lipidome in progeroid models and longitudinal studies revealed
systematic changes in metabolism and membrane lipid profile during aging processes (Almeida et al.,
2021). Understanding the modes of action of lipids in age-associated alterations can help to explain
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established interventions and suggests novel approaches for
treatments to extend health- and life span.

Since diet is an important factor influencing lipid metabolism
during aging, dietary interventions such as caloric restriction
(CR) or time-restrictive eating may be applied as health- and life
span extending therapies (de Diego et al., 2019). For example,
intermittent fasting (IF), which describes a daily cycle of extended
fasting with a shortened time frame of food intake, gained
considerable attention recently (Meng et al, 2020). After
providing a general classification of lipids involved in
biological processes, this review will summarize recent findings
in age-dependent changes in lipid metabolism and advances in
understanding the role of lipids in dietary longevity interventions.

CLASSIFICATION AND ROLES OF LIPIDS IN
ANIMAL TISSUE AND CELLS

Lipids are mostly hydrophobic (water-insoluble) biomolecules
due to the long carbon residues that most of the lipids possess.
Based on their low polarity, lipids are soluble in hydrophobic
(lipophilic) solvents such as hexane. In living organisms, lipids
are predominantly constituents of biological membranes, serve as
signaling molecules or energy storage and source and are an
important and essential nutrient (Berg et al., 2002). Lipids can be
classified into mainly seven subclasses: triacylglycerols (oils and
fats) (1), fatty acids (and derivatives) (2), waxes (3),
phospholipids (4), sphingolipids (5), glycolipids (6) and
isoprenoids (carotenoids and steroids) (7). An overview of all
subclasses is illustrated in Figure 1.

The bulk of the nutritional lipids are the neutral glycerolipids
such as triacylglycerols (1) with more than 90%. They provide
more energy (39 kJ per 1 g fat) than other nutrients such as sugars

or proteins (17k] per 1g sugar or protein). Therefore,
triacylglycerols are the most important energy storage of the
body and insulate the body and organs against cold or injury.
While often, the term fat is used as synonym for lipids, only one of
the subgroups namely triacylglycerol is considered as fat.
Chemically, fats and fatty oils are triple esters of the glycerol
(esters follow the schema R1-CO-O-R?) and are therefore called
triacylglycerols. Triacylglycerols are called “simple” if they have
identical fatty acyl side chains, or “mixed” if they are different.
Furthermore, they can be divided into liquid (oil) when the
portion of unsaturated fatty acyl side chains are higher or
hard (fat) when the portion is lower. Unsaturated fatty acids
often exhibit cis double bonds that hinder crystallization and
lower the melting point: the more double bonds, the lower the
melting point. Saponified triacylglycerols are cleaved into glycerol
and the corresponding fatty acids (Lichtenstein, 2013).

Fatty acids (2) are mainly unbranched mono carbonic acids-a
(long) carbon chain with a carboxyl group at the end and are
divided into saturated fatty acids without double bonds and
unsaturated fatty acids with one or two or more (in nature
mainly not conjugated) double bonds. They serve in the f3-
oxidation process as fuel (Schulz, 2013). Metabolically relevant
unsaturated fatty acids are for example oleic acid (18:1) and
arachidonic acid (20:4). The synthesis of unsaturated fatty acids
in higher animals is limited and must be secured for the so-called
“essential fatty acids” through food intake. Essential w-3 fatty
acids are linolenic  (18:3), eicosapentaenoic  (20:5),
docosahexaenoic acid (22:6), w-6 fatty acids linoleic (18:2) and
arachidonic acid (20:4), the latter one is precursor for eicosanoids,
which are important tissue hormones and mediators in animal
bodies (Park and Chalfant, 2018).

Woaxes (3) are monoesters of fatty acids with long saturated
alkyl residues on both the acid and the alcoholic part and less oily

Frontiers in Aging | www.frontiersin.org

November 2021 | Volume 2 | Article 773795


https://www.frontiersin.org/journals/aging
www.frontiersin.org
https://www.frontiersin.org/journals/aging#articles

Gille et al.

and more rigid and porous than triacylglycerols (Mortimer and
Miiller, 2003).

Phospholipids (4), sphingolipids and glycolipids belong to the
membrane-forming lipids, and in contrast to triacylglycerols,
they contain both hydrophilic and hydrophobic groups and
are therefore amphiphilic. They form micelles or double lipid
layers in polar solvents such as water, which is the basis for all
biomembranes for isolating cells of their environment and the
basic  requirement of all living organisms. All
glycerophospholipids are made of a glycerol backbone, where
the first and second hydroxyl group is esterified with two variable
fatty acyl residues representing the hydrophobic part and the
remaining hydroxyl position with phosphoric acid (hydrophilic).
The resultant lipid subclass is phosphatidic acid from that other
glycerophospholipids can be formed via ester bond with various
alcohols (hydrophilic head groups) such as choline or
ethanolamine  resulting in  phosphatidylcholine  or
phosphatidylethanolamine,  respectively. The two lipid
subclasses represent the most abundant glycerophospholipid
subgroups in bio membranes; further head groups are serine
(phosphatidylserine), inositol (phosphatidylinositol) and inositol
with up to three phosphate groups at the inositol ring
(polyphosphoinositide). The last plays a major role in signal
transduction in cells.

