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Temperature is an important environmental condition that determines the physiology and
behavior of all organisms. Animals use different response strategies to adapt and survive
fluctuations in ambient temperature. The hermaphrodite Caenorhabditis elegans has a
well-studied neuronal network consisting of 302 neurons. The bilateral AFD neurons are
the primary thermosensory neurons in the nematode. In addition to regulating
thermosensitivity, AFD neurons also coordinate cellular stress responses through
systemic mechanisms involving neuroendocrine signaling. Recent studies have
examined the effects of temperature on altering various signaling pathways through
specific gene expression programs that promote stress resistance and longevity.
These studies challenge the proposed theories of temperature-dependent regulation of
aging as a passive thermodynamic process. Instead, they provide evidence that aging is a
well-defined genetic program. Loss of protein homeostasis (proteostasis) is one of the key
hallmarks of aging. Indeed, proteostasis pathways, such as the heat shock response and
aggregation of metastable proteins, are also controlled by thermosensory neurons in C.
elegans. Prolonged heat stress is thought to play a critical role in the development of
neurodegenerative protein misfolding diseases in humans. This review presents the latest
evidence on how temperature coordinates proteostasis and aging. It also discusses how
studies of poikilothermic organisms can be applied to vertebrates and provides new
therapeutic strategies for human disease.
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INTRODUCTION

“Homeostasis”—a term coined by Walter Cannon—is the self-regulating dynamic process by which
an organism maintains internal stability in response to external conditions (Billman, 2020).
Regulation of core body temperature (thermoregulation) is one of the ways to maintain this
balance. Homeotherms (warm-blooded animals) such as mammals and birds keep a constant
core temperature via hypothalamic regulation of heat production and dissipation. In contrast,
poikilotherms (cold-blooded animals) such as flies, nematodes, amphibians, and reptiles lack this
thermoregulatory ability. As a result, the core temperature of poikilothermic organisms fluctuates
with ambient temperature changes (Tabarean et al., 2010). Another necessary means of maintaining
a constant internal milieu is to preserve the integrity of cellular macromolecules such as proteins and
maintain a balanced cellular proteome. Protein homeostasis (proteostasis) is promoted by a network
of cellular quality control pathways (Kaushik and Cuervo, 2015), including molecular chaperones,
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the ubiquitin–proteasome system (UPS), and the autophagy
machinery (Chen et al., 2011). Regulated synthesis of
polypeptides involves proper protein folding by molecular
chaperones, whereas the selective degradation of damaged
proteins is mediated by the UPS and the autophagy machinery
(Hoppe and Cohen, 2020).

Endogenous and exogenous challenges constantly threaten the
integrity of the organismal proteome and affect longevity
(Gumeni et al., 2017). Cells cope with cellular stress by
adopting sophisticated protective measures. For example, to
combat heat stress, organisms have an ancient, highly
conserved genetic program termed the heat shock response
(HSR) (Morimoto, 1998). An abnormal rise in temperature
that triggers protein misfolding and aggregation activates the
heat shock transcription factor-1 (HSF-1) in the cytoplasm.
Subsequently, HSF-1 converts from an inactive monomer to
an active trimeric form and activates expression of heat shock
proteins (HSPs), including molecular chaperones (Anckar and
Sistonen, 2011). The suppression of HSR in early adulthood
renders organisms susceptible to various environmental
stressors and eventually leads to breakdown of proteostasis
(Ben-Zvi et al., 2009; Labbadia and Morimoto, 2015). The
capacity of the proteostasis network (PN) decreases with age,
leading to the accumulation of damaged proteins and chronic
age-related diseases (Balchin et al., 2016). This review
summarizes how proteostasis and longevity are modulated by
changes in environmental temperature, focusing on studies in
Caenorhabditis elegans.

THE INFLUENCE OF TEMPERATURE ON
PROTEOSTASIS

The soil-dwelling nematode C. elegans is a poikilothermic
organism that must constantly adapt its physiology to the
changing temperature conditions in its natural habitat
(Mendenhall et al., 2017). The worm perceives environmental
temperature by the thermosensory neurons named AFD, AWC,
ASI, and ASJ (Ohta et al., 2014). The interneurons AIY and AIZ
receive thermal inputs from upstream thermosensory neurons,
which are further integrated by the RIA interneurons (Kimata
et al., 2012). The bilateral AFD neuron is the primary
thermosensory neuron that senses ambient temperatures to
regulate animal behavior (Goodman and Sengupta, 2018).
Thermosensation by AFD and AIY neurons has been
associated with organismal proteostasis, particularly in the
regulation of the HSR. The heat shock response has always
been considered a cell-autonomous response triggered by
accumulation of damaged proteins. Surprisingly, a pioneering
study by the Morimoto laboratory shows that thermosensory
neurons control the heat shock response of somatic tissues.
Consequently, worms lacking these neurons exhibit reduced
thermotolerance when exposed to increased temperature
(Prahlad et al., 2008). The temperature-dependent activation
of AFD neurons triggers the HSR in distal tissues by serotonin
signaling (Tatum et al., 2015). Reduced HSR in thermosensory
mutants suggests a potential increase in protein misfolding.

