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Persistent DNA lesions build up with aging triggering inflammation, the body’s

first line of immune defense strategy against foreign pathogens and irritants.

Once established, DNA damage-driven inflammation takes on a momentum of

its own, due to the amplification and feedback loops of the immune system

leading to cellular malfunction, tissue degenerative changes and metabolic

complications. Here, we discuss the use of murine models with inborn defects

in genomemaintenance and the DNA damage response for understanding how

irreparable DNA lesions are functionally linked to innate immune signaling

highlighting their relevance for developing novel therapeutic strategies

against the premature onset of aging-associated diseases.
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Introduction

The growing list of syndromes associated with inborn defects in DNA repair and

phenotypes resembling accelerated ageing points to genomic damage as a major culprit in

the ageing process (Hoeijmakers, 1994). The gradual accumulation of persistent DNA

lesions triggers the activation of potent inflammatory responses that are causal to age-

related degeneration, metabolic abnormalities and cancer. Indeed, genome maintenance

pathways and immune responses are highly conserved and tightly linked biological

processes, supporting the notion that cells have encountered genotoxins and foreign

pathogens nearly ab initio. For instance, induction of the SOS response, an inducible

pathway governing DNA repair in bacteria affects their adaptation to antimicrobial

tolerance, resistance, and virulence (Zgur-Bertok, 2013). In prokaryotes, the CRISPR-Cas

system is also functionally linked to antiviral immunity and DNA repair (Babu et al.,

2011). An efficient adaptive immune system in mammals requires that the non-

homologous end-joining (NHEJ) pathway repairs the DNA strand breaks (DSBs) that

occur during V(D)J recombination in developing T lymphocytes, ensuring the vast

diversity of receptors necessary for overcoming pathogenic insults. (Boboila et al., 2012).

Likewise, in B lymphocytes, an error-prone DNA repair mechanism is required to

introduce a large number of nucleotide substitutions into a small area of the genome,

in a process called somatic hypermutation of immunoglobulin variable genes, which

produces variant antibodies with increased affinity for cognate antigens (Di Noia and

Neuberger, 2007). Besides the functional contribution of DNA repair factors in the
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development and maturation of adaptive immunity, the distinct

types of cells and tissues in mammals require that genome

maintenance, DDR and innate immune responses, the

organism’s natural response to harmful genotoxins, are tightly

coordinated and timely mobilized [reviewed in (Ioannidou et al.,

2016; Stratigi et al., 2017; Chatzidoukaki et al., 2020)].

Linking DNA damage to innate
immune signaling

There is ample evidence to suggest that genome instability

drives aging and that DNA damage and DDR activation triggers a

wide range of age-related phenotypes, including the activation of

cell- and non-cell autonomous signaling pathways; the latter

leads to the secretion of pro-inflammatory factors and the

gradual infiltration of immune cells at sites of tissue damage

with advancing age. DNA damage activates cytoplasmic NF-κB
(nuclear factor kappa-light-chain-enhancer of activated B cells),