Beside phospholipids with glycerol backbone, another
significant phospholipid without glycerol is sphingomyelin that
belongs also to the sphingolipids (5) that are composed of a fatty
acid and sphingosine. Subgroups of sphingolipids are ceramides,
sphingomyelins and glycolipids (6) that are important for the
nerve tissue in signal transduction between cells. Glycolipids are
phosphate free sphingosine-containing lipids where a
carbohydrate group is bound to the 1-hydroxy group of the
sphingosine (Jing et al, 2015). The bulk of phospholipids in
nature is esterified with a saturated fatty acyl chain in the first
glycerol position, whereas in the second with an often moderately
unsaturated (e.g. 18:1) or even highly unsaturated (e.g. 20:4).
Beside diacyl phospholipids there are also alkyl-acyl and alkenyl-
acyl glycerophospholipids and such compounds are called ether
lipids or plasmalogens (Lessig and Fuchs, 2009).

Phospholipids are transformed into lysophospholipids by the
cleavage mediated by phospholipases and the compounds derived
of the cleavage of sphingomyelins are sphingosine-1-phosphate
and ceramide that possess important cellular functions (Billich
and Baumruker, 2008). Phospholipases C and D lead to the
generation of diacylglycerols and phosphatidic acid that are
important signaling molecules (Wymann and Schneiter, 2008).
The enzymatic (phospholipase A,) released (usually unsaturated)
fatty acyl chains exhibit further great biological importance:
unsaturated fatty acids like arachidonic acid are -easily
oxidizable and their metabolic pathway lead to eicosanoids,
prostaglandins, thromboxanes or leukotrienes that have
significant physiological impact e.g. as hormones (Arab and
Akbar, 2002).

Steroids and carotenoids belong to the lipid group of
isoprenoids (7). In nature, occurring steroids belong to the
triterpenoid (composed of 30 carbon atoms) derivatives,
whereas carotenoids belong to the tetraterpenoid derivatives
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(composed of 40 carbon atoms). The basic structure of all
steroids is composed of four carbon rings, three hexagonal
and one pentagonal ring. The most well-known steroid is
cholesterol that is an essential component of all biological
membranes, except of the inner membrane of mitochondria,
and belongs therefore to the membrane-forming lipids.
Further steroids are the sex hormones such as the female sex
hormones progesterone and estrogen, as well as the male
androgens testosterone and androsterone. Other examples are
the sterines ergosterole, phytosterine and vitamin D. The latter
one is important for the regulation of the calcium and
phosphorus concentration in the blood and bone stability.

Of note, the yellow to reddish pigments in plants are
carotenoids and exclusively synthesized by them. The most
well-known pigment is ff-carotene also known as provitamin
A that is converted in animals into vitamin A and is important for
the viewing process as well as for the skin and mucous
membranes (Handa et al., 2014).

LIPIDS ALTERATIONS DURING AGING

Age-related and tissue-specific changes in lipid composition can
contribute to the aging process. The quantification of these
alterations in the lipidome in healthy aging organisms revealed
a general systematic trend in lipid profile changes (Almeida et al.,
2021; Chung, 2021). Of note, the lipidome composition itself and
age-related changes can be impacted by different factors like diet
(Nam et al.,, 2017; Surma et al., 2021) and genetic background
(Wong et al,, 2020; McGurk et al., 2021). Importantly, gender
emerged as a major determinator of the plasma lipidome. For
example, in women, the plasma lipidome is subjected to stronger
changes than in men during aging (Jové et al., 2016; Audano et al,,
2018). Aged women display a higher increase in plasma
triglycerides and phospholipids compared to aged men,
partially due to severely decreased estrogen levels during
menopause (Kolovou and Bilianou, 2008; Slade et al., 2021).
The more pronounced changes in female brain membrane
lipidome could potentially underlie the higher prevalence of
Alzheimer’s disease in postmenopausal women (Diaz et al., 2018).