However, the data prove otherwise. At physiological
temperatures (20°C), thermosensory mutants suppress protein
aggregation and toxicity in multiple tissues. This counterintuitive
result shows that the neuronal circuitry based on the
thermosensory AFD neurons differentiates between acute heat
stress and chronic protein misfolding stress (Prahlad and
Morimoto, 2011).

Several interesting observations have been made in recent years
despite the lack of mechanistic insight into the effects of temperature
on proteostasis. For example, when late larval stages of C. elegans
grown at 20°C are exposed to 25°C for 1 day, several stress responses
are regulated. The unfolded protein response in the endoplasmic
reticulum (UPRER) is strongly activated, whereas HSR increases only
transiently after a 1-day exposure to 25°C. Surprisingly, a change in
ambient temperature from 20 to 25°C can affect selective protein
degradation via the UPS. UPS activity increases in the intestine but
not in muscle cells, suggesting tissue-specific regulation of protein
degradation (Pispa et al., 2020). Increasing temperature conditions
also modulates mRNA translation. One of the five eukaryotic
initiation factor (eIF)-4E proteins in C. elegans, IFE-2, increases
the translational efficiency of certain mRNAs at 25°C (Song et al.,
2010). Furthermore, hormetic heat shock of 1 h at 36°C induces
autophagy and selective HSR in adult worms, associated with
decreased protein aggregation (Kumsta et al., 2017). These studies
suggest that C. elegans respond to elevated temperature conditions
not only by triggering HSR but also other branches of the PN,
including translation, protein degradation, and UPR.

FIGURE 1 | Temperature-dependent regulation of proteostasis.
Autophagy and chaperone levels are affected at low temperatures via fatty
acid signaling (1), (2). A wild-type thermosensory circuit attenuates protein
folding during chronic stress; small dark green structures inside the
worm indicate protein aggregates (3). A 1-day transfer of late larval staged C.
elegans from 20 to 25°C increases the heat shock response [HSR (mildly,
small arrow)], the unfolded protein response in the endoplasmic reticulum
(UPRER), and the activity of the ubiquitin/proteasome-system (UPS) in the
intestine (4). The translational efficiency of selective mRNAs (msh-4/him-14,
msh-5) increases at 25°C via an eIF4E family protein, IFE-2 (5). AFD
thermosensory neuron cells non-autonomously regulate the heat shock
response [acute heat shock (HS) of 30°C for 15 min] (6). Hormetic heat shock
of 1 h at 36°C induces autophagy and selective HSR (7).
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Low temperatures regulate proteostasis pathways via
modulation of lipid homeostasis. Culturing worms at 15°C
promotes autophagy through signaling mediated by the
adiponectin receptor PAQR-2. PAQR-2 increases fatty acid
desaturase FAT-7, which triggers the biosynthesis of
polyunsaturated fatty acids, namely γ-linolenic acid and
arachidonic acid, to induce autophagy (Chen et al., 2019).
Mediator complex subunit—mediator 15 (MDT-15/MED15)
regulates the expression of fat-7 at lower temperatures.
Decreasing MDT-15 levels at 15°C increases protein aggregates
and cytosolic chaperone expression via HSF-1 as an adaptive
response (Dongyeop Lee et al., 2019). Alternatively, gene
ontology analysis shows that genes regulated by cold
warming—exposure to cold shock (4°C) followed by recovery
at normal temperatures (20°C)—are involved in biological
processes such as autophagy and proteostasis (Jiang et al.,
2018). These studies highlight the importance of different
temperature conditions in regulating proteome dynamics
(Figure 1). The maintenance of proteostasis is essential for
healthy aging, and its impairment is considered one of the
critical hallmarks of aging (López-Otín et al., 2013). In the
following section, studies on the influence of temperature on
longevity are described in detail.

MODULATION OF ORGANISMAL
LONGEVITY BY TEMPERATURE

Poikilothermic animals have shorter lifespans at higher
temperatures than at lower temperatures (Lamb, 1968). C.
elegans, for example, has a mean lifespan of 15.2 ± 0.5 (mean
lifespan ± SEM provided) and 26.1 ± 0.6 days at 25 and 15°C,
respectively (Lee and Kenyon, 2009). Pioneering studies led to the
postulation of two theories, rate-of-living theory and threshold
theory, to explain the effects of temperature on lifespan. Pearl’s
rate-of-living theory attempts to determine lifespan as a simple
rate-limiting response and proposes that the rate of aging
increases at higher temperatures (Shaw and Bercaw, 1962).
Alternatively, the threshold theory introduces two phases that
determine lifespan—aging and dying. It states that the rate of
aging is independent of temperature, while the rate of dying
depends on temperature (Smith, 1963). Interestingly, the effect of
temperature on lifespan has been considered mainly as a passive
thermodynamic process in the aforementioned scenarios.
However, several studies on poikilothermic organisms,
including C. elegans, provide considerable evidence to the
contrary.