an inducible transcription factor that translocates into the

nucleus and functions as a pivotal mediator of inflammatory

responses by binding to the DNA consensus sequence of target

genes (Hayden and Ghosh, 2008). The interferon regulatory

factors (IRFs) make up another family of immune-related

transcription factors that become activated upon exposure to

genotoxins. Induction of IRF-1 protein by either ionizing

radiation or etoposide occurs through an increase in IRF-1

protein levels and an increase in the half-life of the IRF-1

protein; the response requires a functional DDR as cells

defective in the DNA damage sensor ATM (ataxia

telangiectasia, mutated) failed to increase IRF-1 in response to

genotoxic stress (Pamment et al., 2002). IRF-3 and 5 provide

further evidence that genome maintenance and the DDR are

linked to the interferon signaling; IRF-3 is an in vivo target of

DNA-PK (DNA-dependent protein kinase) (Karpova et al.,

2002) that functions in the repair of DNA breaks by NHEJ

and V(D)J recombination (Lieber et al., 2003) whereas IRF-5 is a

direct transcriptional target of p53 upon exposure of cells to

genotoxic insults (Mori et al., 2002). NKG2D also known as

CD159 (Cluster of Differentiation 159) is an activating receptor

that is predominantly expressed on the surface of cytotoxic

immune cells. The presence of DNA lesions or stalled DNA

replication forks triggers the upregulation of NKG2D ligands in

mouse or human cells in an ATM-, ATR (Ataxia telangiectasia

and Rad3 related)- or Chk1-dependent manner, allowing the

immune system to detect and selectively remove damaged cells

(Gasser et al., 2005; Gasser and Raulet, 2006; Champsaur and

Lanier, 2010). DNAM-1 (DNAX Accessory Molecule-1) is a

65 kDa transmembrane glycoprotein that is constitutively

expressed in the majority of T cells, NK cells, and

macrophages (Shibuya et al., 1996). Low doses of

chemotherapeutic genotoxins trigger the

expression of DNAM-1 ligands in multiple myeloma cells in

an ATM/ATR-dependent manner (Soriani et al., 2009). Likewise,

ICAM-1 (Intercellular Adhesion Molecule 1), a transmembrane

glycoprotein that promotes the adhesion of leucocytes to

inflamed vascular endothelium, is also induced in response to

ionizing irradiation in a p53-dependnent manner (Gaugler et al.,

1997). Furthermore, in humans, the expression of all TLR (Toll-

Like Receptor) genes, TLR1 to TLR10, in blood lymphocytes and

alveolar macrophages is induced by DNA damage with

considerable inter-individual variability (Menendez et al.,

2011). UV-irradiated keratinocytes form large cytoplasmic

complexes, called “inflammasomes” to trigger the maturation,

activation and secretion of pro-inflammatory cytokines (Faustin

and Reed, 2008; Schroder and Tschopp, 2010).

DNA damage-induced inflammation can be both beneficial

and detrimental for organismal survival. In higher organisms, the

inflammatory response has evolved as an acute defense

mechanism to eliminate the harmful irritant and allow the

body to heal. With prolonged stimuli, however, as it is when

DNA damage gradually accrues over time in cells, it leads to the

activation of persistent DDR-mediated pro-inflammatory signals

leading to systemic chronic inflammation, tissue degeneration

and malfunction with old age. Cellular senescence is a great

example of how irreparable DNA lesions underlie the persistent

activation of innate immune signaling (Rodier et al., 2009;

Campisi and d’Adda di Fagagna, 2007; Fumagalli and d’Adda

di Fagagna, 2009). Senescent cells with chromatin hallmarks of

irreparable DSBs secrete a wide range of senescence-associated

secretory phenotype (SASP) factors, including inflammatory

cytokines and chemokines as well as growth factors and

extracellular matrix remodeling enzymes (Coppe et al., 2008;

Ohanna et al., 2011; Acosta et al., 2013; Malaquin et al., 2013).

SASP factors impinge on cell-fate decisions in neighboring cells

or facilitate angiogenesis and promote the growth, invasion, and

metastasis of tumor cells (Grivennikov et al., 2010). In support,

older individuals show an increase in systemic inflammation as

evidenced by the elevated levels of pro-inflammatory cytokines

e.g., IL-6, clotting factors and acute phase reactants (Ferrucci

et al., 1999; Cohen et al., 2003; Cavanagh et al., 2012; Shaw et al.,

2013). Thus, there is an immense need to establish reliable in vivo

animal models for understanding how DNA damage-driven

inflammatory responses lead to some of the most challenging

degenerative disorders of our time, as well as to develop

rationalized therapeutic intervention strategies against chronic

inflammation with aging.

