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Sex differences in aging manifest in disparities in disease prevalence, physical

health, and lifespan, where women tend to have greater longevity relative to

men. However, in the Mediterranean Blue Zones of Sardinia (Italy) and Ikaria

(Greece) are regions of centenarian abundance,male-female centenarian ratios

are approximately one, diverging from the typical trend andmaking these useful

regions in which to study sex differences of the oldest old. Additionally, these

regions can be investigated as examples of healthy aging relative to other

populations. DNA methylation (DNAm)-based predictors have been developed

to assess various health biomarkers, including biological age, Pace of Aging,

serum interleukin-6 (IL-6), and telomere length. Epigenetic clocks are

biological age predictors whose deviation from chronological age has been

indicative of relative health differences between individuals, making these useful

tools for interrogating these differences in aging. We assessed sex differences

between the Horvath, Hannum, GrimAge, PhenoAge, Skin and Blood, and Pace

of Aging predictors from individuals in twoMediterranean Blue Zones and found

that men displayed positive epigenetic age acceleration (EAA) compared to

women according to all clocks, with significantly greater rates according to

GrimAge (β= 3.55; p= 1.22 × 10−12), Horvath (β= 1.07; p=0.00378) and the Pace

of Aging (β = 0.0344; p = 1.77 × 10−08). Other DNAm-based biomarkers findings

indicated that men had lower DNAm-predicted serum IL-6 scores (β =

-0.00301, p = 2.84 × 10−12), while women displayed higher DNAm-predicted

proportions of regulatory T cells than men from the Blue Zone (p = 0.0150, 95%

Confidence Interval [0.00131, 0.0117], Cohen’s d = 0.517). All clocks showed

better correlations with chronological age in women from the Blue Zones than

men, but all clocks showed large mean absolute errors (MAE >30 years) in both

sexes, except for PhenoAge (MAE <5 years). Thus, despite their equal survival to

older ages in these Mediterranean Blue Zones, men in these regions remain

biologically older by most measured DNAm-derived metrics than women, with

the exception of the IL-6 score and proportion of regulatory T cells.
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Introduction

Men and women seem to age differently—women tend to

have greater morbidity and frailty in older ages but also live

longer in most populations (Oksuzyan et al., 2008; Thinggaard

et al., 2016; Hägg and Jylhävä, 2021). The diseases affecting aging

men and women are also different (Hägg and Jylhävä, 2021).

Chronic, non-lethal conditions and reduced health span

disproportionately affect women more than men. Conversely,

men display greater rates of heart disease, the leading cause of

death globally, and higher incidence of non-reproductive cancers

than women (Bots et al., 2017; Carmel, 2019; Meyer et al., 2020;

Garmany et al., 2021). Given the lifespan and health span

discrepancies between the sexes, studies of the oldest old

(>80 years) provide useful opportunities to examine sex-

related differences in healthy aging and biomarkers of the

biological aging process, as the extended lifespans in these

populations have allowed the accumulation of changes

associated with aging (Puca et al., 2018).

While living to the age of 100 in most parts of the world is

relatively unlikely, there exist four naturally occurring, validated,

geographic regions of exceptional longevity, known as Blue Zones,

with a high prevalence of centenarians (Buettner, 2012; Poulain et al.,

2013): Sardinia (Italy), Ikaria (Greece), Nicoya Peninsula (Costa Rica)

and Okinawa (Japan). These regions are geographically isolated,

either being islands or separated from other regions by natural

features such as mountains, and there is typically a traditional,

“unmodernized” agricultural lifestyle observed (Poulain et al.,

2011; Poulain and Mackowicz, 2021). A second unique feature in

the Mediterranean Blue Zones, Ikaria and Sardinia (Poulain et al.,

2011; Poulain and Mackowicz, 2021), is that equal proportions of

men and women survive to extreme old age, in stark contrast to the

preponderance of oldest old women commonly observed in most

global populations (Passarino et al., 2002; Austad, 2011).Whilemany

aspects of lifestyle have been investigated in these locations, including

psychological outlook, physical activity, and sociodemographic

characterizations (Fastame et al., 2018; Hitchcott et al., 2018; Pes

et al., 2018; Pes et al., 2020), there remains limited information

regarding biological age differences between these men and women

who survive to become centenarians more equally than the average

global population. Biological age is a prediction of an individual’s

chronological age that represents their functioning and health at a

point in time, and has been used as ameasure of well-being formany

decades using a wide variety of health metrics (Furukawa et al., 1975;

Rockwood et al., 2005; Jylhävä et al., 2017; Ji et al., 2021).

