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Aging is a prominent risk factor for many neurodegenerative disorders, such as
Alzheimer’s disease (AD). Alzheimer’s disease is characterized by progressive
cognitive decline, memory loss, and neuropsychiatric and behavioral
symptoms, accounting for most of the reported dementia cases. This disease
is now becoming a major challenge and burden on modern society, especially
with the aging population. Over the last few decades, a significant understanding
of the pathophysiology of AD has been gained by studying amyloid deposition,
hyperphosphorylated tau, synaptic dysfunction, oxidative stress, calcium
dysregulation, and neuroinflammation. This review focuses on the role of non-
canonical secondary structures of DNA/RNA G-quadruplexes (G4s, G4-DNA, and
G4-RNA), G4-binding proteins (G4BPs), and helicases, and their roles in aging and
AD. Being critically important for cellular function, G4s are involved in the
regulation of DNA and RNA processes, such as replication, transcription,
translation, RNA localization, and degradation. Recent studies have also
highlighted G4-DNA’s roles in inducing DNA double-strand breaks that cause
genomic instability and G4-RNA’s participation in regulating stress granule
formation. This review emphasizes the significance of G4s in aging processes
and how their homeostatic imbalance may contribute to the pathophysiology
of AD.

KEYWORDS

G-quadruplex, aging, senescence, neurodegeneration, Alzheimer’s disease

Introduction

Alzheimer’s disease (AD) is a progressive neurodegenerative disorder that causes
cerebral atrophy, cognitive decline exhibited by memory loss, and behavioral and
psychiatric changes, such as depression and anxiety. Aging also involves symptoms that
overlap with AD. These symptoms are associated with synaptic loss, neuronal dystrophy,
vascular disintegration, and accumulation of misfolded protein aggregates (DeTure and
Dickson, 2019; Long and Holtzman, 2019; Abubakar et al., 2022). Due to these insults, cells
undergo multiple physiological changes and, thus, may contribute to aging and senescence
traits manifested in AD. Senescent cells accumulate in aging and age-associated disorders
and are coupled with cellular remodeling, which includes alterations of gene expression,
transcriptional changes, and chromatin rearrangements (Di Micco et al., 2021; McHugh and
Gil, 2018; Zhang et al., 2022; Kumari and Jat, 2021; van Deursen, 2014). Disease-modifying
studies have focused on strategies to combat the pathological features associated with AD
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with the hope of either delaying the progression of the disease or
reducing the severity of the symptoms (Wolfe, 2002; Godyn et al.,
2016; Ramesh and Govindaraju, 2022). While significant knowledge
has been gained about AD and aging, the precise mechanisms
involved remain poorly understood. Interest has grown in non-
canonical structures of DNA/RNA called G-quadruplexes and how
these structures may initiate and propagate senescence phenotypes
in age-associated neurodegenerative disorders (Antcliff et al., 2021).
Guanine-rich sequences in DNA and RNA are associated with each
other by Hoogsteen hydrogen bonding to form a square planar four-
stranded secondary structure called a G-quartet (Lejault et al., 2021;
Kim, 2019) These G-quartets stack together to form stable G4-DNA
and G4-RNA structures and are stabilized by monovalent cations
(K+>>Na+) (Figure 1A). G4-DNA exists in different conformational
states, such as intramolecular, intermolecular, and atypical
structures. Diverse topological shapes were identified in vitro for
intramolecular structures, such as parallel, antiparallel, and hybrid
structures (Figures 1B,C). However, due to the constrained
physiological environment in vivo, G4-DNA is inclined to exist
and fold into a parallel conformation (Kan et al., 2007; Xue et al.,
2007; Heddi and Phan, 2011; Petraccone et al., 2012; Lejault et al.,

2021). More than 700,000 G4-DNA motifs were identified by high-
throughput sequence analysis in human cancerous cells (Besnard
et al., 2012; Biffi et al., 2013; Chambers et al., 2015). G4-DNA
structures are enriched in the nucleosome-depleted and regulatory
regions (e.g., promoters, telomeres, DNA replication origins),
immunoglobulin heavy chain gene switch regions, and
mitochondrial DNA (Besnard et al., 2012; Damas et al., 2012;
Marsico et al., 2019; Tang and MacCarthy, 2021). G4-DNA is
important in replication, transcription initiation, telomere
maintenance, and recombination and also acts as a feedback
inhibition mechanism for the initiation of replication and
transcription progression (Maizels and Gray, 2013) (Figure 1D).
Concomitantly, G4s in RNA are thermodynamically more stable
than G4-DNA (Joachimi et al., 2009). G4-RNA structures are found
in the 5′- and 3′-UTRs (untranslated regions) of the mRNA and in
non-coding RNAs. G4-RNA modulates many events in RNA
function, such as mRNA translocation, maturation, degradation,
splicing, miRNA, PIWI-interacting RNA biogenesis, and ribosomal
RNA remodeling (Darnell et al., 2001; Marcel et al., 2011;
Subramanian et al., 2011; Rouskin et al., 2014; Bolduc et al.,
2016; Huang et al., 2017; Kwok et al., 2018; Kharel et al., 2020a).

FIGURE 1
Structure and function of G-quadruplexes. (A) Guanine-rich nucleic acid sequences are held by Hoogsteen base-pairing to form a highly stable
G-quartet structure. The stacked tetrads are stabilized by the metal ion K+ (highlighted in purple). (B) G-quadruplexes form different confirmations:
intramolecular (unimolecular) parallel and anti-parallel strands, and hybrid. (C) Intermolecular (bimolecular and tetramolecular) quadruplexes. (D)
G4 structures regulate nearly most of the molecular and cellular functions in the cell, such as replication, chromatin remodeling, transcription,
translation, telomere maintenance, and stress granule regulation.
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In recent years, the deleterious effects of G4-DNA/RNA
structures on the regulation of gene expression, recombination,
and genomic integrity have become the subject of intensive
research. For example, overly stabilized G4-DNA structures alter
transcription and promote DNA damage in neurons and glial cells
(Thomas et al., 2008; Johnson et al., 2010; Noh et al., 2021).
Interestingly, G4-DNA landscapes differ substantially between
cell types and can have a pivotal role in cell type–specific
processes (Hansel-Hertsch et al., 2016; Tabor et al., 2021). In
aged cells, stabilized G4-DNA may promote DNA damage and

genomic instability, thus establishing these complex structures as an
exciting research objective in neurological disorders and brain aging.
However, a detailed understanding of the G4 effects on brain cell
function and how they contribute to developing neurodegenerative
phenotypes is lacking.

In this review, we summarize recent evidence on G4-mediated
regulation of key cellular processes in aging and AD and how further
research on G4s could lead to the development of new avenues to
design potential therapeutic strategies to alleviate age-related
changes manifested in AD.

TABLE 1 G4 helicases involved in a wide range of cellular functions.

G4 helicase Affinity Function Comment

PIF1 G4-DNA Chisholm et al. (2012) DNA replication Paeschke et al. (2013) and telomere
maintenance Paeschke et al. (2013)

Cancer Wu et al. (2015)

BLM G4-DNA Cheok et al. (2005) DNA replication Rodriguez et al. (2012); Vannier et al.
(2013), transcription Nguyen et al. (2014b), recombination
Rodriguez et al. (2012), and telomere maintenance Vannier

et al. (2013)

Bloom syndrome Bharti et al.
(2013)

FANCJ G4-DNA London et al. (2008); Lee et al. (2021) DNA replication Wu et al. (2009) Fanconi anemia Liu et al. (2021b)

RECQ1 G4-DNA Li et al. (2014) Transcription Popuri et al. (2014); Lu et al. (2016) and
telomere maintenance Fry and Loeb. (1999)

WRN G4-DNA Crabbe et al. (2004); Wu et al. (2017) DNA replication Sarkies et al. (2012); Tang et al. (2016),
transcription (Shen et al. (1998), and telomere maintenance

Sarkies et al. (2012)

Werner syndrome Chai et al.
(2013)

DNA2 G4-DNA (Takahama et al., 2013) DNA replication Takahama et al. (2013) and telomere
maintenance Lin et al. (2013b); Markiewicz-Potoczny et al.

(2018); Kotsantis et al. (2020)

RTEL1 G4-DNA Vannier et al. (2012) DNA replication Wu et al. (2012), transcription Wu et al.
(2012), and telomere maintenance Masuda-Sasa et al.

(2008); Vannier et al. (2012)

Hoyeraal–Hreidarsson syndrome
Le Guen et al. (2013)

DDX11 G4-DNA van Schie et al. (2020) DNA replication Tippana et al. (2016) Warsaw breakage syndrome van
Schie et al. (2020)

DDX5 G4-DNA Wu et al. (2019)/G4-RNA (Dardenne et al.
(2014); Herdy et al. (2018)

Transcription Wu et al. (2019) and mRNA splicing
Dardenne et al. (2014)

DHX36 G4-DNA Creacy et al. (2008; Chen et al. (2015); You
et al. (2017); Ribeiro de Almeida et al. (2018)/G4-RNA

(Creacy et al. (2008)

Transcription, mRNA polyadenylation Benhalevy et al.
(2017), mRNA localization Maltby et al. (2020), mRNA

degradation Tran et al. (2004), miRNA function Booy et al.
(2014), translation Murat et al. (2018), and telomere

maintenance Booy et al. (2012)

DDX1 G4-DNA Zhang et al. (2021)/G4-RNA Zhang et al.
(2019b)

IgH class switch recombination Zhang et al. (2019b)

DHX9 G4-DNA Chakraborty and Grosse. (2011)/G4-RNA
Chakraborty and Grosse. (2011)

Translation regulation Murat et al. (2018)

DDX3X G4-RNA Herdy et al. (2018) Transcription Herdy et al. (2018) and rRNA remodeling
Penev et al. (2019)

DDX17 G4-RNA Dardenne et al. (2014); Herdy et al. (2018) Transcription Herdy et al. (2018), mRNA splicing Dardenne
et al. (2014), and rRNA modeling Penev et al. (2019)

DDX21 G4-RNA McRae et al. (2017) Translation McRae et al. (2017); McRae et al. (2020) and
rRNA modeling Penev et al. (2019)

DDX2 G4-RNA Wolfe et al. (2014) Translation Wolfe et al. (2014) Cancer Wolfe et al. (2014)

MOV10 G4-RNA Qureshi et al. (2012) Translation Kenny et al. (2014)

MOV10L G4-RNA Qureshi et al. (2012); Vourekas et al. (2015) piRNA biogenesis
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G4-binding proteins and helicases