Mouse models for DNA damage-
driven inflammation

Owing to their congenital defects in genome maintenance,

DNA repair-deficient animals are valid models to test for the

physiological relevance of DNA damage-driven inflammation in

premature disease onset during normal and accelerated aging
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(Supplementary Table S1) (van de Ven et al., 2007; Schumacher

et al., 2008a; Schumacher et al., 2008b; Garinis, 2008; Garinis

et al., 2008; Garinis et al., 2009; Schumacher et al., 2009;

Karakasilioti et al., 2013; Karakasilioti and Garinis, 2014;

Ioannidou et al., 2016; Chatzidoukaki et al., 2020). Mice with

engineered mutations in NER genes reliably mimic most of the

pleiotropic and heterogeneous pathological symptoms seen in

NER syndromes (Hasty et al., 2003; Niedernhofer et al., 2006; van

der Pluijm et al., 2007; Schumacher et al., 2008a; Schumacher

et al., 2008b; Garinis, 2008; Rieckher et al., 2021). ERCC1-XPF is

a heterodimeric, structure-specific endonuclease complex

required for lesion excision in nucleotide excision repair

(NER) (Kamileri et al., 2012; Apostolou et al., 2019) that plays

an analogous role in the repair of highly cytotoxic DNA inter-

strand crosslinks (ICLs) (Niedernhofer et al., 2004). The Ercc1−/−

and Ercc1-/Δ7 mouse models of the human progeroid syndrome

XFE (Niedernhofer et al., 2006; Gregg et al., 2012; Schermer et al.,

2013; Pieren et al., 2021) provide compelling evidence that the

persistent activation of DNA damage-driven innate immune

responses lead to tissue-degenerative alterations. For instance,

aP2-Ercc1F/- mice that carry the NER defect only in the white

adipose tissue, rapidly accumulate DNA damage in adipocytes

and manifest a chronic auto-inflammatory response leading to

severe fat depletion and metabolic abnormalities (Karakasilioti

et al., 2013). In aP2-Ercc1F/- mice, the fat depots manifest

hallmarks of persistent DDR together with the transcriptional

de-repression of pro-inflammatory factors, the infiltration of

activated macrophages as well as the release of DAMPs

known to initiate and perpetuate immune responses

(Karakasilioti et al., 2013). In line with the contributing role

of DNA damage-driven inflammation in the premature onset of

age-related diseases, pharmacologic inhibition of NF-κB was

shown to delay several pathological symptoms in progeroid

ERCC1-defective mice (Tilstra et al., 2012). When the

ERCC1 defect is restricted in macrophages in Lys2-Ercc1F/-

mice, the tissue-infiltrating Ercc1−/− macrophages release

extracellular vesicles whose cargo is targeted to diverse

recipient cells leading to systemic metabolic reprogramming

associated with enhanced cellular glucose uptake, increased

oxygen consumption, chronic inflammation and overt

pathology (Goulielmaki et al., 2020). More recently, the

gradual accumulation of persistent DNA damage in

hematopoietic cells of Vav-iCre+/-; Ercc1F/- mice led to an

accelerated aging of the immune system associated with the

progressive reduction of lymphocytes (Yousefzadeh et al.,

2021); in turn, the aged immune system of Vav-iCre+/-;

Ercc1F/- mice led to senescence and loss of tissue homeostasis

in non-lymphoid organs. R-loops are nucleic acid structures

composed of an RNA–DNA hybrid and a displaced single-

stranded DNA that may spontaneously lead to DNA breaks

(Skourti-Stathaki et al., 2011; Skourti-Stathaki and Proudfoot,

2014; Goulielmaki et al., 2021). In progeroid Ercc1−/− and

naturally aged pancreata, DNA damage triggers the formation

of R-loops leading to the release and build-up of single-stranded

(ss)DNA fragments in the cytoplasm of cells stimulating a viral-

like immune response (Chatzidoukaki et al., 2021). Owing to the

great similarity of phenotypic features between Ercc1−/− and

Xpg−/− animals mimicking the progeroid Cockayne syndrome

(Barnhoorn et al., 2014), it is attractive to speculate that the latter

animals would respond similarly in terms of the improper

activation of the immune system. Csbm/m mice carrying an

inborn defect in CSB involved in transcription-coupled (TC)