Epigenetic predictors have been developed to predict either

chronological age or other biomarkers based on the DNA

methylation (DNAm) levels in a particular combination of

sites in the genome. DNAm, the addition of a methyl group

to primarily cytosine-phosphate-guanine (CpG) sites of DNA,

is a necessary part of the genomic regulatory suite that can

change in response to external exposures and has both

temporally stochastic changes and predictable changes at

certain sites with increasing age (Horvath, 2013; Seale et al.,

2022). Deviations between predicted epigenetic age and

chronological age have been associated with differences in

health, which may be related to behavioral and

environmental exposures over the life course. With this

conceptualization, lower predicted epigenetic age is typically

indicative of better health, while higher predicted epigenetic age

is indicative of poorer health (Jones et al., 2015). This has been

demonstrated in many aging related conditions. For example,

cancers and cardiovascular disease have been associated with

increased epigenetic age (Perna et al., 2016; Soler-Botija et al.,

2019). Epigenetic age predictors that are based on these

consistent changes in DNAm are commonly termed

epigenetic clocks. Many clocks exist, each using slightly

different additive models of CpG site DNAm states to reach

a prediction of epigenetic age, with some newer clocks

incorporating other biological variables, such as DNAm-

based predictors of serum protein levels (Bergsma and

Rogaeva, 2020). In addition to epigenetic clocks, there are

DNAm-based epigenetic predictors which estimate other

age-associated biomarkers such as telomere length and

cytokine levels, which have also been linked to health

outcomes (Pusceddu et al., 2018; Villar-Fincheira et al., 2021).

Epigenetic clocks have been developed to detect different aspects

of biological age using strict chronological age (Horvath, Hannum,

Skin andBlood) (Hannum et al., 2013;Horvath, 2013;Horvath et al.,

2018), mortality (GrimAge) (Lu A. T. et al., 2019), and general

characteristics of aging such as frailty and increased heart disease risk

(termed “phenotypic age”) (PhenoAge) (Levine et al., 2018).

Furthermore, each epigenetic clock can be used to calculate a

second measure, epigenetic age acceleration (EAA), the “ticking

rate” of the clock. EAA is calculated by finding the residuals from the

regression of the predicted epigenetic age on chronological age and

can also be used to interrogate the rate at which aging is occurring.

The aforementioned epigenetic clocks have been shown to

discriminate between physical health and disease status (Quach

et al., 2017; Hillary et al., 2020), and cognitive decline (Marioni et al.,

2015), which also display sex differences in the aging process,

positioning clocks as useful tools to investigate the sex differences

in aging (Ahrenfeldt et al., 2019; Levine et al., 2021). According to a

recently developed deep-learning based clock, epigenetic age in men

accelerates sooner than in women (>55 years), supporting the ability
of these epigenetic clocks to discriminate sex and age (Galkin et al.,

2021). However, current epigenetic clocks were trained in

predominantly middle-aged cohorts, with mean ages of
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approximately ~50 years, and as such, their performance and

behavior have not been thoroughly examined at the extreme

upper end of life.

Additional DNAm-based biomarkers that complement

epigenetic clocks have been developed, including a measure

using DNAm to predict the annual rate of physiological

decline (Pace of Aging) as a “cousin” measure to the clocks, a

measure of telomere length (DNAmTL) (Lu A. T. et al., 2019),

serum interleukin-6 (IL-6) (Stevenson et al., 2021), smoking

status and score, and cell type proportions. The Pace of Aging

was trained by using a longitudinal cohort of identically-aged

individuals and monitoring the changes in DNAm at particular

sites over time between 19 and 45 years of age. Thus, Pace of

Aging represents a rate of physiological decline per annum

(Belsky et al., 2022). This measure has been associated with

health outcomes including dementia and frailty (Verschoor et al.,

2021; Sugden et al., 2022), important features of the aging

process, which are known to display sex differences (Anstey

et al., 2021; Sindi et al., 2021). However, as the most recent

version of the Pace of Aging has only been produced using

individuals with a maximum age of 45 years, investigations into

how this measure performs in a cohort of centenarians is needed

to further characterize previously established associations and

their relevance in the geroscience field.

Other biomarkers that have also been well-investigated in

studies of both longevity and sex differences are telomere

length and serum IL-6. Telomeres, the protective hexamer

repeats that cap chromosomes, shorten over the lifespan,

but are generally longer in women at all ages (Vaiserman

and Krasnienkov, 2021). Studies of individuals from the

Blue Zone in the Nicoya Peninsula in Costa Rica have

indicated that Blue Zone residents have longer telomers

than individuals from other regions in Costa Rica (Rehkopf

et al., 2013). The longer telomeres observed in women have

been postulated as both a mechanism and biomarker of

longevity (Gardner et al., 2014; Öngel et al., 2021).

However, telomere length has not been able to resolve

aspects of healthy aging other than longevity (Arai et al.,

2015). IL-6, an inflammatory cytokine, is known to increase

with age, and is part of the chronic, low-grade, systemic

inflammation that occurs with aging, known as

inflammaging (Ferrucci and Fabbri, 2018). Centenarians

have been found to possess lower inflammation measured

by scores that include IL-6 as a main factor, potentially as a

result of a counteracting anti-inflammaging response, and such

findings have been associated with their better health (Arai

et al., 2015; Minciullo et al., 2016). Smoking behavior has been

associated with the risk of cardiovascular disease development

in a sex-dependent manner (Vasiljevic et al., 2021), which has

implications for the health of individuals. Cell-type differences

predicted with DNAm have also been shown to differentiate

amongst the oldest old in the Costa Rican Blue Zone, where a

lower proportion of CD8+ memory T cells and higher

proportion of naïve T cells were observed in Blue Zone

residents compared to non-Blue Zone residents, indicating a

younger immune system profile (McEwen et al., 2017). Similar

to epigenetic clocks, the majority of these DNAm biomarker

predictors have been developed or investigated predominantly

in middle aged to young elderly cohorts (~70 years),

necessitating a characterization among the oldest old as well.