The homeostatic balance of G4 structures is regulated by many
G4-binding proteins (G4BPs) and helicases that affect vital cellular
processes, such as transcription, replication, telomere maintenance,
mRNA processing, translation, and stress granule regulation (Sauer
and Paeschke, 2017; Juranek and Paeschke, 2022) (Tables 1, 2).
Telomeres are vital in genomic stability, and many proteins and
helicases bind to telomeric G4 structures ensuring their stabilization
and unwinding (Oulton and Harrington, 2000; Wang et al., 2011;
Gardano et al., 2013; Paudel et al., 2020). Some proteins that bind to
telomeric G4-DNA include POT1 (protection of telomeres 1), RPA
(replication protein A), CST (CTC1-STN1-TEN1), BRCA1 (breast
cancer type 1 susceptibility protein), BLM (Bloom syndrome
protein), and WRN (Werner syndrome ATP-dependent helicase)
(Lejault et al., 2021). Mammalian telomeric DNA is bound by a
protein complex called shelterin, which prevents telomeric overhang
from damage (Stewart et al., 2012; Chen, 2019). The proteins
TRF1 and TRF2 (telomere repeat binding factors 1 and 2) in the
shelterin complex bind to double-stranded telomeric DNA and
POT1 bind to the 3′ overhang of telomere repeats and regulate
the unwinding of G4-DNA structures with heterodimeric protein
TPP1 (TIN2-interacting protein) (Baumann and Cech, 2001; Wang
et al., 2007; Huppert et al., 2008; Hwang et al., 2012). In addition,
G4 helicases WRN and BLM of the RecQ family are recruited to the
telomeres and unfold the G4 structures to maintain the integrity of

the telomeres and enable telomere replication (Budhathoki et al.,
2014; Wu et al., 2018). WRN co-localizes with TRF2 and POT1, and
WRN and BLM bind to POT1 with high affinity, indicating that
telomeric DNA-binding proteins are vital for the recruitment of
G4 helicases (Opresko et al., 2002; Opresko et al., 2005). Telomere-
associated protein complex CST plays a key role in efficient telomere
replication and maintains telomere length (Surovtseva et al., 2009;
Bhattacharjee et al., 2017; Zhang et al., 2019a). CST has a strong
affinity to bind to G4 structures and unwinds G4-DNAmore rapidly
than POT1 (Miyake et al., 2009). RPA is a single-stranded DNA-
binding protein and is involved in DNA replication, repair, and
recombination. RPA resolves both parallel and antiparallel G4-DNA
and unwinds telomeric G4-DNA in a 5′→3′ direction (Prakash and
Borgstahl, 2012). In in vitro assays, RPA prevents the formation of
G4-DNA in the lagging strand during telomeric DNA replication
(Salas et al., 2006; Nguyen et al., 2014a). BRCA1 directly interacts
with telomeric G4-DNA and regulates telomerase activity and the
length of telomeric 3′ overhang (Xiong et al., 2003; Ballal et al., 2009;
Brazda et al., 2016). Carriers with the BRCA1 mutation have longer
telomeres than non-mutation carriers (Chene et al., 2013).
G4 helicase DHX36 regulates telomerase function by resolving
the G4-DNA structures within the RNA component of
telomerase (TERC) (Booy et al., 2012). Knockdown of DHX36 in
HEK293T cells leads to reduced telomerase activity, affecting
telomere length (Booy et al., 2012; Booy et al., 2015). RTEL1
(regulator of telomere elongation helicase 1) is another

TABLE 2 G4-binding proteins involved in cellular functions.

G4-binding
protein

Affinity Function Comment

POT1 G4-DNA Telomere maintenance Chaires et al. (2020) Unfolds G4s and refolds in complex with
POT1-TPP1

RPA G4-DNA Telomere maintenance Cogoi et al. (2013) Unfolds both parallel and
antiparallel G4s

CST G4-DNA Telomere maintenance Bhattacharjee et al. (2017) CTC1 contains DNA-binding site

BRCA1 G4-DNA DNA replication and transcription Brazda et al. (2016)

BLM G4-DNA DNA replication Rodriguez et al. (2012); Vannier et al. (2013), transcription Nguyen
et al. (2014b), recombination Rodriguez et al. (2012), and telomere maintenance

Vannier et al. (2013)

WRN G4-DNA DNA replication Sarkies et al. (2012); Tang et al. (2016), transcription Shen et al. (1998),
and telomere maintenance Sarkies et al. (2012)

SP1 G4-DNA Transcription Raiber et al. (2012)

MAZ G4-DNA Transcription Soldatenkov et al. (2008); Cogoi et al. (2010); Spiegel et al. (2021)

PARP-1 G4-DNA Transcription Xodo et al. (2008); Cogoi et al. (2010) Binding with c-KIT activates PARP-1

Nucleolin G4-DNA/
G4-RNA

Transcription Cogoi et al. (2014)

hnRNP A1 G4-RNA Telomere maintenance Kruger et al. (2010) and transcription Paramasivam et al. (2009);
Goering et al. (2020)

hnRNP H/F G4-RNA Transcription Decorsiere et al. (2011); Haeusler et al. (2014)

AFF2/FMR2 G4-RNA Transcription Yuva-Aydemir et al. (2019)

FMRP G4-RNA Translation

hTERT G4-DNA Telomere maintenance Paudel et al. (2020)
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G4 helicase that unwinds telomeric G4-DNA in the 5′→3′ direction
and is essential for telomere maintenance and DNA repair (Ding
et al., 2004; Barber et al., 2008) (Table 1). In the absence of RTEL1,
telomeres become short and fragile and result in the rare genetic
disorder Hoyeraal–Hreidarsson syndrome (Le Guen et al., 2013).

FANCJ belongs to the XPD group of G4 helicases that facilitate
DNA replication and recombination (Wu and Spies, 2016). It
resolves G4-DNA structures in the 5′→3′ direction, and its
absence leads to the persistent stalling of DNA replication at G4-
DNA structures (Castillo Bosch et al., 2014). FANCJ depletion in
human cells is sensitive to G4-DNA stabilization and results in
elevated DNA damage and apoptosis upon exposure to G4-DNA
stabilizing compound telomestatin (Wu et al., 2008). Moreover,
FANCJ-deficient cells accumulate deletions at genomic sequences
with G4-DNA structures, suggesting its crucial role in replication-
associated DNA damage (London et al., 2008).

PIF1 is a potent G4-DNA helicase (Byrd and Raney, 2017). In
yeast cells, it prevents G4-DNA–mediated genomic instability and
prevents DNA double-stranded breaks (DSBs) (Ribeyre et al., 2009;
Paeschke et al., 2013). Mammalian PIF1 is recruited to DNA DSB
sites, promoting homologous recombination at the sequences that
form G4-DNA structures (Paeschke et al., 2013). In the absence of
PIF1, replication fork progression is slowed in the vicinity of
putative G4-DNA motifs and increases the gross chromosomal
rearrangement at G4-DNA sites (Piazza et al., 2012; Paeschke
et al., 2013). G4-DNA structures at promoters are prominent
binding sites for transcription factors, affecting gene expression.

SP1 (specificity protein 1) is a zinc-finger transcription factor
that binds to G4-DNA structures of the c-KIT promoter and
regulates the expression of housekeeping genes (Raiber et al.,
2012). MAZ (myc-associated zinc finger) and PARP-1 (poly-ADP
ribose phosphate 1) interact with G4-DNA structures upstream of
the transcription start site of KRAS and activate KRAS transcription
(Cogoi et al., 2010) (Table 2). Nucleolin is a nucleolar
phosphoprotein involved in ribosome biogenesis, chromatin
remodeling, transcriptional regulation, and apoptosis (Tajrishi
et al., 2011). It selectively binds to endogenous and exogenous
G-rich sequences that fold into G4-DNA and G4-RNA
(Hanakahi et al., 1999). Nucleolin specifically binds to G4-
hexanucleotide repeat expansion (HRE) in C9orf72 (GGGGCC)n
and activates molecular cascades, leading to neurodegenerative
phenotypes (Haeusler et al., 2014). In hematopoietic cells,
together with heterogeneous nuclear ribonucleoproteins
(hnRNPs), nucleolin forms a lymphocyte-specific complex LR1
(lipopolysaccharide response factor 1) that binds to G4-DNA to
form immunoglobulin heavy chain (IgH) switch regions (Dempsey
et al., 1999).

G4-RNA structures are enriched in 5′-UTRs and are regulated
by eIF4A linked to cancer development (Wolfe et al., 2014). DDX3X
(DEAD-box helicase 3 X-linked) regulates rRNA remolding by
regulating rRNA G4 structures and resolves G4-RNA at 5′-UTR
of NRAS oncogene (Herdy et al., 2018; Penev et al., 2019).
DDX5 and DDX17 unfold G4-RNA structures to regulate
transcription and bind with hnRNPs to mediate pre-mRNA
splicing (Dardenne et al., 2014; Herdy et al., 2018). DDX5 also
resolves G4-DNA motifs at the Myc promoter to facilitate its
transcription (Wu et al., 2019) (Table 1). G4-RNA helicase
DDX21 directly binds rRNA G4 structures to regulate their

functions (McRae et al., 2017). DDX21 unfolds G4-RNA
structures at the 3′- and 5′-UTRs of MAGED2, modulating its
gene expression (McRae et al., 2017; McRae et al., 2020). RNA
helicase A/DHX9 (DExH-box helicase 9) binds to and resolves both
G4-DNA and G4-RNA and promotes translation by unwinding 5′-
UTR G4-RNA structures (Chakraborty and Grosse, 2011; Murat
et al., 2018). The G4 helicase DHX36 efficiently resolves G4-RNA
structures and regulates cellular processes, such as translational
regulation (Murat et al., 2018; Chen et al., 2021), mRNA
localization and degradation (Tran et al., 2004; Maltby et al.,
2020), telomere regulation (Booy et al., 2012), long ncRNA
function (Booy et al., 2016), and miRNA function (Creacy et al.,
2008; Booy et al., 2014; Chen et al., 2015). DDX1, DDX24, DDX42,
and DDX58 bind and resolve G4-DNA and G4-RNA structures;
however, their regulatory functions remain to be characterized
(Zyner et al., 2019; Zhang et al., 2021). G4-RNA helicases
MOV10 and MOV10L1 are associated with different RNA
regulatory pathways, and both preferably bind to G4-RNA motifs
in vivo (Kenny et al., 2014; Vourekas et al., 2015). MOV10 binding to
G4-RNA motifs is involved in FMRP-mediated translational
regulation, and MOV10L1 binding is linked with piRNA
biogenesis and function (Kenny et al., 2014; Vourekas et al., 2015).

Many G4-regulating proteins are linked to human diseases
(Lerner and Sale, 2019; Brosh and Matson, 2020; Antcliff et al.,
2021). Helicase WRN is mutated in Werner syndrome, which is
characterized by accelerated aging, cardiovascular disease, and
cancer (Epstein et al., 1966; Lerner and Sale, 2019). Dyskeratosis
congenita, characterized by severe multisystem and bone marrow
failure, is linked to mutations in RTEL1, a helicase that processes
telomeric G4-DNA (Walne et al., 2013; Lerner and Sale, 2019). In
Fanconi anemia, the FANCJ G4 resolving helicase is mutated and
leads to cancer (Wu and Brosh, 2009; Lerner and Sale, 2019).
Mutations in the helicase XPD lead to xeroderma pigmentosum
and Cockayne syndrome (Lerner and Sale, 2019). Mutations in the
telomere maintenance complex (the CST complex; CTC1, STN1,
and TEN1) lead to severe multisystem Coats plus syndrome (Simon
et al., 2016). Mutated helicase BLM causes Bloom syndrome, which
is associated with cancer (Lerner and Sale, 2019). The L319P
mutation in the helicase PIF1 leads to a higher risk for cancer
(Wu et al., 2015). All these previously mentioned diseases, with the
exception of PIF1L319P-linked cancer, are characterized by some
degree of brain pathology and aging phenotypes. The RNA-
binding protein family hnRNP is closely related to health and
diseases and binds to both G4-DNA and G4-RNA structures
(Geuens et al., 2016). hnRNP A1 and UP1 modulate replication,
transcription, and telomere maintenance by destabilizing
G4 structures and keeping them single stranded in an unfolded
form (Fukuda et al., 2002; Paramasivam et al., 2009; Kruger et al.,
2010; Ghosh and Singh, 2018; Clarke et al., 2021). hnRNP H/F
specifically binds to unfolded G4-RNA to prevent the formation of
G4 structures and its interaction with DHX36 can modulate
translation (Herviou et al., 2020). hnRNP H/F plays a role in
splicing and polyadenylation regulation and is associated with the
C9orf72 G-rich repeats and has been predicted to regulate RNA-
processing binding to G4-RNA motifs (Decorsiere et al., 2011;
Haeusler et al., 2014). Sequestration of hnRNP H might affect the
expression of mRNAs containing G4-RNA motifs, and hnRNP H
associates with G4-forming C9orf72 repeats and co-localizes with
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G4 foci in cells derived from patients with amyotrophic lateral
sclerosis (ALS) but not in non–ALS-derived cells. Formation of these
G4 aggregates correlates with dysregulated gene expression in ALS
patient’s brains (Prudencio et al., 2015). In ALS and frontotemporal
dementia (FTD), AFF2/FMR2 regulates the expression of the
C9orf72 allele containing G-rich sequences, and knockdown of
AFF2/FMR2 decreases the expression of the mutant allele,
resulting in the rescue of axonal degeneration and TDP-43
pathology. Knockdown of AFF2/FMR2 also results in reduced
levels of repeat RNA foci and dipeptide repeat proteins in the
cortical neurons (Yuva-Aydemir et al., 2019). These findings
provide insights into the mechanism underlying the toxicity and
dysregulation of transcription of G-rich sequences in ALS and FTD.