Sensory perception of thermal signals via thermosensory
neurons plays a critical role in regulating C. elegans lifespan.
AFD thermosensory neurons control lifespan at warm
temperatures via a steroid signaling pathway. If AFD neuron
function is knocked down from early development by genetic
mutation or laser ablation, lifespan shortens at 25°C but not at
15°C. Thermosensation via these neurons contributes to
inhibition of the nuclear hormone receptor (NHR) DAF-12
via DAF-9/Cytochrome P450 (Lee and Kenyon, 2009).
Neuronal synaptic transmission may also affect longevity at

25°C (He et al., 2009). The cyclic AMP (cAMP)-responsive
element binding protein, CRH-1/CREB, increases expression
of the FMRFamide-like neuropeptide FLP-6 in AFD neurons,
promoting adult lifespan. Increased expression of FLP-6 increases
DAF-9/sterol signaling in AIY neurons and downregulates
insulin signaling in the gut to regulate longevity (Chen et al.,
2016). Heat-sensitive ASJ neurons, when ablated, extend lifespan
at 25°C. ASJ neurons act via UNC-31-dependent release of two
neuropeptides, INS-6 and DAF-28, to inhibit the FOXO
transcription factor DAF-16 in the gut (Zhang et al., 2018).
STR-2, a G-protein-coupled receptor expressed in AWCON

and ASI neurons, controls lifespan at 20°C and higher
temperatures. STR-2 fine-tunes neutral lipid levels in non-
neuronal tissues to adapt to higher temperatures to maintain
lifespan (Dixit et al., 2020). Systemic temperature signaling at
culture temperatures (17–23°C) occurs via HSF-1 activity in non-
neuronal cells such as the gut or muscle. Downstream signaling
modifies the thermotaxis circuit via the nuclear hormone receptor
NHR-69-mediated estrogen signaling (Sugi et al., 2011). HSF-1
not only regulates thermotaxic behavioral performance but also
contributes to extending animal lifespan at warm temperatures.
Pioneering work by Lee and Kenyon showed that a reduction in
HSF-1 function further shortened lifespan at 22.5°C. Consistent
with this, recent data show that overexpression of hsf-1 in
neurons protects animals at 25°C and extends their lifespan
(Chauve et al., 2021). Overexpression of the proteasomal
subunit rpn-6.1 extends lifespan independently of HSF-1 in a
DAF-16-dependent manner at 25°C (Vilchez et al., 2012).
Temperature experiences under different growth conditions
can lead to different outcomes via the same central player. For
example, the co-chaperone DAF-41/p23 modulates lifespan in
different ways at warm and cold temperatures, as daf-41mutants
live longer at higher temperatures but are short-lived at cold
temperatures (Horikawa et al., 2015).

Temperature sensing across different tissues and lipid
signaling interact to regulate lifespan at cold temperatures.
Low temperatures significantly extend C. elegans lifespan via
the cold-sensitive transient receptor potential (TRP) channel,
TRPA-1. TRPA-1 is a non-selective cation channel that is also
permeable to calcium. Expression of TRPA-1 in neurons or
intestine promotes DAF-16 activity via a genetic program
involving a calcium-sensitive kinase, PKC-2, and a DAF-16
kinase, SGK-1. Intriguingly, this study shows that the
intestine, which is a non-excitable tissue in worms, functions
as a cold receptor (Xiao et al., 2013). TRPA-1 acts in the cold-
sensitive IL1 sensory neurons. Glutamatergic and serotoninergic
signals from IL1 and NSM neurons, respectively, activate a pro-
longevity cascade. This neuroendocrine signaling regulates DAF-
16 function in intestinal cells (Zhang et al., 2018). Moreover,
temperature signaling from IL1 and AFD neurons maintains
germline proliferation and delays germline stem cell (GSC)
exhaustion. Prostaglandin E2 (PGE2) signals from adult GSCs
communicate with the gut to produce hydrogen sulfide (H2S).
Thus, germline and somatic tissues contribute to cold-induced
longevity (Hyun Ju Lee et al., 2019). PAQR-2, MDT-15, and
azelaic acid (AzA) support longevity at low temperatures through
fatty acid–mediated signaling (Chen et al., 2019; Dongyeop Lee
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et al., 2019; Bai et al., 2021). Although these different factors
regulating life expectancy in warm and cold temperatures have
been identified, it remains unclear how they communicate with
each other and coordinate their functions. Extensive studies have
helped to identify the main players that regulate longevity at cold
and warm temperatures. Cultivation at low temperatures is
beneficial, while warm temperatures affect longevity. However,
this relationship does not always hold. When C. elegans is
exposed to high temperatures during early developmental
stages, adult lifespan increases (Zhang et al., 2015). This
transient heat stress during early life activates long-lasting
defense responses via histone acetyltransferase CBP-1 and the
chromatin remodeling complex SWI/SNF, which promote
longevity (Zhou et al., 2019). These studies show that the
temperature-dependent effects on aging are a well-regulated
event controlled by genetic and epigenetic factors (Figure 2).