Focusing on the lack of characterization of epigenetic

predictors among elderly populations, in these analyses we

seek to characterize the performance of several predictors in a

cohort of extremely elderly individuals from the Mediterranean

Blue Zones, who remain understudied given their rarity. Initially,

epigenetic clocks will be evaluated to assess at a molecular level

whether long-surviving men from the Blue Zones display a

comparable biological age to long-surviving women, as

expected by their documented similar mortality rates.

Subsequently, we use DNAm-based predictors of telomere

length (DNAmTL), smoking score (EpiSmokER), and serum

IL-6 (DNAm IL-6 score) which may indicate health

differences in the oldest old from regions of exceptional

longevity, reporting any differences related to sex (Lu A. T.

et al., 2019; Bollepalli et al., 2019; Stevenson et al., 2021).

Methods

Cohort recruitment, sample collection,
and data collection

A subset of participants from two separate studies, one in the

Ikaria Blue Zone in Greece and one in the Sardinia Blue Zone in

Italy, were selected for DNAm analysis (Pes et al., 2020; Foscolou

et al., 2021) (Table 1). Given that these regions are in relatively

close proximity geographically when compared to the other Blue

Zones in Costa Rica and Japan, have relatively similar climates,

diets, and cultures, and the same male survival phenomenon is

observed, we combined the Sardinian and Ikarian Blue Zone

residents into one cohort to represent the Mediterranean Blue

Zones (Poulain et al., 2021; Pes et al., 2022). Venous blood was

collected from participants with informed consent from both

Blue Zone regions as part of each study. Age at time of blood

collection and self-reported sex were used as the variables of

interest in this study. DNA was extracted from the blood samples

and shipped to the University of British Columbia (Vancouver,

British Columbia, Canada). DNA was bisfulfite treated using the

EZ-DNA methylation kit (Zymo Research, CA, United States),

and DNAm data were measured using the MethylationEPIC

BeadChip array (“EPIC”, Illumina, San Diego, CA, United States)

according to manufacturer’s protocols. This study was approved

by the Committee on Human Subjects at Stanford University.

While matching Italian and Greek control participants from

beyond the Blue Zone regions were recruited using the same

process, the participants recruited from the Blue Zone regions
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were markedly older than the participants recruited from

matching control regions, and there were far fewer control

region participants than Blue Zone residents (Supplementary

Figure S1). Given that health and DNAm can change quite

dramatically in the extreme end of life, that age acts as a risk

factor for most health-related outcomes (Niccoli and Partridge,

2012), and given that the sample size was underpowered for any

statistical analysis, control participants could not be included in

any statistical comparisons.

Data normalization, preprocessing

The Illumina BeadArray Data (IDAT) files from the array

run were imported into R 4.0.3 (R Core Team, 2022). Poorly

performing samples which were identified as outliers based on

the ratio of the log2 unmethylated to methylated intensity of the

control probes were removed (n = 3). Functional normalization

using the preprocessFunnorm function fromminfiwas performed

to adjust background and probe type intensity and (Fortin et al.,

2014). Any samples identified by detectOutlier from the lumi

package (Du et al., 2008), pcout from wateRmelon (Pidsley et al.,

2013), locfdr from the locFDR package (Hannum et al., 2013), or

pfilter from wateRmelon (Pidsley et al., 2013), were deemed

outliers and removed (n = 4). DNAm-based sex prediction

was performed using the getSex function from the minfi suite

based on DNAm data on the X and Y chromosomes (Fortin et al.,

2014). In addition to this measure, self-reported sex and DNAm-

based log2 intensity of XY chromosome probes estimated sex

were confirmed against each other, which led to the removal of

7 sex-mismatched samples. A second confirmation of sex was

completed by using a k-means clustering approach of the DNAm

from the 16,839 probes on the X and Y chromosomes, and no

further mismatches were identified. The normalized cohort

consisted of 112 individuals from the Blue Zone and control

regions. Further processing involved the removal of a selection of

probes from the EPIC array as is standard in the field, including

SNP probes (n = 13,110), known polymorphic probes (n =

23,906), sex chromosome probes (n = 17,344), cross-

hybridizing probes (n = 9,441) (Price et al., 2013), probes

represented by three beads or less, failed detection in ≥1% of

samples, or had a detection p-value > 1 × 10−16 (n = 59,154)

(Pidsley et al., 2016; Fortin et al., 2017). The ComBat function

from the sva package (Leek et al., 2019, 2012) was used for

technical correction of plate, row position, and chip.

