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According to current views the major hallmarks of physiological aging may be
subdivided into three categories, primary causes of cellular damage (genomic
instability, telomere attrition, loss of proteostasis, epigenetic alterations and
compromised macroautophagy), antagonistic hallmarks that represent
response to damage (deregulated nutrient sensing, cellular senescence,
mitochondrial dysfunction) and integrative hallmarks that represent culprits of
the phenotype (stem cell exhaustion, altered intercellular communication,
chronic inflammation, dysbiosis). In contrast to physiological aging, premature
aging diseases are driven by one or two distinct primary causes of aging, such as
genomic instability in the case of Werner syndrome (WS), each displaying other
hallmarks of aging to a variable extent. In this review we will focus on primary
causes of well-investigated premature aging diseases Hutchinson-Gilford
progeria syndrome (HGPS), WS, and Cockayne syndrome (CS) and for each
provide an overview of reported aging hallmarks to elucidate resemblance to
physiological aging on the mechanistic level and in the context of characteristic
age-related diseases. Ubiquitous and tissue specific animal models of premature
aging diseases will be discussed as useful tools to decipher fundamental aging-
related mechanisms and develop intervention strategies to combat premature
aging and age-related diseases.
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Introduction

According to the most recent definition, aging is the process of molecular and cellular
damage accumulation that leads to functional decline, chronic diseases, increased morbidity
and mortality (Moqri et al., 2023). During the aging process different alterations are
manifested, characterized as “aging hallmarks”, that may be subdivided according to current
views into three categories, primary, antagonistic and integrative hallmarks. As postulated
by Lopez-Otin and colleagues and explained in detail in (Lopez-Otin et al., 2013; Lopez-
Otin et al., 2023) primary hallmarks are usually considered as primary causes of cellular
damage. These include aging-induced changes to the genome, epigenome, telomeres,
proteome and organelles that mainly occur due to genomic instability, epigenetic
alterations, telomere attrition, loss of proteostasis and disabled macroautophagy,
respectively. Antagonistic hallmarks arise as a response to counteract cellular damage
and may have variable functions at different developmental stages. Integrative hallmarks
characterize cumulative changes occurring if the damage caused by primary and
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antagonistic hallmarks cannot be compensated. These so called
“culprits of the phenotype” will further perturb tissue homeostasis.

In this review we will first provide a short introduction to major
progeroid syndromes including description and molecular basis of
selected well-investigated premature aging diseases, Hutchinson-
Gilford progeria syndrome (HGPS), Werner syndrome (WS), and
Cockayne syndrome (CS). In the second and third part we aim to
delineate commonalities and differences at the molecular, tissue and
disease level of these progeroid disorders to physiological aging. In
the last part we will elaborate on intervention strategies in progeroid
syndromes and relate to those applicable to age-related diseases. In
each part we will attempt to provide common mechanistic links
applicable to physiological aging with an aim to extract lessons we
learned from these premature aging disorders and an intention to
pave ground for future research avenues.

Progeroid syndromes

Progeroid syndromes show premature or accelerated features of
aging in specific tissues with disease characteristics more or less
accurately resembling corresponding age-related diseases in the
elderly. According to previous reports (Carrero et al., 2016) the
majority of progeroid syndromes may be subdivided into two
categories depending on the molecular function of affected
proteins. The first category comprises progeroid syndromes with
gene mutations encoding proteins with important function for
nuclear envelope stability and organization such as Hutchinson-
Gilford progeria syndrome (HGPS), atypical progeria syndromes

(APS), mandibuloacral dysplasia type A and B (MADA, MADB),
restrictive dermopathy (RD) and Nestor-Guillermo progeria
syndrome (NGPS). The components of the first category may be
submerged according to affected genes to three groups: i) HGPS,
APS and MADA with mutations in LMNA gene, ii) MADB and RD
involving mutations in ZMPSTE24 gene and iii) NGPS with
mutations in BANF1 gene (Figure 1; reviewed in (Foo et al.,
2019)). The second category of progeroid syndromes comprises
genes involved in DNA damage repair pathways such as
trichothiodystrophy (TTD), xeroderma pigmentosum (XP),
Cockayne syndrome (CS), Werner syndrome (WS), Bloom
syndrome (BS), Rothmund-Thomson syndrome (RTS), Nijmegen
breakage syndrome (NBS), Ataxia telangiectasia (AT) and Fanconi
anemia (FA). According to types of DNA damage repair pathway
affected, the second class of progeroid syndromes may be again
further submerged into three categories: i) global genome (GG) and
transcription-coupled (TC) nucleotide excision pathway (NER), (ii)
double-strand break repair (DSBR) and iii) interstrand DNA
crosslink link repair (ICLR) pathway (Figure 1; see Box 1;
reviewed in (Carrero et al., 2016; Fiesco-Roa et al., 2022;
Niedernhofer et al., 2011)). A subtype of the second category
involves mutations in genes that belong to telomere biology
disorders such as dyskeratosis congenita (DC) and Hoyeraal-
Hreidarsson syndrome (HHS) (Savage, 2022). It must be noted
that this is approximate type of classification since some affected
proteins may be involved in multiple pathways such as in addition to
DSBR, the enrollment of Werner helicase (WRN) in BER-pathway
and telomere dynamics (Rossi et al., 2010), that of Ataxia
telangiectasia mutated kinase (ATM) in NER-pathway (Ray et al.,