In fact, the aging mammalian brain membranes in general are
subjected to moderate changes, which nonetheless can have
extensive impact on cognitive health. Essentially, the
proportions of polyunsaturated fatty acids (PUFAs), short-
chained sphingolipids, cholesterol and phospholipids decrease
in aging mouse and human brains and human cerebrospinal
fluid, while the concentration of long-chained sphingolipids and
monounsaturated fatty acids (MUFAs) tend to increase (Tu et al.,
2017; Pamplona et al., 2019; Hwangbo et al., 2021; Jové et al,
2021). These cerebral lipidome alterations presumably contribute
to age-related neuronal deterioration by causing mitochondrial
dysfunction, increasing oxidative stress and altering properties of
neuronal membranes. For example, lower levels of the
phospholipid cardiolipin in the mitochondrial membranes of
normally aging brains is associated with a reduction of
electron transport chain activity, an observation also made in
brains of patients with Alzheimer’s disease (Kao et al., 2020).
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Additionally, the decrease in PUFAs and different phospholipids
with age reduces fluidity of neuronal membranes, which directly
reduces diffusion of membrane proteins, alters protein-protein
interaction, and thus changes neuronal signaling with negative
implications on cognitive function (Céspedes et al., 2021; Das,
2021). In lipid rafts, changes in the lipidome may have even
stronger effects. Lipid rafts are microdomains in membranes with
concentrated protein complexes for signal regulation and
transduction cascade. Age-correlated and progeroid lipidome
alterations, especially the reduction in cholesterol, impaired
neuronal physiology and function in mice and is strongly
associated with Alzheimer’s diseases and Parkinson’s disease
(Mesa-Herrera et al., 2019; Poljak et al., 2020; Jové et al., 2021).

The underlying mechanisms behind the cerebral membrane
composition changes still need to be clarified. In the case of
cholesterol, remodeling in homeostasis pathways and synthesis
are responsible for the depletion that is observed in cell
membranes of some brain regions. The downregulation of the
transporter ApoE and synthesis and the upregulation of the
cholesterol-removing enzyme CYP46 in aged humans
contributed to lower local cholesterol concentration in the
brain (Martin et al, 2010; Jové et al., 2021). PUFAs originate
either from synthesis in the liver or from diet, and in both cases
must pass the blood-brain barrier (BBB) to be incorporated in
cerebral cell membranes. While the plasma PUFA level increases
in older humans, brain membranes contain less with age
(Chappus-McCendie et al, 2019), indicating potential
alterations in the transport across the BBB. Indeed, the BBB
undergoes morphological and functional changes during aging
that impair lipid transportation pathways, but the exact causes
remain to be resolved (Pifferi et al., 2021).

Microglia, the immune cells of the central nervous system, play
an important role in the maintenance of the brain and their
dysfunction is causally linked to the onset of neurodegeneration
(Hickman et al., 2018). Microglia have been recently shown to
accumulate lipid droplets (LD) in mouse and human brains
(Marschallinger et al., 2020). While the canonical function of
these organelles is the storage of lipids like triacylglycerols and
cholesteryl esters for metabolism and membrane formation
(Welte and Gould, 2017), the excessive accumulation in
microglia led to their functional decline and a pro-
inflammatory cytokine profile. These LD accumulating
microglia and other cerebral cells could contribute to the
deterioration of the central nervous system and the onset of
neurodegenerative diseases (Farmer et al., 2020; Marschallinger
et al., 2020). Overall, the accumulation of LD in tissues like
kidney, liver, muscles and immune cells like monocytes is
associated with an impaired fatty acid oxidation through the
downregulation of the peroxisome proliferator-activated receptor
PPAR-a (Marschallinger et al., 2020; Chung, 2021; Wang et al,,
2021). In the case of monocytes, the reduced expression of PPAR-
a, accompanied by LD accumulation, leads to a pro-
inflammatory polarization of these immune cells. This could
contribute to inflammaging, thus increasing the risk of age-
related diseases (Wang et al., 2021).

Cardiovascular diseases, of which coronary artery disease is
the most common and leading cause of death worldwide (WHO,
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2020), are caused among other factors, by unfavorable lipid
profiles and the accumulation of lipids in the tissue (Britton
and Fox, 2011). In particular, low high-density lipoprotein
cholesterol, high low-density lipoprotein cholesterol and high
triacylglycerol levels in blood were associated with higher
incidence of cardiac diseases (Kaneko et al.,, 2021). In humans,
myocytes are particularly prone to ectopic LD accumulation
(Pienkowska et al.,, 2019). The accumulation of ectopic LD in
human myocytes leads to a modification of lipid metabolism and
consequently contributes to a reduced insulin sensitivity, a
hallmark for type 2 diabetes, even in non-obese subjects
(Gemmink et al.,, 2017; Ferrara et al., 2019). On the other
hand, moderate lipid accumulation, as in the epicardial
adipose tissue (EAT), is beneficial for coronary artery
protection and energy supply. However, if the lipid supply
exceeds the storage and oxidative capacity of the EAT,
lipotoxic molecules induce apoptosis which is associated with
atrial fibrillation (Ferrara et al, 2019). Recently, the histone
deacetylase 6 (Hdac6) was identified as a possible mediator of
lipid droplet formation in flies. Together with p62, an autophagy
receptor protein, Hdac6 probably regulates selective autophagy of
LD in oenocytes (Yan et al,, 2017; Yan et al., 2019).