Epigenetic age prediction and DNAm-
derived biological proxy measure
calculation

After all processing steps were completed, the resulting DNAm

beta matrix was uploaded to the DNA Methylation Age Calculator1

(Horvath, 2013) for epigenetic age prediction. When uploaded to the

DNAMethylation Age Calculator, “Normalize Data” and “Advanced

Analysis” were selected as options. When selecting the “Advanced

Analysis” option, the DNA Methylation Age Calculator provides the

Horvath, Hannum, Skin and Blood, PhenoAge, GrimAge, and

DNAmTL predictions. This same DNAm data was used to

calculate the Pace of Aging using the DunedinPACE predictor R

package with the PoAmProjector function2 (Belsky et al., 2022).

Epigenetic age acceleration (EAA) was calculated for the epigenetic

clocks (Horvath, Hannum, Skin and Blood, PhenoAge andGrimAge)

by obtaining the residuals from the linear model: Epigenetic age ~

Chronological age. The features of the predictors used is provided in

Supplementary Table S1.

In addition to the explicitly age-relatedDNAm-based biomarkers

obtained above, two other DNAm-based biomarkers were calculated

which predicts smoking and serum IL-6 levels. Smoking status and

score provide an indication of smoking behavior and status and were

calculated using EpiSmokEr in R (Bollepalli et al., 2019): Smoking

status was calculated based on the DNAm of 121 CpGs identified by

Bollepati et al., and smoking score was calculated based on DNAmof

187 previously identified CpGs (Elliott et al., 2014). The DNAm-

based serum IL-6 score was calculated in R using a weighted score

from the DNAm status of 12 CpGs (Stevenson et al., 2021). A

summary of the epigenetic clocks, biomarkers, and their main

features is provided in Supplementary Table S1. The data

preprocessing and normalization steps selected for the prediction

of epigenetic age were assessed based on the prediction concordance

TABLE 1 Age, age range, and number of participants by region and sex.

Mediterranean blue zone Sample
size (% female)

Mean age in years
(range)

Ikaria, Greece 45 (67) 89 (63–107)

Sardinia, Italy 49 (49) 89 (71–104)

Total 94 (57) 89 (63–107)

1 DNA Methylation Age Calculator: https://dnamage.genetics.ucla.
edu/new

2 DunedinPACE package: https://github.com/danbelsky/DunedinPACE
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between chronological age-prediction clocks (Supplemental Figures 2

and 3).

Prediction and transformation of cell type
proportions

DNAm is a key component of cell identity, and the source of

DNAm data in this study is a heterogenous tissue, venous whole

blood. To resolve and account for cell-based DNAm signal in

downstream analyses, cell type deconvolution (a means of

predicting cell type proportions in the tissue sample) was

completed with constraint projections using the IDOL package in

R for extended blood cell types (Koestler et al., 2016; Gervin et al.,

2019; Salas et al., 2022). Prior to use in linear models, the cell type

proportions were transformed using robust isometric principal

components (PCs) (Filzmoser et al., 2009).

Assessment of epigenetic clock
performance

Pearson’s correlation coefficients (r) between the chronological age

of individuals and their predicted epigenetic age across the Horvath,

Hannum, GrimAge, PhenoAge, and Skin and Blood epigenetic clocks

were compared formen andwomen of theMediterranean Blue Zones.

As the remaining epigenetic predictors (Pace of Aging, DNAmTL, cell

type proportions, IL-6 and smoking score) donotmeasure age in years,

they were not included in these comparisons of year-based outcomes.

The mean absolute error and maximum absolute error (MAE and

MaxAE) were calculated for each epigenetic clock’s age prediction and

chronological age using themae andmaxae functions in the R package

mlr3measures (Lang et al., 2019).

Statistical model of biomarker
comparisons

For the purposes of this study, the statistical significance

threshold was defined as a p-value of 0.05 Bonferroni-corrected

for nine predictor comparisons (p = 5.56 × 10–03). Linear

regression was performed to compare differences between the

sexes. In order to account for the low sample size and ensure the

models were not overfitted, the covariates included: sex, age, and

the first four PCs accounting for 80% of cell type, with female sex

being considered the reference: Biomarker ~ Sex + Age + Cell

type PC1 + Cell type PC2 + Cell type PC3 + Cell type PC4.

Cell type proportion comparisons

The 12 cell type proportions were compared between men

and women using t-tests of mean proportion per cell type.

Tukey’s Honest Significant Difference test and resulting

adjusted p-value were used to assess the significance of cell

types with a p-value slightly <0.05.