FIGURE 1
Progeroid syndromes classified according to affectedmolecular pathway. Nuclear membrane involvement: Hutchinson-Gilford progeria syndrome
(HGPS), atypical progeria syndromes (APS), mandibuloacral dysplasia type A and B (MADA, MADB), restrictive dermopathy (RD), and Nestor-Guillermo
progeria syndrome (NGPS) (reviewed in (Foo et al., 2019). DNA damage repair pathways involving nucleotide excision repair (NER): Cockayne syndrome
(CS), xeroderma pigmentosum (XP), trichothiodystrophy (TTD) reviewed in (Niedernhofer et al., 2011). Note that dependent on mutations, ERCC3
(XPB) and ERCC2 (XPD) defects may lead to XP, CS or TTD phenotype (marked in red), whereas that in ERCC4 (XPF) to XP or FA (marked in blue) as
reviewed in (Black, 2016). Double-strand break repair (DSB): Werner syndrome (WS), Rothmund-Thomson syndrome (RTS), Bloom syndrome (BS), Ataxia
telangiectasia (ATM), Nijmegen breakage syndrome (NBS) and Fanconi anemia (FA) reviewed in (Carrero et al., 2016; Fiesco-Roa et al., 2022). Subgroup of
latter involving telomere dynamics: dyskeratosis congenita (DC) andHoyeraal-Hreidarsson syndrome (HHS) reviewed in (Savage, 2022). Affected genes in
each of the progeroid syndromes are depicted in text next to corresponding brackets. Figure created with Biorender.com.
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2016). Furthermore, different mutations within the same XP genes
may lead to different clinical phenotypes (Kraemer et al., 2007;
Black, 2016). The classification of the listed progeroid syndromes
according to prevalent molecular function of affected proteins is
summarized in Figure 1. Most progeroid syndromes develop general
premature aging features such as hair graying and hair loss, age-
related changes of the skin and short stature in conjunction with
specific age-related disease characteristics and clinical phenotypes
reviewed in (Schnabel et al., 2021).

Box 1. Explanation of basic terminologies and key components
relevant for the text.

Base excision repair (BER): a type of single-strand DNA break (SSB)

repair of small oxidative, deaminated and alkylated DNA lesions that

generally introduce no or minimal DNA helix distortions. Key

components engaged in BER are glycosylase (e.g., NEIL) that

removes damaged DNA base creating apurinic (AP) site, AP

endonuclease to remove AP site creating SSB, Polymerase β to

incorporate correct nucleotides and DNA-flap endonuclease (e.g.,

FEN1) to remove generated single-stranded DNA flaps that may form

(reviewed in (Gohil et al., 2023).
Nucleotide excision repair (NER): a type of single-strand DNA

break (SSB) repair that removes bulky helix-distorting lesions such as

cyclobutane pyrimidine dimers. The latter can be recognized

throughout the whole genome (GG-NER) or specifically on

transcribing strands of active genes (TC-NER). Helix distortions in

GG-NER are recognized by Xeroderma pigmentosum

complementation group protein C, XPC, whereas in TC-NER by the

CS group CSB and CSA (details in text). After damage recognition

commonmechanisms in TC-NER and GG-NER are used to excise the

DNA damaged sites (reviewed in detail in (de Boer and Hoeijmakers,

2000; Kraemer et al., 2007; Niedernhofer, 2008).