Many functions of G4BPs and G4 helicases point to their
importance in the regulation and modulation of G4 structures in
cells. The G4 structures are implicated in various types of cancers
and neurological disorders by three distinct mechanisms: i)
stabilization of G4-DNA/RNA structures that cause disease, ii)
abnormal de-stabilization of G4-DNA/RNA structures that cause
disease, and iii) mutations that affect the expression and function of
helicases and G4BPs that regulate G4 structures in cells (Tables 1, 2).
These processes are interlinked as dysfunctional helicases, and
G4BPs disrupt the homeostatic balance of G4 structures which
may lead to senescence and progeroid phenotypes manifested in
age-related neurological disorders. Therefore, a deeper

understanding of the processes related to their formation,
function, and recognition will be a crucial puzzle to solve to
provide better insights into the regulation of G4 structures in
aging and neurodegeneration.

G4-DNA in replication

A recent genome-wide map of initiation sites of DNA
replication identified G4-DNA motifs in higher eukaryotes and
humans (Cayrou et al., 2011; Besnard et al., 2012; Langley et al.,
2016). G4-DNA structure formation seems to be essential for the
initiation of DNA replication in the cells (Valton et al., 2014) and to
favor the transient opening of the double helix during DNA
replication. However, once formed, these G4-DNA structures are
stable and may stall DNA polymerase, thereby impeding the
progression of the replication fork (Woodford et al., 1994;
Weitzmann et al., 1996). Deletion of FANCJ in Caenorhabditis
elegans results in the accumulation of DNA breaks upstream
from G4-DNA (Kruisselbrink et al., 2008). Human cell lines with
deletion of FANCJ accumulate DNA breaks in the vicinity of the G4-
DNA structures (London et al., 2008). Therefore, these G4-DNA
structures may become an obstacle to the replication machinery and
interfere with the replication of both leading and lagging strands,
causing DNA DSB–promoting mutagenesis, such as insertions,

FIGURE 2
G4 structures regulate cellular processes. (A) G4 structures stabilized in a single-stranded DNA impede the progression of the replication fork,
thereby inhibiting replication. Stabilized G4-DNA structures have to be unwound to permit the replication machinery to proceed for both leading and
lagging strand synthesis. Replication stalling at G4-DNA structures leads to the formation of DNA DSBs contributing to genomic instability. (B)
Transcription is inhibited due to stable G4-DNA structure formation downstream of transcription start site (TSS). G4-DNA structure restricts and
inhibits the activity of RNA polymerase from extending the nascent mRNA and thereby stalls transcription at G4-DNA units. (C) G-rich 3′ overhang of
telomeres forms G4 structures and are involved in telomere end protection. Stabilization of G4-DNA structures impairs telomere repeat synthesis by
telomerase enzyme and leads to telomere shortening. (D) Formation of G4-RNA structures hinders the scanning of 5′ untranslated region (5′-UTR) by
ribosomes and leads to the restriction of translation. The 80S ribosomes engaged in the translation elongation of nascent polypeptide stalled within the
ORF by stabilized G4-RNA structures.
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deletions, inversions, and recombination (Lerner and Sale, 2019)
(Figure 2A). These aberrations caused by the G4-DNA structures
could be significant pathogenic drivers in dividing brain cells, such
as glial and endothelial cells (Lejault et al., 2020; Noh et al., 2021;
Tabor et al., 2021).

To mitigate the deleterious effects of G4-DNA, G4BPs and
G4 helicases specifically bind to and resolve G4-DNA structures
during cell division. Eukaryotic cells have at least 10 helicases that
regulate G4-DNA structures during replication: DEAH-box
helicases DHX36 and DHX9; RecQ helicases BLM and WRN; Fe-
S helicases FANCJ, DDX11, RTEL1, and XPD; and superfamily
1 helicases PIF1 and DNA2 (Lerner and Sale, 2019). During
replication, many proteins in yeast and metazoans show high
affinity and specificity for G4-DNA. These include PIF1, FANCJ,
and RecQ, which play a significant role in suppressing genomic
instability associated with G4-DNA formation (Fry, 2007).
Disruption of PIF1 in yeast cells causes frequent stalling of DNA
replication and increases gross chromosomal rearrangements
proximal to G4-DNA motifs, and PIF1-deficient cells are more
susceptible to the formation of DNA DSBs (Paeschke et al., 2011).

Replication stress is caused by multiple factors, such as oxidative
DNA damage and aberrations in growth signaling pathways and
contributes to genome instability and accelerates the aging process.
RecQ helicases contribute to genome stability at stalled replication
forks by activating the checkpoints, stabilizing stalled replication
complexes, and preventing the formation of aberrant recombination
intermediates (Bennett and Keck, 2004). In humans, mutations in
WRN RecQ helicase cause genome instability and the premature
aging syndrome Werner syndrome (Bachrati and Hickson, 2003).
Defects in other RecQ helicases, such as BLM and RECQL4, also lead
to genomic instability and premature aging syndromes, such as
Bloom and Rothmund-Thomson syndromes (Larizza et al., 2006).
Replication stress–induced DNA damage is detected in pre-
neoplastic lesions in humans and mice, strongly implicating
replication stress in the etiology of age-related diseases. DNA
damage was specifically detected at fragile chromosomal sites,
which were induced in cultured cells treated by drugs to inhibit
DNA replication (Gorgoulis et al., 2005). Replication deficits have
also been reported in AD. One study that investigated the
correlation between disease pathology and replication suggests
that neurons degenerate due to lethal cell-cycle defects (Yang
et al., 2001). This study used fluorescent in situ hybridization to
explore the chromosomal component of interphase neuronal nuclei
in the adult human brain and found direct evidence for attempted
cell cycling in AD neurons, which completes a nearly full S phase but
does not initiate mitosis, thus resulting in tetraploidy. This genetic
imbalance was proposed to cause a neuronal loss in AD and has
provided evidence for DNA replication in affected neurons,
suggesting that adult neurons attempt to divide but do not
complete the process (Yang et al., 2001). Aneuploidy and DNA
replication also have a role in AD pathology. In AD, some neurons
re-enter the cell cycle and pass through functional interphase with
complete DNA replication, which is potentially associated with
neuronal cell death (Mosch et al., 2007). These crucial findings
suggest that replication stress–induced genomic instability
contributes to pathogenic pathways and leads to
neurodegeneration in AD and aging. Replication stress could be a
key element in explaining the ectopic cell-cycle events and genomic

instabilities in AD. The DNA replication stress hypothesis in AD
suggests that chromosomal reduplication without proper cell-cycle
completion and mitotic division causes neuronal cell dysfunction
and death (Yurov et al., 2011). However, this theory requires more
input and research to explain the cause and consequences of
genomic instability in the AD brain. Investigating G4-induced
replication stress can contribute to the understanding of the
course and classification of the sequences of abnormal events
that generate pathologic cellular and organism phenotypes in
age-related disorders, such as AD.

G4-DNA and chromatin remodeling

Chromatin is a highly dynamic structure of nucleosomes
containing histone proteins that wrap around a stretch of DNA
to assist in the folding of DNA inside the nucleus (Kornberg, 1974;
Noll, 1974; Maclean and Hilder, 1977; Pennisi, 2003). Nucleosome
occupancy is not homogenous across the genome, and certain
regions in the DNA stretch are devoid of nucleosomes and are
called nucleosome-depleted regions (NDRs) (Segal et al., 2006).
NDRs are transcriptionally active regions. They are more
accessible to DNA-binding proteins and factors that regulate
transcription and gene expression (Yen et al., 2012). The
positioning of NDRs is regulated by histone modifications, such
as acetylation and methylation, and defines its accessibility to the
binding of key transcriptional factors (Bannister and Kouzarides,
2011; Venkatesh and Workman, 2015). Hence, nucleosome
positioning that maintains chromatin architecture specifies the
epigenetic status of the cell, and this mechanism is also
associated with the formation and stabilization of G-quadruplex
structures. However, the implications of G4s in genomic DNA for
chromatin remodeling and epigenetic programming have not been
considered and explored until recently.

Epigenetic mechanisms, such as DNA methylation and histone
acetylation and deacetylation, re-modulate chromatin architecture,
which are dysregulated in AD (Delgado-Morales et al., 2017; Bano
et al., 2021; Santana et al., 2023). Epigenetic profiles can vary
throughout an individual’s lifetime, especially during the aging
process, and pathological conditions, such as AD and factors
such as stress and diet affect epigenetic expressions and
neuropathology. G4 structures could play a prominent role in
contributing to AD pathology.

By using G4-specific antibody chromatin immunoprecipitation
(ChIP)–sequencing analysis, the Balasubramanian lab showed that
the majority of G4s are localized in NDRs and associated with active
transcription, indicating that chromatin remodeling programs G4-
DNA formation (Chambers et al., 2015; Hansel-Hertsch et al., 2016;
Hansel-Hertsch et al., 2018). The chromatin opening activates
transcription, creates suitable conditions for the G4 formation,
and can drive or facilitate epigenetic changes and reorganization
(Sekibo and Fox, 2017; Zheng et al., 2017). It would be very
interesting to determine the dynamic changes in G4s and G4-
regulating proteins in the context of pathology associated with
AD and AD–related dementias (ADRDs). Modulating changes
associated with AD pathology can potentially benefit designing
strategies to overcome disease manifestation. It is unclear if there
are any cell-specific and tissue-specific changes in G4 homeostasis,
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and addressing their roles in specific cell types in the central nervous
system will be important to decipher mechanisms contributing to
pathology associated with aging and AD.

The role of G4s in chromatin remodeling was first explained by a
study on REV1, a DNA repair protein that ensures DNA replication
during DNA damage. The cells with mutant REV1 display delayed
or compromised DNA replication, specifically at G4-forming
sequences (Sarkies et al., 2010). The inability of the G4 structures
to resolve in the REV1mutant cells leads to replication stalling along
with epigenetic changes. The expression of the p-globin locus was
increased and associated with the loss of histone modifications along
with the loss of H3K9 methylation leading to transcriptional
activation (Sarkies et al., 2010). This study explains that G4-DNA
formation resulted in repeated loading of newly synthesized histones
that led to permanent loss of repressive epigenetic marks. Moreover,
a study from the Balasubramanian lab explains the relationship
between G4s and the incorporation of epigenetic marks. Unresolved
G4 structures in REV1 mutants in chicken DT40 cells result in the
loss of distinct histone marks promoting transcription (Schiavone
et al., 2014). G4-DNA structures are co-localized with histone
modifications in NDR euchromatin (Komurkova et al., 2021).
These studies revealed the importance of G4-DNA structures in
modifying the histone code, shaping the chromatin architecture, and
therefore modulating the epigenetic landscape.