Results

Epigenetic clocks perform differently
between the sexes amongst the oldest old
in the Blue Zones

As most epigenetic clocks are trained on approximately

middle-aged individuals (Supplementary Table S1), we first

assessed the performance of the Horvath, Hannum, Skin and

Blood, GrimAge, and PhenoAge epigenetic clocks in this group

of the oldest old. We identified that all epigenetic age predictors

had higher correlations with chronological age in women (r =

0.52–0.92 in women and r = 0.46–0.87 in men across the tested

clocks) (Table 2; Figure 1). PhenoAge demonstrated the lowest

correlation with chronological age (r < 0.5 in men and women),

while GrimAge outperformed the other clocks with strong

correlations among both sexes (r > 0.8) (Table 2; Figure 1).

However, the mean and maximum errors were consistently quite

large for both sexes across all clocks (>30 years of error) except
PhenoAge, which showed mean and maximum errors <5 years
for both men and women, the smallest differences between

predicted and chronological age (Table 2; Figure 2).

Epigenetic age acceleration evident in
oldest old men compared to oldest old
women from the Blue Zones

To explore sex differences in biological age measures in this

group of oldest old individuals from the Mediterranean Blue

Zones, we examined the differences in the Pace of Aging measure

and EAA across the Horvath, Hannum, GrimAge, PhenoAge,

and Skin and Blood clocks. Men showed greater EAA than

women across all epigenetic age predictors, with significant

differences observed for the GrimAge (Adjusted R2 = 0.501, F

(6, 87) = 16.6, p = 1.22 × 10–12, Cohen’s f2 = 1.00), Horvath

(Adjusted R2 = 0.139, F (6,87) = 3.50, p = 0.00378, Cohen’s f2 =

0.161), and Pace of Aging predictors (Adjusted R2 = 0.383, F (6,

87) = 9.23, p = 1.77 × 10–08, Cohen’s f2 = 0.620) (Figure 3;

Table 3).

Regulatory T cell proportions higher in
women from the Mediterranean Blue
Zones

DNAm-predicted cell type proportions were used to make

comparisons between the sexes. We observed that the oldest old
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women have significantly greater proportions of regulatory

T cells (Tregs) than the oldest old men in the group (t

(85.85) = 2.49, p = 0.0150, 95% CI [0.00131, 0.0117], Cohen’s

d = 0.517) (Figure 4).

Smoking score, predicted IL-6 score, and
telomere length differ between the sexes
in Mediterranean Blue Zones

We assessed smoking status and smoking score in the

Mediterranean Blue Zone residents to determine whether the

scores differed between the sexes of the oldest. Of the

94 Mediterranean Blue Zone residents, four were predicted to

have never smoked, while 90 participants were classified as

“former smokers” using DNAm-based detection methods in

EpiSmokER. Men were not more likely to have smoked than

women according to comparisons of smoking score. To examine

potential signals of inflammaging, we assessed sex differences in

predicted serum IL-6 scores between oldest old men and women

from the Blue Zones. Men were predicted to have a lower serum

IL-6 score than women (Adjusted R2 = 0.49, F (6, 87) = 15.94, p =

2.84 × 10–12, Cohen’s f2 = 0.96) in this group. The oldest old men

also displayed shorter telomere length than women according to

DNAmTL predictions (Adjusted R2 = 0.30, F (6, 87) = 7.66, p =

1.28 × 10–06, Cohen’s f2 = 0.04) (Figure 5).

Discussion

The aims of our study were to characterize the performance

of the epigenetic clocks within a group of the oldest old, and

secondly, to investigate markers of biological age in a unique

longevous population, located in the Mediterranean Blue Zones,

to develop a more comprehensive understanding of the sex

differences that occur with extreme age. Men in these

longevity regions, Sardinia and Ikaria, tend to survive into

extreme old age at approximately the same rate as women,

which suggest that they might have a health advantage

relative to men from beyond these regions (Poulain et al.,

2021). We assessed the performance of the epigenetic clocks

in the Mediterranean Blue Zones, and all epigenetic clocks were

found to have better correlations with chronological age in

women compared to men, though a high error rate was found

across all clocks except PhenoAge for both men and women. We

then examined sex differences of EAA and observed that men

had increased EAA, Pace of Aging, and smoking score relative to

women from the Mediterranean Blue Zones (Horvath, 2013; Lu

A. T. et al., 2019; Belsky et al., 2022). Though we observed

minimal differences in cell type proportions, there was the

exception in the proportion of Tregs where women were

predicted to have higher levels than men. Additionally, we

observed differences in DNAm-based biomarkers of telomere

length and serum IL-6 where men were predicted to have shorter

telomeres and lower levels of IL-6 relative to women. In general,

DNAm-derived predictors of age and age-related biomarkers

indicate men in these Mediterranean Blue Zones age biologically

faster than women, despite their apparent survival advantage

relative to men from other regions.