NER present with lung inflammation and thrombogenic

responses upon exposure to ozone, a well-established toxic

environmental factor (Kooter et al., 2008). Interestingly,

enhanced inflammation has also been noticed in Xpa−/−

(Xeroderma Pigmentosum) mice that are defective in both the

TC-NER and the global genome repair sub-pathways of NER

(Miyauchi-Hashimoto et al., 1996). Loss of myelin and Purkinje

cell death in Csa−/−/Xpa−/− mice were accompanied by microglia

and astrocyte activation and vascular inflammation in the brain,

mirroring the neuronal dysfunction observed in XP patients

(Kajitani et al., 2021). Similar to aP2-Ercc1F/- mice, increased

cellular senescence in the adipose tissue of 4-weeks old pol η−/−
(DNA polymerase η) mice carrying a defect in lesion bypass

polymerase was accompanied by the senescence-associated

secretion of pro-inflammatory cytokines IL-6 and TNF-α
(tumor necrosis factor α) (Chen et al., 2015). Besides DNA

lesions associated with NER or post-replication repair

machinery, inflammation is also triggered by irreparable

modifications to DNA bases, including oxidation, alkylation

and deamination. For instance, mice deficient in MBD4, a

glycosylase involved in the detection and repair of

deamination of methyl-cytosines, manifest greater colon

inflammation and tissue injury leading to an increase in

tumor burden (Yu et al., 2016). In line, alkyladenine DNA

glycosylase and two members from the AlkB family of DNA

repair enzymes (ALKBH2, and ALKBH3) are shown to protect

against tissue injury and tumorigenesis in an inducible mouse

model of inflammation-driven colon cancer (Meira et al., 2008;

Calvo et al., 2012). 8-Oxoguanine glycosylase (OGG1) is the most

prominent DNA glycosylase that is responsible for the removal of

8-OH-dG, an oxidative DNA lesion that is frequently formed in

the DNA of aerobic organisms (Dianov et al., 1998). Importantly,

OGG1–deficient macrophages are more apoptotic and

inflammatory compared to wild type controls. Moreover, a

defect in OGG1 leads to an increase in inflammasome activity

and the premature onset of atherosclerosis in mice that are

deficient for low-density lipoprotein receptor (Tumurkhuu

et al., 2016). Naturally occurring RNA-DNA hybrids are

frequently formed on promoters or termination regions when

a nascent RNA molecule is hybridized with the DNA template

before the two strands of the DNA duplex reanneal, leaving the

non-template DNA single-stranded (Skourti-Stathaki et al., 2011;

Skourti-Stathaki and Proudfoot, 2014). Persistent R-loops expose

long stretches of ssDNA, leading to the spontaneous formation of
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DSBs or to transcription-associated mutagenesis (Muers, 2011;

Wimberly et al., 2013; Costantino and Koshland, 2015). Partial

loss-of-function biallelic mutations in RNase H2 genes, an

endogenous endoribonuclease that cleaves the RNA strand in

RNA-DNA duplexes, are the major cause of the

autoinflammatory disorder Aicardi-Goutières syndrome (Crow

and Manel, 2015). Likewise, a hypomorphic RNase H2 mouse

model for Aicardi-Goutières syndrome associates with the

induction of interferon-stimulated gene transcripts, a response

that is dependent on the cGAS-STING nucleic acid-sensing

pathway (Mackenzie et al., 2016). Mice with intestinal

ablation of RNase H2, present with local intestinal

inflammation, tissue damage and colorectal cancer (Aden

et al., 2019). Werner syndrome is a premature aging disorder

caused by mutations in a DNA helicase/exonuclease. Mice

lacking the helicase domain of this protein exhibit an increase

in serum inflammatory cytokines and metabolic abnormalities

(Aumailley et al., 2015) that closely resembles the low grade, age-

related inflammatory phenotype seen in Werner syndrome

patients (Goto et al., 2012). Loss-of-function mutations in any

of the Fanconi anemia (FA) genes, involved in DNA replication

and the DDR, lead to neuronal decline, bone marrow failure,

cancer, and premature aging (Bogliolo and Surralles, 2015).