Histone modifications have been associated with synaptic
plasticity, learning, and memory, and dysregulation of these
processes is present in mouse models of aging and AD (Nativio
et al., 2018). Loss of heterochromatin is coupled with reduced
nucleosome occupancy during aging, resulting in the loss of
transcriptional silencing and contributing to age-associated
genomic instability. This process is strongly associated with
accelerated aging, leading to reduced lifespan (Larson et al., 2012;
Pal and Tyler, 2016; Sidler et al., 2017; Yi and Kim, 2020). Although
there is no cure for AD, it is still possible to dwell on and design new
strategies, and considering the novel regulatory functions of G4s in
modulating the histone code could be the next subject of research
that could lead us to new avenues and novel mechanisms in AD
pathology.

G4-DNA structures can be stabilized or destabilized by
methylation, based on the G4 topology and positions of
methylated (m)CpG densities (De and Michor, 2011; Lin et al.,
2013a; Stevens and Kennedy, 2017). The strong interactions between
DNA methyltransferases (DNMTs) and G4-DNA motifs have been
confirmed in vitro (Cree et al., 2016). G4s from the promoter regions
of the oncogene c-MYC have shown efficient binding affinities to de
novo methyltransferases DNMT1, DNMT3A, and DNMT3B while
being limited to no binding to non-G4 mutants (Cree et al., 2016).
G4 ChIP-seq analysis from human leukemia cells have revealed that
the majority of G4 motifs are found in the open chromatin,
overlapped with CpG islands. Interestingly, G4-CpG overlaps
were hypomethylated and proximal to DNMT1-binding sites that
were detected by ChIP-seq (Mao et al., 2018). In this study, the
authors proposed that G4s in CpG islands sequester DNMT1,
inhibiting its activity and cooperating with transcription factors
to protect the CpG islands from methylation (Mao et al., 2018).
Thus, G4-DNA may have a role in the formation and maintenance
of CpG methylation and in modulating chromatin dynamics. In
summary, G4-DNA interacts with DNMTs and transcription factors

and may contribute to histone modifications, chromatin relaxation,
and nucleosome repositioning during replication and transcription
(De and Michor, 2011; Lin et al., 2013a; Chambers et al., 2015; Cree
et al., 2016; Mao et al., 2018). However, G4-DNAmay help shape the
chromatin structure by altering nucleosome positioning and histone
modifications, and G4 structures may simply form at open
chromatin sites as a consequence of DNA accessibility and
negative supercoiling required for active transcription (Selvam
et al., 2014). Therefore, future studies must evaluate the direct
causation between G4-DNA formation and chromatin
remodeling and identify regulators that modulate the epigenetic
landscape.

Aging-associated epigenetic changes include histone
modifications, DNA methylation, and chromatin remodeling.
All of these may contribute to regulating the aging process and
age-related diseases, such as AD and other dementias. The
consequences of epigenetic changes during aging include
replicative senescence, altered accessibility to transcription
factors, leading to aberrant gene expression, and genomic
instability. However, few studies have tried to establish the
connection between G4 structures that modulate the
epigenetic landscapes and that which may contribute to the
aging process and the pathology associated with neurological
disorders. Some have shown that methylation at the C5 position
of cytosine (5 mC) within G4 motifs confers a high degree of
stability to G4-DNA (Hardin et al., 1993). Methylated cytosines
at dCGG repeat within G4 motifs, and expansion of dCGG
repeats are associated with the downregulation of the FMR1
gene in fragile X mental retardation syndrome (Liu et al., 2018).
In addition, C5 methylation within the hexanucleotide repeat
GGGGCC in the non-coding region of the C9orf72 locus
imparts stabilization to G4 structures and thereby implicates
methylation-dependent G4 stabilization in diseases ALS and
FTD (Zamiri et al., 2015). In contrast to the notion that G4s
influence DNA methylation at specific sites, genomic instability
was observed where G4s failed to resolve in cells lacking
G4 helicases, such as PIF1, FANCJ, and BLM (Opresko et al.,
2005; Wu et al., 2008; Paeschke et al., 2013; Nguyen et al., 2014b;
Dahan et al., 2018). These findings suggest that G4s alter the
placement of modified histone proteins that pack chromatin,
which is a hallmark of epigenetic regulation (Sarkies et al.,
2010).

Epigenetic abnormalities are observed at the onset and during
the progression of age-related diseases, such as AD (Cavalli and
Heard, 2019). The global DNA methylation pattern decreases with
aging and contributes to aging-associated heterochromatin loss,
and some genomic regions are also characterized by age-related
locus-specific hypermethylation (Xiao et al., 2019; Ferret et al.,
2023). Nevertheless, much progress has been made in
understanding the genetic basis of AD in which multiple loci
have been discovered. The changes in histone acetylation,
methylation, phosphorylation, and other epigenetic
modifications have been observed in aging, AD, and ADRDs.
The next big question is to elucidate whether these changes are
G4 dependent or cause and initiate the pathology by modulating
the G4s and G4 regulatory proteins. It is also crucial to determine if
the metabolic alterations driven by epigenetic changes are the
cause or consequence of dysregulation in G4 homeostasis.
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G4-DNA and transcription

Putative G4-DNA motifs are enriched at transcription start
sites and promoter regions, thereby regulating transcription and
gene expression (Agarwal et al., 2014; Marsico et al., 2019). G4-
DNA structures allow and inhibit transcription by recruiting
proteins, blocking polymerases and topoisomerase poisoning,
and keeping the nascent strand in a single-stranded
conformation by the formation of a G4 structure on the non-
transcribed strand (Balasubramanian et al., 2011; Berroyer and
Kim, 2020; Bossaert et al., 2021) (Figure 2B). The role of G4-DNA
in regulating gene expression is well studied in yeast and cancer
cells but is very limited in other cell types (Cogoi and Xodo, 2006;
Lopez et al., 2017). Stabilizing G4-DNA results in reduced mRNA
transcript levels in genes that contain G4-DNA motifs in their
respective promoters, such as proto-oncogenes KRAS and c-MYC
(Siddiqui-Jain et al., 2002; Gonzalez and Hurley, 2010). G4-DNA
found in the c-MYC promoter functions as a silencer element and
associates with many G4-DNA–binding proteins, such as
hnRNPA1, Eef1A, and RPS20 (Gonzalez and Hurley, 2010).

Nucleolin, a specific G4-DNA–binding protein, acts as a
repressor of c-MYC transcription by binding and stabilizing the
formation of G4-DNA in the active regions of the c-MYC promoter
(Gonzalez et al., 2009; Cogoi et al., 2014). H-ras, a proto-oncogene,
also contains G4-DNA in its promoter regions, and MAZ (Myc-
associated zinc-finger protein) is recruited to the G4-DNA motifs,
leading to the activation of H-ras (Moruno-Manchon et al., 2020).
These findings suggest that G4-DNA motifs act as a molecular
switch, regulating the switching ON or OFF of gene expressions via
structural changes. By contrast, co-transcriptional activator Sub1
(PC4 is the mammalian homolog of Sub1), which interacts with
G4-DNA and G4 helicase PIF1, suppresses G4-mediated genomic
instability by facilitating the recruitment of PIF1 helicase to co-
transcriptionally formed G4-DNA structures (Cogoi and Xodo,
2006). We previously demonstrated that PC4 and Sub1 bind to G4-
DNA forming a sequence within the Atg7 gene that regulates
autophagy (Johnson et al., 2010). The G4-DNA helicases WRN
and BLM contain G4 motifs in their promoter regions, and their
aberrant function due to altered transcription establishes a link
between G4-DNA and gene expression. In addition, cells deficient

FIGURE 3
G-quadruplexes contribute to progeroid phenotypes in aging. G4s are overtly stabilized during aging and disrupt many physiological processes
inside the cell. (A) Stabilization of G4 structures on the L1 sequences, BACE1, and ATG7 regulate the pathways driving AD pathogenesis, and restoring the
homeostatic balance of G4 structures could provide new therapeutic avenues. (B) Accumulation of neurofibrillary tangles in AD-induced progression is
exacerbated by stabilization of G4 structures, leading to DNA damage and causing genomic instability. Postmortem samples of AD brain samples
show increases in γH2AX and 53BP1 and decreased DNA damage response. (C) G4 helicase DHX36 resolves G4 structures formed on the mRNA and
prevents the accumulation of G4s in stress granules. In AD, G4 helicases lose function, G4 structures are overtly stabilized, and G4 binding proteins form
complexes with tau aggregates. mRNAs with stabilized G4 structures become inaccessible, leading to termination of translation. (D) Stabilization of G4s
inhibits telomerase activity, contributes to telomere shortening, and is associated with the accumulation of DNA damage and degeneration of glial cells.
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with BLM show high rates of sister chromatid exchange sites of G4-
DNA motifs in transcribed genes (Rodriguez et al., 2012; Nguyen
et al., 2014b; van Wietmarschen et al., 2018).

Stabilization of G4-DNA structures by pharmacological means,
such as pyridostatin (PDS), impedes the progression of the
transcriptional machinery and affects gene expression (Scheibye-
Knudsen et al., 2016; Miglietta et al., 2021). Many oncogenes and
tumor suppressor genes, such as SRC and c-MYC, are downregulated
by PDS treatment, and differences in transcriptional changes at G4-
DNA motifs may be the result of direct G4-DNA stabilization or
DNA damage–mediated transcriptional repression (Miglietta et al.,
2021). We have shown that PDS alters autophagy in neurons and
glial cells by reducing the expression of Atg7 (Johnson et al., 2010;
Noh et al., 2021). Moreover, we have shown that overexpression of
PIF1 in the presence of PDS restores autophagy in cultured primary
neurons and protects neurons from dying (Figure 3A). Helicase-
dead mutant PIF1 could not rescue the effects of PDS-associated
autophagy reduction, displaying the importance of G4-DNA
structures in regulating the expression of survival genes (Johnson
et al., 2010). Transcriptome analysis by RNA sequencing has
revealed that G4-DNA stabilization by PDS activates the
response of innate immune genes in human and murine cancer
cells (Scheibye-Knudsen et al., 2016). Stabilizing G4 structures with
PDS leads to accelerated aging in C. elegans (Lu et al., 2004). The
transcription of many genes is altered in the aged brain (Lipinski
et al., 2010; Masters et al., 2015). We demonstrated that aged mouse
brains contain higher levels of G4-DNA than young mouse brains
(Johnson et al., 2010). However, the regulatory functions of G4-
DNA structures in modulating the transcriptome profile in neurons
and glial cells are not known. G4-DNA could be regulating the
expression of many essential genes crucial for cellular processes,
such as autophagy, apoptosis, oxidative stress, protein misfolding,
and mitochondrial damage, as it contains putative sequences that
can fold into G4-DNA structures (Agarwal et al., 2014). The
discovery of G4-DNA regulates gene expression, highlighting the
fact that G4-DNA structures could be potential targets for disease
treatment.