An examination of the performance of the epigenetic clocks

indicated an overall poor performance of the epigenetic clocks in

the Mediterranean Blue Zone group of the oldest old. The clocks

had either poor correlations of epigenetic and chronological age,

and/or large MAE and MaxAE rates according to every

epigenetic age predictor assessed in both sexes. GrimAge,

despite having a large error of approximately 30 years, along

with the Horvath, Hannum, and Skin and Blood epigenetic

clocks, also had the highest correlation with chronological age

in men and women from the Mediterranean Blue Zones, which is

comparable with epigenetic clock performance in other elderly

cohorts (Ecker and Beck, 2019). We observed that all correlations

of epigenetic and chronological age were stronger in women than

men from the Mediterranean Blue Zones. Of all the tested clocks,

GrimAge had the strongest correlation in women, indicating the

aging health trajectory in this group of oldest old women is likely

well-accounted for by this clock. Interestingly, all correlations

between epigenetic age and chronological age were consistently

lower in men from this region. The clocks tested here were not

TABLE 2 Pearson’s correlations (r), Mean Absolute Error, and Maximum Absolute Error of the Horvath, Hannum, PhenoAge, GrimAge, and Skin and
Blood epigenetic clocks in Men and Women from the Mediterranean Blue Zones.

Epigenetic clock Women (n = 54) Men (n = 40)

R Mean absolute
error (years)

Maximum absolute
error (years)

R Mean absolute
error (years)

Maximum absolute
error (years)

Horvath 0.617 33.9 44.6 0.476 32.9 46.4

Hannum 0.610 33.9 48.1 0.510 33.2 45.4

PhenoAge 0.525 4.97 15.9 0.457 4.47 13.1

GrimAge 0.923 36.97 42.5 0.869 33.5 39.5

Skin and Blood 0.655 40.0 50.9 0.612 40.1 51.1
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developed using populations with evidence of male longevity,

and while each clock captures a unique aspect of the broader

aging process, they currently do so in a manner that reflects

female longevity. It may be that potential DNAm differences

associated with the male longevity phenomenon of the

Mediterranean Blue Zones are not captured by the current

epigenetic clocks, which may indicate why increased male

EAA, as is typical in most populations, is observed (Horvath

et al., 2016).

The best performing clock by correlation was GrimAge,

which is the only predictor tested here that incorporates a

DNAm-based prediction of smoking pack-years (Lu A. T.

et al., 2019). As observed via the EpiSmokER results, the

vast majority of this cohort have smoked at some point in

FIGURE 1
Pearson’s correlation coefficients (r) between predicted epigenetic age and chronological age for several epigenetic clocks in (A) Female and (B)
Male residents of the Mediterranean Blue Zones.
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their lives, though this is very expected in this population, as

smoking is quite common in the areas of Italy and Greece

where Sardinia and Ikaria are located (Lugo et al., 2013;

Christopoulou et al., 2021; Gallus et al., 2021). In fact,

increased GrimAge, Horvath, and the Pace of Aging, which

showed greater EAA and pace of aging in men, have all been

associated with smoking (Klopack et al., 2022). GrimAge may

display the highest correlation with chronological age because

it is accounting for the molecular signature of well-established

modifier of DNAm and health traits that may have sex-specific

effects (Koo et al., 2021), even without sex-differential rates of

smoking (Maas et al., 2020), and was developed using

the oldest training cohort (Lu A. T. et al., 2019). It has also

been observed that GrimAge EAA has more associations with

other features of older biological age than PhenoAge, Horvath,

and Hannum EAA, such as increased polypharmacy, lower

grip strength, and slower walking speed, many of which

display sex-differences themselves (Hägg and Jylhävä, 2021;

McCrory et al., 2021). This suggests that GrimAge may be

better suited to resolving differences in health status in the

oldest old, rather than accurately predicting chronological age

of the oldest old.

In contrast to the GrimAge EAA findings, we observed low

correlations for PhenoAge and chronological age, yet also the

lowest margins of error. PhenoAge clock training also

included serum protein and cell counts in its training, but

it has little similarity to those markers of aging used by

GrimAge. Additionally, PhenoAge does not use DNAm-

based predictions of these serum proteins, as it was trained

in a two-stage process, which defined phenotypic age (based

on serum proteins and white blood cell counts) in one cohort,

and then trained to detect that phenotypic age using CpGs in a

second cohort. The serum proteins used by these epigenetic

clocks (GrimAge and PhenoAge) are distinct, with minimal

FIGURE 2
A Loess-smoothed curve of epigenetic predicted age with 95% confidence interval in grey against chronological age in years according to the
PhenoAge, GrimAge, Hannum, Horvath, and Skin and Blood epigenetic age predictors in (A) female and (B)male residents of the Mediterranean Blue
Zones.
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FIGURE 3
Epigenetic age acceleration and Pace of Aging in male and female residents of the Mediterranean Blue Zones, according to the (A)Horvath, (B)
Hannum, (C) PhenoAge, (D) GrimAge, (E) Skin and Blood, and (F) Pace of Aging predictors.

TABLE 3 Positive Epigenetic Age Acceleration (EAA) is evident in men from the Blue Zone relative to women from the Blue Zone. The coefficient
estimate indicates the linear model β coefficient associated with the specified independent variable in brackets, and Cohen’s f2 effect size based
on the Adjusted R2 of the linear model. Bolded p-values indicate significance (corrected p-value < 0.00556).