FANCC is required for antiviral host defenses and for the

suppressing of inflammasome activation in mice, by removing

damaged mitochondria (Sumpter et al., 2016); however, the

mitophagy function of FANCC is independent of its role in

DNA damage repair. Besides defects in genome maintenance,

mice with mutations in genes coding for kinases involved in DDR

manifest prominent inflammatory features. For instance,

heterozygous mutant animals for Smg1, coding for a kinase

with a known role in nonsense-mediated mRNA decay and

the DDR, predisposes mice to higher levels of IL-6, CSF-1 and

IL-1β cytokines and chronic inflammation in the lung and

kidneys (Roberts et al., 2013). Mice deficient in ataxia

telangiectasia mutated gene (ATM), upon exposure to

lipopolysaccharide stimulation, associate with a prominent

inflammatory phenotype that leads to Purkinje cell death

(Yang et al., 2014). Likewise, Atm−/− mice are more sensitive

to the deleterious effects of chronic dextran sulfate sodium-

induced inflammation with greater upregulation of

inflammatory cytokines, and higher percentages of activated

CD69+ and CD44+ T-cells in the peripheral blood throughout

treatment (Westbrook and Schiestl, 2010). Mice defective in

DNA-PK, a nuclear DNA-dependent serine/threonine protein

kinase involved in NHEJ and the DDR associate with an

activation of cGAS-mediated antiviral innate immunity (Sun

et al., 2020); DNA-PK binds DNA in the cytoplasm and

stimulates the transcription of type I interferon (IFN),

cytokine and chemokine genes in primary fibroblasts and

mice (Ferguson et al., 2012). These findings could well explain

why most patients with mutations in DNA-PKcs manifest a

hyperactivated innate immune response and suffer from

autoimmune diseases.

In addition to genetic models with DNA repair/DDR defects,

there is a wide range of genotoxins that are known to trigger a

pro-inflammatory response in mice. For instance, exposure of the

skin to ultraviolet (UV) light leads to the formation of

cyclobutane pyrimidine dimers (CPDs) and pyrimidine (6-4)

pyrimidone photoproducts (6-4PPs). The UV-induced

photolesions interfere with the process of mRNA synthesis

and DNA replication (Garinis et al., 2005) triggering skin

inflammation and erythema, edema, and hyperplasia.

Photolyases are enzymes that are capable of removing the

UV-induced CPDs or 6-4PPs upon exposure to visible light

(Garinis et al., 2006). However, these enzymes are not present

in placental mammals. Using transgenic mice that express a

marsupial (Potorous tridactylis) CPD-specific photolyase

transgene, either ubiquitously or specifically in the basal

keratinocytes of the epidermis, it was shown that light-

dependent removal of CPDs (but not 6-4PPs) is the primary

cause of the great majority of UV-exposed skin semi-acute

responses, including sunburn, apoptosis, hyperplasia as well as

non-melanoma skin cancer (Jans et al., 2005; Jans et al., 2006).