G4-DNA regulates the expression of several genes that are
essential to pathways associated with AD. β-Amyloid precursor
protein-cleaving enzyme 1 (BACE1) encodes a transmembrane
protease that cleaves the amyloid precursor protein (APP) to
generate the amyloid-beta (Aβ) peptide that misfolds and
accumulates in AD (Fisette et al., 2012). The recruitment of
heterogeneous nuclear ribonucleoprotein H (hnRNPH) to the
G-rich region in the exon 3′ of BACE1 facilitates full-length
functional proteins. However, the formation of G4-DNA within
its G-rich region prevents hnRNPH recruitment and results in
alternate splicing, producing shorter protein isoforms that lack
proteolytic function (Hanna et al., 2021). Facilitating G4-
mediated exon splicing by knocking down hnRNPH promotes
the production of a shorter alternative BACE1 isoform that
decreases Aβ production, suggesting G4-mediated splicing as a
potential therapeutic strategy to mitigate the production of this
AD-associated peptide (Hanna et al., 2021) (Figure 3A). A
fascinating study recently demonstrated that G4-DNA structures
in the active L1 sequences co-localize with RNAPII, which inhibits
the overall transcription and affects splicing events, thereby affecting
the neuronal gene expression in AD (Gyenis et al., 2023)

(Figure 3A). Additionally, G4 motifs in the active L1 sequences
control cell-cycle progression and apoptosis and potentially
contribute to AD pathogenesis (Gyenis et al., 2023). Moreover,
RNA polymerase stalling occurs more frequently in aging tissues
than in young tissues (Miller et al., 2017). DNA damage reduces
transcription efficiency, resulting in the dysregulation of pathways,
such as autophagy, nutrient sensing, fatty acid metabolism,
proteostasis, and immune function, that contribute to aging
(Miller et al., 2017). Based on the role of G4-DNA in regulating
the transcriptome, we hypothesize that G4-DNA structures play a
significant role in controlling the expression of genes involved in
pathology cascades associated with age-related neurological
disorders.

Multiple genome-wide transcriptome changes are associated
with aging and AD. Recently, a study analyzed the hippocampus
and two regions of the cortex in 107 aged donors and identified sets
of co-expressed genes correlated with pathological tau and
inflammation markers (Marques-Coelho et al., 2021).
Transcriptomics revealed robust and stereotyped gene expression
patterns in spatial and temporal variations over the lifespan from
development through adulthood into aging, and the aged brain
displays greater variability in its transcription profile than do
younger brains. Many gene expression studies conducted in
younger cohorts have revealed dysfunction related to dementia
phenotypes in a variety of biological pathways, such as energy
metabolism, neuroinflammation, axon–myelin interactions,
synaptic transmission, protein misfolding, and transcription
factors. However, it is still unclear whether robust relationships
between transcriptional changes and disease pathology or cognition
deficits extend to older individuals (Marques-Coelho et al., 2021). In
addition, gene expression analysis with RNA sequencing data from
postmortem brain samples have found that alterations in the
transcription profile are prominent in the temporal lobe—which
is affected more in the early stages of AD pathogenesis—than in the
frontal lobe (Hernandez et al., 2011). These discoveries are very
interesting and raise important questions if there are any region-
specific regulations of amyloid pathology in AD brains. It is still
uncertain what determines the early transcriptional changes that are
before β-amyloid and tau accumulation in AD brains. Many genes
that are manifested in AD pathology are regulated by G4 structures,
and the extent to which they contribute to disease pathology remains
obscure. We hypothesize that transcriptional dysregulation could be
mediated by an imbalance in G4 homeostasis and may well precede
tau and amyloid aggregation. It is also possible that helicases and
regulatory proteins that control G4 dynamics could be altered and
contribute to transcriptional dysregulation in AD.

Thus, gene expression changes in the AD brain may occur at the
transcript level, and several genes encoding proteins for alternative
splicing machinery may be altered in the AD brain. In addition, a
large number of isoform switches have been associated with
alternative transcription start sites, termination sites, exon
skipping, and intron retention. These alterations in the
transcription and alternative splicing are more prominent in the
temporal lobe affected early in AD (Hernandez et al., 2011).
Epigenetic changes regulate gene expression, and DNA
methylation in the brain decreases with age (Yu et al., 2015).
Genes implicated in AD (e.g., BDNF, MAPT, ANK1, SORL1,
SIRT1, and APP) show differential methylation patterns in
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individuals with AD and controls (De Jager et al., 2014; Mano et al.,
2017). The DNA repair protein BRCA1 is hypomethylated in AD,
and elevated levels of BRCA1 localize to the cytosol, co-aggregate
with insoluble tau, and affect neurite and spine morphology
(Pellegrini et al., 2021). In addition, epigenetic age acceleration is
heritable in AD and associated with neuropathological protein
accumulation and cognitive decline (Schaffitzel et al., 2001;
Levine et al., 2015). Therefore, understanding the relationships
among DNA methylation, aging, longevity, and age-related
diseases may hold promise to predict the phenotypes and design
strategies to combat the disease. Research pertaining to possible
mechanisms driving the G4-dependent epigenetic and gene
expression alterations in neurological disorders is limited. With
the diverse physiological roles of G4s and G4 helicases in shaping the
genome architecture, it is imperative to predict that G4 structures
regulate a wide myriad of functions in disease-associated pathways.
Many age-related neurodegenerative diseases share common
downstream pathological cascades, and it is a challenge to design
therapeutics that target specific pathways or a gene or a protein
without showing any adverse off-target effects. Therefore,
understanding the G4 dynamics in the aging process could
provide us with novel mechanisms, and in the future, these G4s
could be used as new molecular biomarkers to predict age-related
neurological disorders.

G4 structures at telomeres

Telomeres are a series of repetitive base-pair sequences at the
chromosome ends that facilitate their replication. Telomeric DNA
possesses a G-rich consensus sequence (TTAGGG)n with a double-
stranded portion of several kilobases and a 3′ overhang of a few
hundred bases and has the propensity to fold into G4-DNA
structures (Figure 2C). The formation of G4-DNA motifs was
identified by diverse G4-specific antibodies, such as Sty3, Sty49,
BG4, and D1 (Biffi et al., 2013; Kang et al., 2016; Liu et al., 2016;
Javadekar et al., 2020). G4-DNA structures at the telomeres challenge
the replication machinery and may form a barrier for replication forks,
potentially leading to telomere instability. In cells lacking FANCJ, G4-
DNA structures are stabilized and impede the progression of DNA
polymerase, stalling replication and thereby causing DNA DSBs.
Unresolved G4-DNA inhibits telomerase activity causing telomere
shortening (Drosopoulos et al., 2015). These physiological events are
vital in dividing brain cells, such as astrocytes and microglia, and
dysfunctional telomerase activity could lead to serious deleterious effects
in brain processes. Many G4 helicases (e.g., PIF1, WRN, BLM, RTEL1,
and DNA2) exhibit telomere G4-DNA unwinding activity. Among
them, PIF1 is the best characterized, whereas PIF1-deficient cells slow
down the progression of DNA replication and induce DNA DSBs
(Paeschke et al., 2013; Drosopoulos et al., 2015). BLM and WRN are
recruited by shelterin proteins, and their deficiency results in the
formation of G4-DNA structures in cells, especially at telomeres
(Vannier et al., 2013). G4 helicase RTEL1 resolves G4-DNA in an
ATPase-dependent manner, and cells deficient in RTEL1 display G4-
DNA stability that dramatically enhances telomere fragility (Vannier
et al., 2012). Disruption of the CST complex at telomeric G4-DNA
motifs results in disrupted telomere replication and leads to telomere
shortening (Masuda-Sasa et al., 2008; Zhang et al., 2019a). Mammalian

DNA2 helicase is localized at telomeres, andDNA2 deficiency inmouse
cells results in defects in telomere replication that are enhanced by G4-
DNA stabilization (Takahama et al., 2013).

Chromatin homeostasis at telomeres and sub-telomeric regions
depends on a telomeric repeat DNA that forms a G4-RNA (TERRA)
structure that functions as a protein docking scaffold (Azzalin et al.,
2007). TERRAs contain long non-coding RNA and telomeric
transcripts (Arora and Maiti, 2009; Deng et al., 2009) and are the
key to maintaining the telomeric structures via interactions with
telomere-associated proteins, such as TRF2. TRF2 has a high affinity
to TERRAs and relies on the formation of G4-RNA structures in
TERRAs. G4-RNA–mutated TERRA repeats do not bind to
TRF2 and impede the telomere length (Riou et al., 2002). The
activity of telomerase is also influenced by the resolving G4s at
the 5′-ends of the RNA component of telomerase by DHX36 (Booy
et al., 2012). Telomere extension is prevented by stabilizing G4-
RNA, leading to cellular senescence aiding the role of G4s in
telomere maintenance (Sexton and Collins, 2011).
DHX36 resolves G4-RNA in the RNA component of the
telomerase, thereby enabling the formation of a stem-loop
structure, which is the key for reverse transcription by telomerase
(Booy et al., 2012). The siRNA-mediated downregulation of DHX36
compromises telomerase function by reducing the telomere length
(Nguyen et al., 2017). The ATRX (alpha-thalassemia X-linked
intellectual disability) protein prevents the formation of
G4 structures within the R-loops to prevent replication stalling
and maintain the telomere length (Wang et al., 2021).

Distinct from G4 helicases, some specialized G4BPs unwind
G4 structures, and they do not require energy by ATP hydrolysis and
unfold G4 structures by passive binding (Ray et al., 2013). RPA is a
single-stranded DNA-binding protein that disrupts G4-DNA in the
5′→3′ direction and is involved in telomere maintenance (Ray et al.,
2014; Safa et al., 2016; Chaires et al., 2020). POT1 (protection of
telomere 1) is the key for telomere integrity by binding to the 3′-end
overhang to prevent G4-DNA formation. POT1 specifically
unwinds telomeric G4-DNA but no other G4 structures (Flanary
et al., 2007). Upon G4-DNA formation at telomeres, the ability of
POT1 to trap G4 structures outcompetes the ability of RPA to
resolve G4-DNA. This action displays the protective function of
POT1 at telomeres (Chaires et al., 2020).

Shorter telomeres are associated with the progression of AD.
Telomere shortening contributes to the degeneration of microglia,
an event that may alter AD pathogenesis (Rolyan et al., 2011)
(Figure 3B). It reduces amyloid pathology and improves cognitive
impairment by reducing the activation of microglia in aging
APP23 transgenic mice (Tomita et al., 2018). Telomere
shortening is also associated with the accumulation of DNA
damage in the aging brain (Tomita et al., 2018). Telomeres in
neurons remain stable throughout life, but those in the glial cells
become significantly shorter with aging (Fani et al., 2020)
(Figure 3B). Telomere shortening is also associated with reduced
adult neurogenesis in the dentate gyrus, a fact that impairs the
maintenance of neurons in aged late telomerase-deficient mice
(Tomita et al., 2018). Importantly, shorter and considerably
longer telomere lengths are significantly linked with an increased
risk of dementia, especially AD (Spilsbury et al., 2015). The potential
biological link between telomere length and a higher risk of AD has
to be critically ascertained. By contrast, mice lacking telomerase
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reverse transcriptase (TERT) in neurons display shorter telomeres
and increased oxidative damage in response to tau aggregates,
demonstrating that shorter telomeres exacerbate pathological
progression (De Meyer et al., 2018). These findings pose many
questions about the crucial role of G4s in telomere maintenance.
Future reports linking telomere length and disease progression are
expected to provide important insights into AD pathophysiology.

The loss of telomere repeats in human cells with age differs
widely between cells and tissues, and the mechanisms that regulate
the telomere length in age-related neurological disorders are limited.
It remains uncertain whether age-related telomere shortening is a
cause or merely a consequence of aging-associated diseases
(Gorgoulis et al., 2019). Moreover, telomere shortening is
inadequate to explain the aging process in non-proliferating,
quiescent, or terminally differentiated neuronal cells. There could
be G4-dependent intrinsic molecular mechanisms that contribute to
dysregulation in neuronal functions. With the enrichment of
G4 motifs in telomeres, it would be interesting to determine to
what extent G4s and G4 helicases regulate telomere homeostasis in
aging and AD pathology.