DISCUSSION

The evidence discussed thus far reveals a common theme in the
temperature-dependent regulation of proteostasis and
longevity. Environmental signals such as temperature
influence organismal physiology via non-autonomous cell
signaling mechanisms. Neurons act as receptors for thermal
information and send signals mediated by small molecules to

distal tissues. Insulin-like peptides, FMRFamide-like peptides,
biogenic amines, and neurotransmitters are critical for
triggering downstream responses.

Studies in poikilothermic animals have undoubtedly
improved our understanding of temperature-dependent
effects on organismal survival. However, many questions
remain unanswered, particularly regarding the regulation of
proteostasis. AFD thermosensory neurons and associated
neuroendocrine signaling are well studied with respect to
HSR. Surprisingly, there is little evidence of molecular
players controlling other proteostasis pathways in response to
temperature. In particular, it is unclear how temperature affects
the UPS, the autophagy machinery, the unfolded protein
response, and the genetic components involved. In addition
to AFD, AWC, ASI, and ASJ neurons, the intestine act as
temperature sensors in C. elegans. How thermosensation
mediates proteostasis via these neurons and the gut remains
to be elucidated. A crucial step would be to analyze how cell-
specific thermosensory receptors and circuits control
organismal proteostasis. C. elegans adapts to different
environmental temperatures by calibrating unsaturated fatty
acid levels to maintain optimal membrane fluidity (Ma et al.,
2015). The role of fatty acids in regulating distinct proteostasis
pathways under different temperature conditions is still
unexplored. Further studies are needed to clarify these
crucial issues.

FIGURE 2 | Temperature-dependent regulation of longevity. Increased lifespan at low temperatures is regulated by signals involving germline stem cells (1), AFD
and IL1 neurons (1 and 2), TRPA-1 (3), the co-chaperone DAF-41 (4), and fatty acids (5). AFD, AWC, and ASI neurons, and HSF-1 maintain lifespan at higher
temperatures (6), overexpression of rpn-6.1 prolongs it (7), and ASJ neurons and DAF-41 shorten lifespan at higher temperatures (8).
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TEMPERATURE—A POTENTIAL
THERAPEUTIC INTERVENTION?

There are few studies demonstrating the effects of temperature on
proteostasis and homeotherm longevity. However, some basic
principles remain. Temperature determines, in part, the effects of
birth time on human fetal development and longevity. In
particular, an increase in ambient temperature at birth has
detrimental effects (Flouris et al., 2009). The central
thermostat in the preoptic area controls core body
temperature (CBT) in homeotherms. Transgenic mice
overexpressing the mitochondrial membrane protein
uncoupling protein 2 (UCP2) in hypocretin neurons (Hcrt-
UCP2 mice) exhibit increased hypothalamic temperature and
reduced CBT. Amodest but sustained reduction in CBT increases
the life expectancy of Hcrt-UCP2 mice (Conti et al., 2006).
Further studies have also shown that gonad-dependent
differences in CBT affect life expectancy in a sex-specific
manner (Sanchez-Alavez et al., 2011). In addition, selective
temperature conditions may alter the pathophysiology of age-
related diseases. Aggregation of damaged proteins contributes to
neurodegenerative diseases. A recent review suggested heat
therapy that promotes chaperone expression as a potential
treatment strategy (Hunt et al., 2020). Further evidence
suggests that sauna bathing—a passive heat therapy—reduces
the risk of death from cardiovascular disease (Laukkanen et al.,
2018). Swimming in cold water (temperature <5°C) is also
beneficial for experienced healthy individuals when practiced
with caution (Knechtle et al., 2020). Cold-shock proteins such as
RNA-binding motif protein 3, RBM3, are essential for
maintaining synapses in laboratory mouse models of

neurodegenerative diseases. These results suggest a potential
role for therapeutic human hypothermia in achieving
neuroprotective effects (Peretti et al., 2015). In-depth
analyses in higher-order animals may help to exploit the
benefits of temperature in improving organismal health. On a
positive note, previous results from a poikilothermic animal
may serve as a springboard for exploring this potential
therapeutic area.
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