Murine models of whole thorax or hemithorax irradiation

reliably recapitulate the pathogenesis and the clinical

symptoms of DNA damage-induced pneumonitis and fibrosis

(Wirsdorfer and Jendrossek, 2017). Similar symptoms are also

quickly developed in mice exposed to the radiomimetic DNA

damaging chemotherapeutic drug Bleomycin (Moeller et al.,

2008). Bacterial genotoxins are also known to trigger single-

or double strand breaks (DSBs) in target host cells, leading to

chronic inflammation that may ultimately facilitate the

oncogenic processes. For instance, the enterotoxigenic

Bacteroides fragilis secretes B. fragilis toxin, a zinc-dependent

metalloprotease that can induce colitis and colorectal cancer in

multiple intestinal neoplasia (Min) mice (Housseau and Sears,

2010). Likewise, mice infected with Helicobacter hepaticus

associate with the presence of the bacterial genotoxin

cytolethal distending toxin, a chronic inflammatory response

and the development of hepatic dysplastic nodules (Ge et al.,

2007). Regulatory T cells (Tregs) are a subpopulation of T cells

that suppress the induction and proliferation of effector T cells. A

recent study in Tregs derived from individuals with autoimmune

diseases or from an animal model for multiple sclerosis revealed

an enhanced DDR signaling in these cells resulting from an

increase in mitochondrial oxidative stress and impaired

lysosomal function (Alissafi et al., 2020). Thus, as

inflammation further inflicts DNA damage upon immune-

system cells in the periphery, DNA damage-driven innate

immune responses may take on a momentum of their own

due to the amplification and feedback loops of the immune

system leading to severe degenerative tissue changes over time

(Figure 1).
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Rationalized therapeutic strategies
against DNA damage-driven
inflammation

As DNA damage drives inflammation and aging, it is

tempting to consider therapeutic strategies that would lessen

the inflammatory burden and delay the premature onset of

associated tissue degenerative changes with old age. Non-

steroidal anti-inflammatory drugs (NSAIDs) are medicines

that are widely used to reduce inflammation and relieve

symptoms of long-term pain. However, the use of NSAIDs is

often associated with gastrointestinal problems, including

stomach irritation and reflux and may increase the risk of

cardiovascular conditions (Vonkeman and van de Laar, 2010).

Corticosteroids present another category of anti-inflammatory

drugs that are typically used to treat rheumatologic and chronic

inflammatory diseases that associate with aging. However,

depending on the dose, type of steroid and length of

treatment, corticosteroid drugs may trigger a wide range of

side effects, including weight gain, muscle weakness and lower

FIGURE 1
DNA damage-driven inflammation drives age-related pathology. DNA damage triggers the activation of innate immune responses, which act as
a key mediator of tissue degenerative changes and age-related organismal decline. In particular, the presence of DNA breaks, small base
modifications or bulky DNA adducts in the mammalian genome triggers the release of DNA moieties in the cytoplasm, which are predominantly
sensed by the cGAS/STING signaling pathway stimulating the type I interferon (IFN) response. DNA damage also triggers the activation of NF-κB
in the cytoplasm that translocates into the nucleus to activate the transcription of immune response gene targets. Moreover, the accumulation of
irreparable DNA lesions may lead to the release of senescence-associated secretory phenotype (SASP) factors, such as cytokines, soluble growth
factors, proteases as well as insoluble extracellular matrix components in the surrounding milieu. Cells with compromised genome integrity are also
known to secrete extracellular vesicles that target a wide range of recipient cells leading to metabolic reprogramming and systemic inflammation.
Eventually, the multiple links between persistent DNA damage and activation of innate immune responses in mammals lead to chronic inflammation
that drives tissue deterioration, malfunction and organismal decline with aging. The recent development of rationalized intervention strategies
(nucleases, corticosteroids etc.) against direct products of DNA damage itself i.e., nucleic acids or against inflammatory mediators are expected to
profoundly lessen the adverse consequences of degenerative features that manifest with advancing age. Intervention methods targeting DNA
damage-induced inflammatory stimuli are depicted in red inhibitory arrows.
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resistance to infection, osteoporosis, diabetes, stomach irritation

etc., (Yasir et al., 2022). Moreover, the high prevalence of chronic

inflammatory diseases and the pervasive risks associated with the

long-term use of available anti-inflammatory drugs requires that

a new class of therapeutic regimens becomes available that would

avoid the unnecessary use of NSAIDs and corticosteroid drugs.