In the broader context of the aging process, the notion that
telomeric DNA is the only indispensable component of the cell
makes a strong argument for an apical role of DNA integrity in the
aging process. Moreover, in addition to the complex mechanisms
involved in the repair of DNA damage, telomeric DNA is
hypersensitive to oxidative damage that induces and accelerates
telomere shortening (Figure 3B). The fact that G4 structures are
more prone to oxidative damage creates a sustainable query on how
G4 structures can regulate the telomere length during aging. The
most prevalent hypothesis on telomere shortening and aging does
not depend solely on telomerase dysfunction. Telomere
dysfunction–activated DNA damage responses that cause cellular
senescence may facilitate the age-related loss of tissue functions
(Puget et al., 2019; Di Micco et al., 2021). Nevertheless, cellular
senescence may occur independently of telomere dysfunction, and
the differential contribution of telomere-dependent and telomere-
independent mechanisms of senescence to aging and age-related
neurological disorders in glia and other dividing cells remains an
active area of investigation. Telomere dysfunction may not be the
only cause of senescence and the aging process. The pathways that
engage telomeric DNA damage responses may also be important. It
may be deleterious to globally inhibit or blunt the pathways of DNA
damage signaling and repair, the opportunities may lie in the
selective DNA damage response ablation at dysfunctional
telomeres. The discovery of G4-DNA and G4-RNA structures
and their roles in DNA damage responses makes these secondary
structures attractive targets for potential therapeutic interventions.
Finally, in future, researchers should focus on delineating the G4-
dependent molecular mechanisms that regulate telomere biology
and on ascertaining and broadening the impact of G4 structures in
telomere dysfunction in age-related neurological disorders.

G4-DNA and DNA damage

In recent years, research efforts have focused on understanding
the role of G4-DNA structures in inducing DNA damage in brain
cells. In neuronal cells, overly stable G4-DNA stalls DNA

polymerase during transcription (Thomas et al., 2008). The
action of endonucleases through a mechanism of transcription-
coupled repair poisoning then leads to DNA damage (Iyama and
Wilson, 2013). DNA DSBs are more dangerous for neurons than
they are for dividing glial cells, as these can effectively repair DSBs by
homologous recombination using sister chromatids (Lieber, 2010).
To repair DNA DSBs, post-mitotic neurons rely on a non-
homologous end-joining mechanism that depends on error-prone
DNA polymerases (Alt and Schwer, 2018; Shanbhag et al., 2019).
Similar to cancer cells, dividing brain cells may use G4-DNA to
promote DNA damage via a replication-dependent mechanism
(Miglietta et al., 2021).

DNA DSBs causing genome instability are associated with aging
and AD (Suberbielle et al., 2013; Suberbielle et al., 2015; Thadathil
et al., 2021). Immunostained sections of the postmortem brain of
individuals with AD and mild cognitive impairment (MCI) show a
significant increase in nuclear 53BP1 staining in the frontal cortex
and CA1 regions (Suberbielle et al., 2015). MCI and AD patients
have a greater proportion of γH2AX-positive foci in the frontal
cortex than do the controls. In addition, human postmortem AD
brains display significantly more DSBs and less DNA repair function
in the hippocampus than do the non-demented controls (Asada-
Utsugi et al., 2022) (Figure 3C). Interestingly, similar results have
been documented in the hippocampus of the 5xFAD transgenic
mice and cellular models of AD (Asada-Utsugi et al., 2022). Since
aging and DNA DSBs are risk factors for AD progression, a recent
study involving human postmortem AD samples has revealed that
DSBs are decisive in tau pathology of AD and the error of DNA
repair is linked to tauopathy (Vermeij et al., 2016). DSBs are more
prominent and extensive in AD brains than in age-matched control
brains. Immunohistochemical staining of neurons, astrocytes,
microglia, oligodendrocytes, and endothelial cells shows increased
γH2AX-positive foci and phosphorylated tau in the cortex of AD
patients (Vermeij et al., 2016) (Figure 3C). Thus, AD pathology is
associated with the progressive accumulation of DNA DSBs and/or
alteration in the expression of proteins of DNA repair pathways that
may lead to cellular damage in AD. We hypothesize that an increase
in DSBs in aging and AD brains may be due to the progressive
accumulation and stabilization of G4-DNA structures. Additional
studies are required to ascertain and unravel the molecular
mechanisms of G4-DNA–associated DNA damage and genome
instability in aging and AD.

The therapeutic strategy of activating the DNA damage response
(DDR) is critical for preventing cancer; however, the chronic
activation of DDR is thought to facilitate the accumulation of
senescent cells and inflammation during the aging process. How
does DNA damage mechanistically drive the aging process? Many
mechanisms have been proposed, such as restricting transcription
(Vijg, 2014), inducing mutagenesis (d’Adda di Fagagna et al., 2003),
triggering senescence and apoptosis, and activating the signaling
cascades (Kennedy et al., 2014). During the aging process, DNA
damage occurs stochastically, and the type of DNA damage is
influenced by intrinsic and extrinsic factors that involve
methylases, histones, transcription and replication factors, and
oxidizing agents, which include the dysregulated homeostasis of
G4-DNA structures. Every factor that induces DNA damage that
might drive the aging process is genetically determined via distinct
cellular responses to DNA damage (Hudson et al., 1998).
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Mitochondrial DNA damage and defects in base excision repair can
adversely affect neuronal functions, thus increasing the risk of
accelerating the aging process and contributing to
neurodegenerative phenotypes (Barja and Herrero, 2000; de
Souza-Pinto et al., 2008; Lillenes et al., 2013). Oxidative DNA
damage to neuronal cells may be one of the most important
components of aging as base-excision repair is important in
preventing AD (Sai et al., 1992; Canugovi et al., 2013). The
human brain consumes oxygen at a high rate, exposing the
neurons to the associated activated reactive oxygen species (ROS)
by-products. If antioxidants are limited or depleted in the brain, the
neuronal cells are more susceptible to ROS-induced DNA damage
(Hirano et al., 1996; Kaneko et al., 1996; Fleming and Burrows,
2020). The oxidative DNA damage is increased in genes that are rich
in G-rich sequences and have the propensity to form G4-DNA
motifs (Brosh and Bohr, 2007; Bielskute et al., 2021; Wu et al., 2023).
In humans, premature aging and early death are characteristics of
rare heritable diseases that are linked to defects in DNA repair or the
processing of DNA damage that involves the dysregulation of RecQ
helicases that regulate G4 structures (Liano et al., 2021).

Human diseases of premature aging include Cockayne
syndrome, Werner syndrome, and Hutchinson–Gilford progeria
syndrome. Cockayne syndrome is a premature aging disorder
associated with specific defects in DNA repair and transcription.
It is linked to G4-DNA structures, and the endogenous protein
Cockayne syndrome B (CSB) selectively binds to G4-DNA
structures and loss of its binding affinity elicits premature aging
phenotypes (Stevnsner et al., 2008). CSB has a role in transcription,
base-excision DNA repair, and maintenance of mitochondrial
function (Kikin et al., 2008; Osenbroch et al., 2009; Aamann
et al., 2010; Scheibye-Knudsen et al., 2012). More intensive
studies must be carried out to establish the relationship between
how G4 structures modulate the DNA repair pathways in the aging
process and age-associated neurological disorders, such as AD.

G4-RNA in splicing

G4-RNAs are implicated in mRNA splicing, and genome-wide
analysis of alternatively spliced transcripts has revealed over
3 million putative G4-RNA–forming motifs that map to
approximately 30,000 mammalian genes (Kostadinov et al., 2006;
Didiot et al., 2008). G4-RNA motifs assembled in the proximity of
splice sites may directly affect the binding of regulatory RNA-
binding proteins modulating alternate splicing events that impact
spliceosome assembly. G4-RNA structures are associated with exon
and intron splicing enhancers and silencers. Two G4-RNA motifs
are present within FMRP-binding sites on its pre-mRNA (FMR1)
which gives rise to different FRMP isoforms that include longer and
shorter isoforms (Gomez et al., 2004). The FMRP-binding site is a
potent exon splicing enhancer and acts as a control regulatory
element that modulates alternate splicing events in response to
intracellular levels of FMRP (Gomez et al., 2004). Mutations in
the FMRP-binding site affect its ability to form a G4-RNA structure
and decrease FMRP binding, thus ablating exonic splicing enhancer
activity and changing the splicing pattern of FMR1 pre-mRNA
(Gomez et al., 2004). G4-RNA structures found in intron 6 of
the human telomerase (hTERT) serve as an intronic splicing

silencer, and stabilized G4-RNA structures impair hTERT
splicing (Vo et al., 2022). In TP53 pre-mRNA, G4-RNA motifs
on the intron 3 stimulate splicing of intron 2 acting as an intronic
splicing enhancer resulting in the differential expression of
transcripts with distinct p53 isoforms (Marcel et al., 2011).
Moreover, G4-RNA structures promote exon inclusion, especially
in the context of the CD44 gene, thereby regulating the switch
between epithelial and mesenchymal states, which is crucial for
tumor metastasis (Huang et al., 2017). G4-RNA structures within
the I-8 element of the CD44 gene promote alternative splicing and
lead to the formation of the epithelial-specific CD44v isoform. The
heterogeneous nuclear ribonucleoprotein F (hnRNPF) binding to
the G4-RNAmotif promotes the inclusion of CD44 variable exon v8,
resulting in the inhibition of epithelial–mesenchymal transition
(EMT) and EMT-associated cell migration and invasion.
hnRNPF regulates G4-RNA–associated alternative splicing across
the transcriptome, connecting G4 structures to EMT, and highlights
the importance of G4s in regulating RNA splicing and gene
expression. The RNA-binding protein HNRNPH1 interacts with
G4-RNA sequences and regulates RNA processing.
HNRNPH1 binds to the G-rich sequences and destabilizes the
G4-RNA structures formed by EWSR1-exon 8 and mediates its
exclusion from the oncogenic EWS-FL1 transcripts in Ewing
sarcomas (Georgakopoulos-Soares et al., 2022). In a recent study,
G4-RNA motifs were enriched near splice junctions and strongly
associated with skipped exons in depolarized mice and human
neurons (Harries et al., 2011). Exon–intron junctions in humans
have displayed G4-RNA motifs, both at the 3′ and 5′-UTRs, and
31% of human genes have shown G4 motifs at least near one splice
site within a distance of 100 bp. For example, HNRNPK and
HNRNPU have shown high binding affinity to the G4-RNA
motif around splice sites and have directly affected the regulation
of G4-mediated alternative splicing (Harries et al., 2011). These
findings indicate an evolutionarily conserved splicing regulatory
mechanism where G4-RNA structures play a crucial role. The
studies have provided a genome-wide characterization of the
impact of G4 structures on alternative splicing, an area that has
not been well explored. Overall, these findings emphasize the
importance of splicing events in cell growth, differentiation, and
responses to environmental changes and pathogens, with crucial
implications for understanding splice regulation and the role of G4-
RNA structures in gene regulation in human health and age-related
diseases.