Coefficient estimate
β (men)

Multiple R2 Adjusted R2 Cohen’s f2 p-value

Horvath EAA 1.07 0.195 0.139 0.161 0.00378

Hannum EAA 1.42 0.171 0.114 0.129 0.0103

PhenoAge EAA 1.30 0.177 0.120 0.137 0.00810

GrimAge EAA 3.55 0.533 0.501 1.00 1.22 × 10−12

Skin and Blood EAA 0.249 0.0147 −0.0531 −0.0504 0.970

Pace of Aging 0.0344 0.429 0.383 0.620 1.77 × 10−08

DNAmTL −0.0443 0.346 0.301 0.430 1.28 × 10−06

Smoking Score 1.00 0.103 0.0410 0.0428 0.140

Serum IL-6 −0.00301 0.524 0.491 0.964 2.84 × 10−12
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similarity, barring C-reactive protein, which is used by both

(Levine et al., 2018; Lu A. T. et al., 2019). The low error rates of

PhenoAge in this cohort of oldest old individuals suggest that

PhenoAge may be better suited to predicting oldest old age,

and may be detecting general physiological trends that occur

in the aging process. However, given the low correlation

between predicted epigenetic and chronological age,

PhenoAge is less able to resolve differences in health

amongst the oldest old.

While women are, on average, less physically well than age-

matched male counterparts, very few measures explain the

lifespan gap that occurs. Epigenetic age has been well-

associated with sex-specific features of aging, including frailty

(Breitling et al., 2016; Maddock et al., 2019), cardiovascular

disease (Roetker et al., 2018), and cognitive decline (Maddock

et al., 2019; Vaccarino et al., 2021). Both telomere length and

epigenetic age, however, better reflect the survival of women,

although these molecular measures are not well correlated and

FIGURE 4
Epigenetically predicted cell type proportion by sex amongst the oldest old in theMediterranean Blue Zones, including basophils (Bas), memory
B cells (Bmem), naïve B cells (Bnv), memory CD4 T cells (CD4mem), memory CD8 T cells (CD8mem), naïve CD8 T cells (CD8nv), eosinophils (Eos),
Monocytes (Mono), Neutrophils (Neu), Natural Killer cells (NK), and regulatory T cells (Treg).
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cannot easily be compared to each other (Marioni et al., 2016).

Women generally have longer telomeres than men at all ages

(Gardner et al., 2014; Tucker, 2019), and men are found to have

greater epigenetic age and EAA than women, with this effect

becoming more pronounced at advanced ages (Horvath et al.,

2016; Galkin et al., 2021; Kankaanpää et al., 2021). In the current

Mediterranean Blue Zone population with equal male-female

survival to advanced age, the commonly observed female aging

advantage was also observed here by slower EAA in the most

discriminating epigenetic clock, as well as longer predicted

DNAm-derived telomere length. Additionally, the Pace of

Aging predictor—one of the most current and well-validated

predictors (Belsky et al., 2022, 2020)—produced higher scores

among men relative to women, indicating that these molecular

FIGURE 5
Epigenetically predicted biomarkers by sex amongst the oldest old in the Mediterranean Blue Zones, (A) serum IL-6, (B) Smoking Score, and (C)
leukocyte telomere length (DNAmTL).
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biomarkers of biological age may reflect the generally observed

female survival to older ages. However, this is surprising given

the hypothesized similarity of men’s and women’s biological

aging, based on their similar survival rates in the Mediterranean

Blue Zones. Therefore, it is reasonable to conjecture that these

DNAm-derived measures do not capture the factors driving the

protective effect evidenced by male survival to oldest old ages in

the Mediterranean Blue Zones (Crimmins et al., 2021;

Kankaanpää et al., 2021).

Alternatively, we did observe a lower DNAm-predicted serum

IL-6 score in men than in women. Unlike EAA or DNAm-derived

telomere length, this finding aligns with the predicted extended

survival effect of men in these unique areas, as lower levels of serum

IL-6 have been associated with healthy aging based on cognitive and

physical ability (Puzianowska-Kuźnicka et al., 2016), thus potentially

reflecting extended male survival. IL-6 is a cytokine secreted by

several cell types during inflammation, which acts as a signaling

molecule (Papanicolaou, 2000; Frasca and Blomberg, 2016; Kaur

et al., 2020), and importantly, increases with age (Ershler, 1993).

Previous research regarding the immune system of Sardinian

centenarians has suggested a younger immune profile based on

serum neopterin concentrations (a compound produced by

macrophages in response to infection), which indicates lesser

inflammation than expected for their age (Sotgia et al., 2017).

The lower predicted IL-6 observed in this study in men from the

Mediterranean Blue Zones further contributes to what may be an

indicator of the survival advantage in men of this Blue Zone cohort,

and suggests a modified inflammaging phenotype, specifically,

rather than a general biological aging advantage.

Previous research interrogating immune system differences in

the Nicoya Peninsula Blue Zone observed lower proportions of

CD8+ memory T cells and higher proportions of naive T cells,

suggesting a general younger immune profile (McEwen et al., 2017).