This is particularly relevant for the treatment of chronic

inflammatory conditions that require repetitive or continuous

treatment regimens. The use of senolytic drugs that can

selectively eliminate senescent cells (and by inference also the

release of pro-inflammatory SASP factors) or the targeting of the

SASP response itself (rather than the senescent cells) may serve as

an alternative way to reduce the inflammatory load driven by

irreparable DNA damage (Gasek et al., 2021). Importantly,

senolytics may not need to be administered continuously to

trigger senolysis, thereby minimizing potential harmful side

effects. However, the SASP response often entails hundreds of

proteins and non-protein signaling factors, whose composition

depends on the cell type involved and the mechanism driving

senescence (Birch and Gil, 2020). Moreover, in certain cell types,

such as in macrophages, the accumulation of age-related

biomarkers e.g., lipofuscin and β-galactosidase or the increase

in the mRNA levels of senescent-associated factors p16INK4A,

p21CIP1 or SASP-associated IL-6 and IL-8 protein levels

(Goulielmaki et al., 2020) may only reflect a reversible

response of these cells to physiological stimuli (Hall et al.,

2017), rather than the premature onset of replicative or stress-

induced senescence (Franceschi et al., 2000). For DNA damage-

driven inflammatory responses, it is, therefore, valid to consider

alternative options that would target the cause rather than the

symptoms of inflammation. Owing to the fact that DNA damage

triggers the accumulation of cytoplasmic DNAmoieties or RNA-

DNA hybrids in cells (Chatzidoukaki et al., 2021), there have

been recent attempts to develop a new class of therapeutic

regimens that may prove valuable in ameliorating the harmful

effects of DNA damage-driven inflammation. For instance,

cytoplasmic DNA species are rapidly sensed by the enzyme

cGAS (cyclic GMP-AMP synthase), which in turn activates

the adaptor protein STING (stimulator of interferon genes) on

the endoplasmic reticulum. As the cGAS-STING pathway can

sense the cytosolic DNA activating the innate immune response,

selective small molecules were developed as inhibitors, with the

potential to target the cGAS-STING axis in humans. However,

inhibition of the cGAS-STING pathway may provoke adverse

effects in humans by increasing susceptibility to infection

(Decout et al., 2021). Likewise, several immunosuppressant

drugs that may be used to combat DNA damage-driven

inflammatory responses by inhibiting e.g., JAK/STAT or NF-

κB signalling, various TLRs, NADPH oxidase, IL-1β and TNF-α
associate with an increased risk of infection, as well as with

akinetic mutism, toxic encephalopathy, seizures, tremor and

neurobehavioral changes (Fireman et al., 2004). More recently,

we reasoned that the removal of cytoplasmic ss DNA moieties or

RNA-DNA hybrids from cells would reduce the inflammatory

load in damaged cells in vivo. To test this, we used extracellular

vesicles (EVs) to deliver recombinant Mung Bean S1 or RNase

H1 nucleases to inflamed DNA repair-deficient cells that rapidly

accumulate DNA damage or to wild-type cells previously treated

with a genotoxin. Interestingly, the nuclease-mediated removal

of cytosolic nucleic acids from these cells curbed the Type I IFN

response ameliorating the DNA damage-induced phenotype in

targeted cells (Chatzidoukaki et al., 2021).

Conclusions

There is much work to be done before we will be able to

dissect the functional links between persistent DNA damage and

inflammation in vivo. The use of progeroid murine models with

tissue-specific defects in genome maintenance will allow us to

further delineate the causal contribution of specific cell types to

systemic inflammation with old age (Figure 1). In parallel, animal

models with tagged DNA repair factors coupled to functional

genomics and proteomics strategies may prove valuable for

identifying new gene targets or protein partners that could

link genome maintenance with innate immune signaling. It

will also be essential to identify how an active DDR

originating from any alterations in the physicochemical

structure of the DNA activates cytoplasmic stress responses

and the release of proinflammatory factors in the tissue

microenvironment. Likewise, it will be vital to dissect the

functional links between DNA damage-driven chronic

inflammation and metabolic rewiring with old age. Finally, the

recent development of novel therapeutic strategies indicates that,

in the long run, it may be more valuable to invest in approaches

targeting the DNA damage itself rather than suppressing

downstream proinflammatory signals. Such strategies could

open new, meaningful avenues towards the development of

new rationalized therapeutic interventions against a wide

range of adverse pathological outcomes during aging (Tilstra

et al., 2012; Karakasilioti et al., 2013).
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