Splicing has a vital role in the aging process, and dysregulation
results in abnormal protein production or mRNA nonsense-
mediated decay. Moreover, changes in the splicing factors also
affect splicing outcomes. Age-associated splicing dysregulation
has been observed in diseases and in aging itself. Changes in the
splicing factor expression and the occurrence of alternative splicing
events have been detected in aging-related tissues, such as the brain,
blood, senescent fibroblasts, and endothelial cells and changes have
occurred in genes involved in metabolism and DNA repair
(Tollervey et al., 2011; Holly et al., 2013; Lee et al., 2016). More
changes in exon splicing events have been observed in the
hippocampus of aged mice than in young ones, and similar
intron retention patterns have been identified in the human
cerebellum and prefrontal cortex (Stilling et al., 2014; Adusumalli
et al., 2019). Since aging is one of the major risk factors for AD,
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genome-wide alternative splicing changes have been discovered with
advanced aging in the brains of mice and humans (Mazin et al.,
2013; Lee et al., 2016; Wang et al., 2018). In addition, RNA-
sequencing data analysis conducted across 48 different human
tissues has identified 49,869 tissue-specific age-associated splicing
events, and these splicing changes broadly correspond to genes
involved in aging, such as in DNA damage, repair, and apoptosis
(Fay et al., 2017a). These findings suggest that splicing serves as a
biomarker for biological aging and life expectancy and as a potential
therapeutic opportunity to combat age-associated neurological
disorders. The effects of the hallmarks of aging, such as defects
in protein homeostasis, telomere attrition, and genomic instability,
all affect RNA splicing due to their mechanistic interplay and in turn
be affected by the loss of RNA homeostasis. However, the roles of
G4-RNA and RNA-binding proteins in regulating the splicing
events in disease-modifying pathways associated with aging and
AD are not completely explored. Therefore, elucidating the role of
G4 structures in splicing factors and downstream splicing targets in
aging and longevity is now an active area of investigation.
Furthermore, the challenge is to discriminate whether G4-
mediated RNA splicing events seen with age are functionally
adaptive responses to dynamic changes in cellular conditions or
aberrant changes that induce dysfunction.

G4-RNA in translation

G4-RNA motifs are found in protein-coding regions and are
implicated in mRNA processing, RNA translocation, and regulation
of translation (Kharel et al., 2020a; Kharel et al., 2020b) (Figure 2D).
G4-RNA structures function as translational repressors and
modulate mRNA polyadenylation and splicing (Stults et al., 2009;
Kharel et al., 2020b). Ribosomal RNA (rRNA), the most abundant
cellular RNA, forms highly stable G4s in vitro and is one of the most
commonly rearranged chromosomal regions in solid tumors (Penev
et al., 2019; Varshney et al., 2021). Many helicases of the DEAH-box
family interact with G4-RNA (e.g., DDX3X, DHX36, and eIF4A).
DDX3X has many binding sites, primarily in the 5′-UTRs that
correspond to G4-RNA motifs and mRNAs encoding ribosomal
proteins, and the knockdown of DDX3X suppresses the synthesis of
ribosomal proteins (Nie et al., 2015). DHX36 has a high specificity
for G4-RNA and was originally described as an RNA-associating
protein that binds to the AU-rich elements in the 3′ regions of the
mRNAs that facilitate its degradation (Tran et al., 2004).
DHX36 regulates NKX2-5 mRNA translation by unwinding G4-
RNA structures. Upon DHX36 deletion, there is a reduction in the
levels of NKX2-5 that implies repression of NKX2-5 translation (Liu
et al., 2021a). DHX36 also plays a role in C9orf72 repeat-associated
non-AUG translation in ALS (Newman et al., 2017).
DHX36 mediates pre-mRNA 3′-end processing of p53 by
specifically unwinding parallel G4-RNA to maintain p53 levels,
thereby conferring its role in DNA damage responses (Benhalevy
et al., 2017). Translation initiation factor eIF4A unwinds G4-RNA
structures in the 5′-UTR of mRNAs encoding many transcription
factors, oncogenes, and epigenetic regulators (Wolfe et al., 2014).
Inhibiting eIF4A activity results in reduced translational efficiency
and translationally repressed mRNAs are enriched in G4-RNA
motifs, especially in 5′-UTR (Wolfe et al., 2014). CNBP (human

CCHC-type zinc-finger nucleic acid–binding protein) selectively
binds to G-rich regions in mature mRNAs and can form G4-
RNA structures. Depletion of CNBP decreases the translational
efficiency of CNBP targets, indicating the key role of CNBP in
regulating the translation process by preventing the formation of
G4-RNA structures (Guenette et al., 2017). The APP mRNA
transcript is transported to neuronal dendrites, where it is
important in synapse formation (Westmark and Malter, 2007).
APP translation is repressed by FMRP binding to
G-quadruplexes in the APP coding region (Morris et al., 2010).

G4-RNA motifs can also affect mRNA translation by
modulating the binding and localization of some translation-
related factors to mRNAs. Human vascular endothelial growth
factor mRNA has a G4-RNA motif in one of its IRES sites.
When the G4-RNA motif in the IRES site is mutated, the
translation initiation activity of IRES is completely suppressed
(Bhattacharyya et al., 2015). The G4-RNA motif has a binding
affinity for VEGF IRES and is required to recruit the 40S ribosomal
subunit. Deletion of the G4-RNA motif results in decreased binding
affinity, implying the essential role of the G4-RNA motif in
translational regulation (Lee et al., 2020). Apart from their
presence in open reading frames, G4s are abundant in the 5′ and
3′-UTR regions and regulate the translation of mRNA (Lammich
et al., 2011). Many regulatory genes (e.g., Adam10, Tgfb2, Fmr1,
Nrf2, Snca, and Nrxn2) contain G4-RNA motifs in their 5′-UTRs
that control translation levels (Khateb et al., 2007; Westmark and
Malter, 2012; Agarwala et al., 2013; Koukouraki and Doxakis, 2016;
Lee et al., 2017; Ding et al., 2020). The 3′-UTR of APP contains
multiple regulatory sequences that affect the stability and translation
of the APP transcripts. The G4-RNA structures in the 3′-UTR of
mRNA negatively regulate the expression of APP post-
transcriptionally and may contribute to AD pathogenesis
(Crenshaw et al., 2015). Increased expression of APP resulting
from the loss of regulation by the G4-RNA leads to elevated Aβ
levels (Kelmer Sacramento et al., 2020).

The correlation between mRNA and protein levels is
progressively decoupled during aging and is observed in aged
killfish, macaque, and human brains (Wei et al., 2015; Hu et al.,
2018). Aging affects the rate of protein translation, and global
protein translation is generally high during early adulthood and
significantly drops with age in yeast (Depuydt et al., 2016), C.
elegans (Webster and Webster, 1979), Drosophila (Hrachovec,
1969; Bailey and Webster, 1984), rodents (Young et al., 1975;
Dwyer et al., 1980; Ekstrom et al., 1980; Blazejowski and Webster,
1983; Chocron et al., 2022), and humans (Rooyackers et al., 1996;
Ravi et al., 2018). Age-related decline in protein translation has
been observed in a wide range of cellular fractions, tissues, and
organs, such as in the brain, heart, liver, muscle, kidney, and
intestine. There is only one study that has reported increased
protein translation with age in the heart tissue of 4- to 10-month-
old mice (Vargas and Castaneda, 1983). The exact molecular
mechanisms underlying age-related decline in protein
translation are not known; however, many studies have
suggested that decreased activity and levels of eIFs (eukaryotic
initiation factors) impair the initiation step and contribute to an
age-dependent decline in overall protein synthesis. The levels and
activity of eIF2 in promoting ternary complex formation have been
shown to decline with age in multiple tissues of rodents, such as in
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the brain, liver, kidneys, and spleen (Cales et al., 1986; Kimball
et al., 1992; Luchessi et al., 2008). In addition, the activity and levels
of eIF2B required for replenishing eIF2 activity also reduce with
age in the brains and livers of rats (Luchessi et al., 2008). eIF5 that
promotes the formation of the 43S pre-initiation complex also
decreases during aging in multiple areas of the rat brain
(Blazejowski and Webster, 1984). Apart from a decrease in
activity of proteins regulating translation initiation, the
elongation step and ribosome loading to mRNA are also
compromised with aging (Scheuner et al., 2005; Stein et al.,
2022). As discussed earlier in this section, G4-RNA and
G4 helicases regulate the function of many proteins that
modulate protein synthesis under normal and diseased
conditions. Nevertheless, the exact molecular mechanisms on
how G4 structures control the levels and processing of mRNA
transcripts in aging and AD have not been fully explored. We have
reported that age-dependent increase and stabilization of
G4 structures impair cognitive ability in mice and reduce the
activity of autophagy during aging (Johnson et al., 2010). These
findings correlate with reduced levels of translation during aging,
and G4 structures can regulate the levels of protein in aging. As
protein translation decreases with age in humans and other
mammals, one would expect that it may have detrimental
effects on cell growth and survival. However, life-long
reductions in protein translation slow down the aging process,
ameliorate cellular senescence, and prolong lifespan in many age-
related disorders (Hamilton et al., 2005; Pan et al., 2007; Syntichaki
et al., 2007; Selman et al., 2009; Tain et al., 2009; Rogers et al., 2011;
Martin et al., 2014; Takauji et al., 2016; Ren et al., 2019). In C.
elegans, knockdown of translation initiation factors (e.g., eIF4E,
eIF4G, eIF1, eIF2, eIF2B, eIF4A, and eIF5A) has significantly
improved the lifespan (Chen et al., 2007; Tohyama et al., 2008;
Ghosh et al., 2020). Pharmacological inhibition of protein
translation using cycloheximide that targets the elongation
phase of translation has abolished senescent phenotypes in
human fibroblast cells and also improved lifespan in C. elegans.
Considering the information discussed above, it is suggested that
overactivation of protein translation may contribute to AD
pathogenesis. The cytoplasmic FMR1-interacting protein
(CYFIP) that downregulates translation by blocking eIF4E-
eIF4G interactions is seen reduced in the postmortem brains of
AD patients, and CYFIP reduction leads to increased AD
pathology in mice (Min et al., 2015; Tiwari et al., 2016).
Moreover, tau K174 acetylation in the brains of AD patients
and mice have shown increased protein translation by causing
nucleolar expansion (Caccamo et al., 2015; Portillo et al., 2021).
Reducing protein translation by inhibiting S6K signaling improved
spatial memory and restored synaptic activity in an AD mouse
model (Collie et al., 2010). In summary, research so far has
provided us with two conflicting results and has postulated that
reduction in protein translation accelerates the aging process and
that life-long reduced protein translation robustly improves health
and lifespan. This paradox may be explained by assuming that age-
related decline in protein synthesis is a passive byproduct of aging
and that proteostasis imbalance declines with age. So, to balance
proteotoxic stress, protein translation may have been repressed as
an adaptive response. Here, can we speculate if the stabilization of
G4-RNA is responsible for translation repression during the aging

process? Does the expression of G4-RNA–regulating proteins
differ in AD pathological conditions? Nevertheless, to validate
these mechanisms, more extensive research is required, and
investigating the role of G4s and G4 helicases could be the next
exciting area into how protein synthesis is regulated during aging.

G4-RNA in non-coding RNA

G4-RNA is present in ncRNAs, especially long ncRNAs, TERC,
TERRA, and microRNAs (Hirashima and Seimiya, 2015; Rouleau
et al., 2018). Elevated levels of TERRA suppress vital innate immune
genes, such as STAT1, ISG15, and OAS3, in cancer cell lines. Since
TERRA has a higher propensity to form G4-RNA structures, innate
immune gene expression changes are associated with G4-RNA
formation (Matsumura et al., 2017). Inhibition of GSEC long
ncRNA (G-quadruplex–forming sequence containing long
ncRNA) transcription results in decreased mobility of colon
cancer cells. GSEC long ncRNA binds to DHX36 and inhibits its
helicase activity, thereby preventing G4-RNA unwinding. Thus,
GSEC long ncRNA plays a significant role in the migration of
colon cancer by suppressing the activity of DHX36 (Imperatore
et al., 2020).