In this study, men from the Mediterranean Blue Zones were

predicted to have lower proportions of regulatory T cells (Tregs)

than women. Tregs are usually involved in maintaining a level of

homeostasis within the immune system by suppressing the immune

response and promoting self-tolerance, but at older ages these cells

tend to accumulate. Tregs play important protective roles in limiting

autoimmune disorders (Tamosiuniene et al., 2018; Goodman et al.,

2020), but functional Tregs are susceptible to both epigenetic

alteration of the usually-expressed FOXP3 gene (Shu et al., 2017)

and impaired estrogen signaling (Goodman et al., 2020, 2014),

which may impair immunity and increase susceptibility to

autoimmune diseases. The accumulation of dysregulated

functional Tregs may contribute to immune system dysregulation

by overly suppressing immune responses (Raynor et al., 2012; Klein

and Flanagan, 2016; Müller et al., 2019; Churov et al., 2020;

Rocamora-Reverte et al., 2021). Thus, the lower proportion of

these Tregs in men from the Mediterranean Blue Zones

compared to women may provide biological support for the

similar male-female survival rate into old age and suggests an

avenue worth investigating into male survival.

Sex differences in DNAm are known to exist (Grant et al.,

2022), but the epigenetic clocks are trained to use age, aging

phenotype, and mortality-related CpG sites as input, with the

assumption that the age-related sites are likely the same in both

sexes across the age spectrum. As found byMcCrory et al. (2020),

however, cardiovascular and metabolic conditions were more

strongly associated with higher PhenoAge EAA in women, while

Horvath EAA had greater associations with metabolic conditions

in men. It is possible that in these understudied oldest old groups

that age and age-related disease affected CpG sites become more

sex-specific, or represent different aspects of the aging process

that are sex-specific (McCrory et al., 2020). It is uncommon to

have a very large cohort where oldest old men and women from a

relatively homogenous environment can be compared, and

ostensibly further studies of such cohorts may indicate that

health phenotype differences between the sexes are sufficiently

great that specific tools may be required to interrogate the

complexity of different aspects of aging, either health

trajectory or general biological age prediction. This is

highlighted by the PhenoAge findings discussed above—that

age-related CpG sites may remain similar, hence the low error

metrics, but health-distinguishing sites may differ, and thus the

low correlations appear.

While there are several limitations common to many studies

of the oldest old, notably the small sample size, the lack of an age-

matched control group, and a lack of health status data for this

group of individuals that would further elucidate the findings of

this study, we present suggestive data that add to the growing

body of evidence that aging of the oldest old men and women

cannot be analyzed adequately with extrapolations from tools

designed in younger adults. Given the small number of control

participants and their much younger age, it was not possible to

make comparisons regarding possible sex differences within

control regions and the Mediterranean Blue Zones. We were

unable to measure any counteracting anti-inflammaging

response in these long-lived individuals, and given that we

only have DNA-predicted Treg proportion information, we

cannot determine whether the difference is functionally

relevant. Finally, the relatively poor performance of the clocks

observed here may indicate that, as the epigenetic clocks assume

a linear relationship between chronological age and epigenetic

age, it may be that at the oldest old age range, the predicted

relationship may not be linear making these clocks inaccurate in

this age group (Snir et al., 2019). Despite the above limitations,

this study has the strength of equal numbers of oldest old men

and women from unique areas, theMediterranean Blue Zones. In

these regions where healthy aging, manifested as longevity, is

prevalent, it is possible to investigate health span in order to

garner insights into the aging process at the upper end of life.

This study analyzed the performance of increasingly popular

biological aging measures, epigenetic clocks, and then compared

these and other DNAm-derived health predictors in a rare

population of equally long-surviving men and women from
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the Mediterranean Blue Zones—regions of centenarian

abundance. We observed oldest old men had accelerated

biological aging and shorter telomere length in comparison to

oldest old women in these Blue Zones according to what we

detected as the most precise predictors in this group, despite the

equal longevity of the sexes in these regions. We also observed

lower predicted IL-6 score in men and higher Treg proportion in

women from the Mediterranean Blue Zone, which were both

potential indicators of the survival advantage in men in these

regions through specific immunological pathways perhaps not

fully captured by DNAm-derived telomere length and epigenetic

clocks. However, the relatively poor performance of all epigenetic

clocks does indicate that these tools, currently trained using

approximately middle-aged cohorts, performed inadequately,

and epigenetic clocks with a focus on the oldest old should be

developed to better assess health of the elderly and to capture sex-

specific drivers of EAA. We found compelling evidence the

epigenetic clocks support the female longevity phenomenon,

even in regions of equal male longevity, but we also found

evidence these predictors may fail to capture different aspects

of the aging process amongst the oldest old. To this end, further

research is required to understand the sex-dependent lifespan

and health span gaps, which could be elucidated by an

inflammation and immune-focused direction to interrogate

the survival benefits of men in the Mediterranean Blue Zones.
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