THERAPEUTIC INTERVENTIONS
TARGETING LIPIDS TO IMPROVE
HEALTHY LIFE SPAN

The most prominent dietary interventions for health and life span
extension in most model organisms are CR and time-restrictive
eating. Such interventions show positive effects in animal models
on autophagy, systemic inflammation and nutrient sensing (Di
Francesco et al., 2018; Chung et al., 2020). Another approach is
the supplementation or avoidance of certain nutrients to
counteract age-related changes (Bruins et al, 2019; Johnson
and Stolzing, 2019).

CR and intermittent fasting (IF) are known to cause various
alterations in systemic processes that may have an effect on aging
and health span, while the specific modes of action are still being
studied (Chung et al., 2020). These effects of CR and IF have
shown to have beneficial impact in many model organisms across
different taxa (Hwangbo et al., 2020). However, CR and IF are by
no means universal and such interventions could have neutral or
even negative impact on many strains of mice (Liao et al., 2010).
Nonetheless, lipid metabolism and homeostasis are a possible link
between the interventions and a deceleration of aging processes.
The feeding of 60% calorie restricted diet or time-restrictive
feeding for 24h on three non-consecutive days per week
reduced the proportion of total adipose tissue and promoted
the browning of white adipose tissue in mice, which is associated
with a healthier phenotype and improved insulin sensitivity
(Fabbiano et al., 2016; Liu et al., 2019). In contrast, data in
human subcutaneous adipose tissue did not show such an effect
after an 8-weeks low-calorie diet of 800 kcal/day (Barquissau
et al,, 2018). In line with this, a recent study in healthy mice
showed that a 30% calorie reduced diet did not cause metabolic
changes and life-extension, but rather the 30% calorie reduced
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diet in combination with fasting in daily cycles (Pak et al., 2021).
Still, these interventions have the potential to reduce
inflammaging by diminishing the amount of pro-inflammatory
adipokine-releasing white adipose tissue (Zamboni et al., 2021).
Additionally, recent meta-analyses showed the lipid-profile
altering properties of IF and CR in humans. For example,
Meng et al. and others showed that different types of IF and
CR can significantly improved the serum lipid-profile by reducing
triacylglycerol, total cholesterol and low-density lipoprotein
cholesterol concentrations, which are associated with age-
related diseases (Wadhera et al., 2016; Almeida et al., 2021).
Of note, high-density lipoprotein cholesterol concentrations in
human serum were not affected by different versions of these
interventions (Meng et al., 2020).

Different types of IF and CR can substantially decrease the risk
factor to suffer from diabetes, inflammation and impaired balance
and movement control (Zubrzycki et al., 2018; Becker et al., 2021).
The underlying mechanisms of these observations are thought to be
similar to the causes of LD accumulation. An increased expression of
PPAR-«a during IF upregulates the production of enzymes involved
in f8-oxidation of fatty acids, thus lowering free fatty-acids (Meng
et al,, 2020). Furthermore, higher expression of hepatic PPAR-a,
induced by intermittent fasting (20h feeding +4h fasting, 4h
feeding +20 h fasting and 24 h feeding +24 h fasting), decreased
systemic inflammation by reducing the number of circulating
monocytes in mice (Jordan et al, 2019). A recent study in mice
showed that even modest and relatively late dietary intervention (ad
libitum of 16.4% calorie reduced feed, starting at 12 weeks of age) in
Titan obese mice is sufficient to reduce lipid content and improve life
span (Miiller-Eigner et al., 2021).

Likewise, the supplementation of specific lipid classes in
addition to a balanced diet can prevent the development of
age-related diseases and influence life span. Accordingly, a
recent study in Drosophila melanogaster suggested that the
shortened life span of female flies with a diet of high protein:
carbohydrate ratio is improved by diet supplement of cholesterol
(Zanco et al,, 2021). A recent review regarding the impact of
certain  macro- and micronutrients on  age-related
noncommunicable diseases by Bruins et al. (2019) discussed
the vital role of many lipid classes in basic nutrition.
Epidemiological studies emphasized excess intake of saturated
fatty acids and increased blood low-density lipoprotein
cholesterol levels as a major factor for the development of
cardiovascular diseases, while the higher consumption of long-
chain PUFAs and MUFAs in a population is associated with a
lower prevalence of type 2 diabetes, hypertension and
cardiovascular diseases (Bruins et al., 2019; Clifton, 2019). The
modulation of the pro-inflammatory profile of adipocytes to
reduce the secretion of the inflammation-regulating adipokines
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