The ncRNAs have important roles in neural gene expression
associated with neurological disorders. In neurons, miR-1299-3p
regulates the expression of SORL1 (sortilin-related receptor)
functioning as an apolipoprotein E receptor and affects APP
processing and trafficking, specific tau interactions, and Aβ
peptide dissolution (Rogaeva et al., 2007). Reduced expression
levels of SORL1 protein in neuronal cells are associated with AD
progression (Yamanaka et al., 2015). The precursor mir-1299-3p
transcript contains G4 motifs that coexist in equilibrium with an
extended hairpin structure and prevent the processing of the
transcript into a mature miR form. The single-nucleotide
polymorphism (SNP) variant re2291418 within the miR-1229-
37 genomic sequence is associated with AD and destabilizes the
G4-RNA structure in the precursor mir-1229-3p transcript
(Rogaeva et al., 2007). In AD, long ncRNAs contribute to Aβ
aggregation and dysregulated synaptic plasticity. Differentially
expressed long ncRNAs, such as SORL1-AS, LRP1-AS, BACE1-
AS, and UCHL1-AS, regulate gene expression and splicing of
proteins involved in the production and trafficking of Aβ
(Faghihi et al., 2008; Lian and Gallouzi, 2009; Ciarlo et al., 2013).
It would be interesting to investigate the role of G4 motifs in long
ncRNAs and how they contribute to Aβ aggregation. Thus, G4-RNA
ncRNAs readily form and play important regulatory roles in aging
and AD.

G4-RNA in stress granule function

G4-RNA structures accumulate in the cytoplasm and participate
in the formation of stress granules and disrupt mRNA translation
(Kedersha et al., 2013). Stress granules are cytoplasmic aggregates of
mRNA and ribonucleoproteins that regulate mRNA function,
localization, and turnover (Kawane et al., 2014; Waris et al.,
2014). G4-RNA formed from the damaged G-rich sequences
provides a direct mechanism for cells to sense oxidative
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stress–induced DNA damage that leads to senescence (Byrd et al.,
2016). In a proteomic screen to identify proteins associated with
stress granules, the DHX36 helicase had been identified
(Chalupníková et al., 2008). G4 helicase DHX36 binds to and
resolves G4-RNA and can also be recruited to stress granules,
likely playing a significant role in translation (Chalupníková
et al., 2008) (Figure 3D). In addition to DHX36 associated with
stress granules (DeJesus-Hernandez et al., 2011), other enriched
proteins in the proteomic screen include TIA1 (T-cell intracellular
antigen 1), ELAV1/HUR (embryonic lethal, abnormal vision,
Drosophila)-like 1 (human antigen R), and YB-1/YBOX1
(Y-box–binding protein 1) that regulate translation and assemble
into stress granules. The stress granule marker TIA1 co-localizes
with G4-DNA–induced stress granules in the cytoplasm
(Chalupníková et al., 2008). These studies have suggested a
fundamental biological response to G4s and support that stress
granules accumulate upon oxidative stress in the cytoplasm and
promote cellular senescence. Expansion of hexanucleotide
GGGGCC (G4C2) repeats in the non-coding regions of C9ORF2
is the most common mutation associated with ALS and FTD
(Renton et al., 2011; Fay et al., 2017b). Expression of RNA
G4C2 promotes stress granule assembly in a repeat length in a
G4-dependent manner, suggesting vital roles for RNA structures in
the formation of stress granules (Ash et al., 2014).

In AD, pathological aggregation of tau may be initiated through
regulated self-assembly of the core stress granule–associated RNA-
binding proteins, such as TIA1, G3BP1 (Ras-GTPase–activating
protein binding protein 1), TIAR (T-cell–restricted intracellular
antigen 1), and TTP (Tristetraprolin), and TIA1 has been shown
to interact and aggregate with hyper-phosphorylated tau in 8-
month-old P301L mice (De Magis et al., 2019) (Figure 3D). G4s
regulate the formation of stress granules and one of the characteristic
features of AD-related pathology is the progressive accumulation of
pathogenic stress granules, but the relationship between these two
events has not been explored. It would be interesting to investigate
the G4 landscapes in AD mouse models and the associated
formation of stress granules.

Anti-cancer therapy targeting G4-DNA may
contribute to aging and dementia

G4 stabilization drives genome instability by introducing
mutations, deletions, and stimulating recombination events
(Lopes et al., 2011; Sauer and Paeschke, 2017; Puig Lombardi
et al., 2019; Tan and Lan, 2020). In multiple forms of cancer,
G4 formation and stabilization alter telomerase activity, inhibit
replication, induce genome instability, and downregulate the
expression of many proto-oncogenes responsible for tumor
progression. Therefore, G4 structures are actively used as a
therapeutic target to restrict tumor growth (Li et al., 2013; Bryan,
2019; Kim, 2019; Bryan, 2020; Carvalho et al., 2020). G4s are
targeted pharmacologically by G4 ligands or by proteins that
modulate G4 landscapes. Researchers have exploited this
mechanism and designed strategies to modulate G4 structures
with the idea to develop novel therapeutic drugs to fight against
cancer (Li et al., 2013). More than 1,000 different G4 ligands have
been developed, and their functions differ based on their specificity,

binding surface properties, and cell permeability (Kim et al., 2002).
The efficiency of these G4 ligands in modifying the G4 structures is
not uniform: most of them are tested in vitro, and their potencies in
the native physiological environment are still fiercely debated.
Nevertheless, G4 ligands are widely accepted and include
telomestatin, TMPyP4, PDS, RHPS4, and BRACO19, specifically
binding to G4 structures over the DNA duplex (Izbicka et al., 1999;
Gowan et al., 2001; Burger et al., 2005; Sun et al., 2005; Rodriguez
et al., 2008).

In most cancers, promoters of the oncogenes accommodate more
G4 motifs than do the promoters of regulatory or tumor suppressor
genes (De and Michor, 2011). Therefore, many in vitro and in vivo
experiments have proved that modifying or stabilizing G4 structures in
promoter regions will reduce the expression of tumor-causing genes,
such as VEGF (Dexheimer et al., 2006), KRAS (Siddiqui-Jain et al.,
2002), BCL2 (Yang and Hurley, 2006), and MYC (Gonzalez and
Hurley, 2010). Specifically, G4-mediated changes in the MYC
transcription factor gene have been extensively investigated and are
also upregulated in more than 70% of all cancers (Dang, 2012; Lin et al.,
2012). Modifying G4 motifs in the MYC promoter drives oncogenesis
by reducing the expression of MYC and thereby disrupting cell
proliferation, migration, immune evasion, and metabolism, resulting
in reduced tumor progression (Lin et al., 2012; Whitfield et al., 2017).
One of the major drawbacks is the lack of direct inhibitors, and the
current strategy only aims at targeting MYC expression (Kim et al.,
1994). In 80%–90% of all cancers, the activity of telomerase is
upregulated and facilitates cell division without telomere shortening
(Moye et al., 2015). G4 structures at telomeres hinder telomerase
binding, thereby blocking telomerase activity in vitro and in vivo
(Zahler et al., 1991; Paeschke et al., 2005; Neidle, 2010; Paudel et al.,
2020). Thus, a working model shows that G4 stabilization at telomeres
is used to restrict telomerase activity in tumor cells and prevent
uncontrolled DNA replication, whereas telomerase is not expressed
in somatic cells and remains unaffected (Tauchi et al., 2003). Many
G4 ligands have been used to reduce tumor growth, such as telomestatin
and RHPS4, which inhibit telomerase function by disrupting the
telomere shelterin complex (Phatak et al., 2007; Zhu et al., 2012).
Additionally, specific porphyrin derivatives, such as ZnP1 and
TMPipEOPP, target telomeric G4s (Beniaminov et al., 2016;
Moruno-Manchon et al., 2017). Stabilizing G4 motifs by G4 ligands
causes DNA DSBs, pauses replication, induces micronuclei formation,
and also restricts telomerase activity (Sun et al., 2005; Thomas et al.,
2008; Lopes et al., 2011; Miglietta et al., 2021).

G4 ligands act via different mechanisms and most likely have
multiple targets that are independent of tumorigenesis and cancer
progression. The DNA-damaging agents, such as G4 ligands, are
considered to be cytotoxic and drive genome instability that often
leads to co-morbidities and makes disease even more lethal. Therefore,
this raises some important questions about whether the burden of
tumor has an impact on the outcome of G4-ligand treatment. What
enduring effects does treatment with G4 ligands have on cancer
patients? Changing the G4 landscapes leads to genome instability,
does it also accelerate the aging process and lead to dementia?
Reducing telomerase activity will suppress tumor growth and lead to
cell death, but its reduced activity has been implicated in the progression
of AD to early dementia (Sanders, 2010; Sexton and Collins, 2011). In
cancer cells, stabilizing G4 motifs in the promoter regions has been
beneficial in reducing the expression of oncogenes, but the effect of
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G4 ligands being global and not targeted will eventually lead to the
suppression of expressions of critical survival genes and transcription
factors, thereby having a seriously deleterious effect. Genomic instability
that reduces gene expression and limits telomerase activity may be
advantageous in cancerous cells to kill them, but in post-mitotic
neurons, it will have a profound effect in conferring cellular
senescence that may be detrimental and lead to neuronal damage.
Neuronal cells cannot afford to hold and sustain these irreversible and
irremediable changes incorporated by G4 ligands in the genome. To
date, little is known about the risks of long-term treatment and how
G4 landscapes change over time during treatments. The concerns
addressed here are prominent and of high relevance to the fields of
aging, dementia, and neurodegeneration and should be addressed in the
near future.

Conclusion and future directions

Studies on G4 structures, G4BPs, and various helicases have
provided evidence that these molecules and structures regulate
virtually all crucial cellular functions. Research on G4-DNA/RNA has
recently sparked interest in understanding the molecular mechanisms of
aging and age-related neurodegenerative disorders. Research is
underway to understand if senescence and aging can be modified by
genetic factors, especially by regulating the dynamics of G4-DNA/RNA
byG4BP and helicases. In this review, we have discussed the relevance of
G4 structures, associated proteins, and helicases in regulating
mechanisms that could drive aging and related pathogenesis
associated with AD. G4s, G4 helicases, and their synergistic
interactions across the biology of aging and AD-associated pathways
raise optimism that effective targeting ofG4smay exert novel findings on
how they drive the aging process. The transition of these G4-dependent
cellular and molecular processes in aging and AD is complex and may
not be linear. Many outstanding questions have to be addressed like how
G4 dynamics are being regulated in different cell types in the brain.
Somatic mutations, DNA repair, and DNA damage response could be
differentially associatedwithAβ and tau aggregation inAD, but howG4s
and G4 helicases regulate these events has not been investigated.
Activated microglia and astrocytes and neuroinflammation occur in
aging and AD, and many proteins that control these mechanisms are
differentially regulated; however, no data have explained the significance
of G4 structures in these processes. Programmed cellular senescence,
chromatin remodeling, and telomere attrition could not provide
sufficient justification for the etiology of aging and AD, and
investigating these mechanisms driven by G4s could open new
horizons that can eventually be explored in delineating the pathology.
To effectively combat aging and AD, pleiotropic drugs may be required
to hit the right nodes of relevant G4-dependent pathways that are

affected by aging or AD, and these could positively influence the
outcome. Age-related decline in metabolic functions,
neuroinflammation, epigenetic dysregulation, telomere dysfunction,
and transcriptional aberrations may be the upstream causes of
neuronal dysfunction and death, leading to pathological hallmarks,
and have been the drug targets in AD. A better understanding and
translation of the G4-dependent systemic, cellular, and molecular
processes of aging and AD can help identify new strategies and
therapeutic targets for drug discovery and development.
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