Double-strand break repair (DSBR): operates to repair double-

strand DNA breaks, usually occurring after collapse of replication

forks, either through non-homologous end-joining (NHEJ) or in S

and G2 phases of the cell cycle, when sister chromatids can be used as

templates, through homologous recombination (HR). Some basic

NHEJ components are damage recognition KU proteins, DNA

dependent protein kinase (DNA-PK) complex necessary for
phosphorylation of histone H2AX and DNA ligases that perform

relegation such as (LIG4). In HR, MRN (MRE11-RAD50-NBS)

complex protein plays an important role in DSB recognition, nick

generation and together with exonuclease 1 (EXO1) and/or nuclease

DNA2 5′end-resection creating single stranded DNA (ssDNA)

overhangs. Rad52 facilitates the loading of Rad51 forming

nucleofilaments along ssDNA, strand invasion and annealing with

matching sequences in the undamaged sister chromatids to form a

displacement D-loop. The extension of the invading strand is

mediated by DNA polymerase δ (Pol δ). Finally, D-loops may be

resolved by migrating Holiday junctions through resolvases or

BLM-RecQ-RMI-toposiomerase 3a (TOP3a) complex (reviewed in

(Panier and Boulton, 2014).

Interstrand DNA crosslink repair (ICLR): is used to repair covalent

bonds between opposite DNA strands. Throughout the cell cycle

proteins involved in TC-NER or GG-NER may be utilized in ICLR to

repair the damage. In the S phase of the cell cycle ICLR engages HR

components but also additionally factors responsible for Fanconi
anemia such as proteins encoded by FANC genes (Figure 1;

reviewed in (Hashimoto et al., 2016; Fiesco-Roa et al., 2022).

Telomeres, telomerase and shelterin complex: Telomeres are

tandem repeats of TTAGGG at the end of linear chromosomes that

cannot be synthetized by classic DNA polymerase but require a

specific telomerase reverse transcriptase (TERT gene) that utilizes

telomerase RNA (TERC gene) as a template. Dyskerin (DKC1 gene),

TCAB1 (WRAP53 gene) and others are essential components of the

telomerase complex. Shelterin complex associates with telomeres

and plays a crucial role in telomere length maintenance by protecting

(Continued in next column)

Box 1. (Continued) Explanation of basic terminologies and key
components relevant for the text.
them from being recognized as DNA damage sites. Six protein

subunits TRF1, TRF2, TIN2, hRap1, TPP1 and POT1 are parts of

shelterin complex. In addition, regulator of telomere elongation

helicase 1 (RTEL1) confers t-loop stability playing an important role

in telomere replication. See details on genes and telomere biology

disorders (Martinez and Blasco, 2017; Savage, 2022).

BANF1: gene encoding for the protein barrier to autointegration

factor 1 involved in chromatin and nuclear organization.

XP group of proteins: comprise seven complementation group

members (A, B, C, D, E, F, G) important for repair of damage

particularly upon exposure to UV light through NER (reviewed in

(Niedernhofer, 2008; Niedernhofer et al., 2011).

ZMPSTE24: gene encoding a Zinc metalloprotease related to the
STE24 homology in yeast (alternative name: FACE1) involved in

processing of prelamin A to mature lamin A.

Introduction to selected progeroid
syndromes HGPS, WS and CS

In this part we will give a brief introduction providing molecular
basis of selected well-investigated progeriod syndromes, one from
the first above-described category, Hutchinson-Gilford progeria
syndrome (HGPS), and two from the second category, Werner
syndrome (WS) and Cockayne syndrome (CS). Particularly
intriguing we find comparison of HGPS and WS that despite
entirely different molecular functions of affected proteins develop
some similar clinical features such as accelerated cardiovascular
disease (CVD) and atherosclerosis. On the other hand, why do CS
patients, despite having deficits in repair of DNA damage similar to
WS, develop entirely different clinical features involving
neurodegeneration? We will address these and similar aspects
particularly in the last parts of the manuscript where we describe
in detail the disease pathology of these progeroid syndromes.

Hutchinson-Gilford progeria syndrome

Hutchinson-Gilford progeria syndrome (HGPS) is an autosomal
dominant extremely rare (1 in ~4 million live births) progeroid
disease with typical premature aging features such as short stature,
skin scleroderma, alopecia, joint contractures, lipodystrophy,
osteolysis, and most striking accelerated cardiovascular disease
accompanied by severe atherosclerosis development (Merideth
et al., 2008; Olive et al., 2010; Gordon et al., 2012). HGPS
patients experience increased incidence of strokes and if not
treated die in their teens at the age of ~14 years due to
myocardial infarction (Merideth et al., 2008; Silvera et al., 2013).
HGPS as well as APS and MADA are caused by mutations in the
LMNA gene that together with MADB, RD, and NGPS belong to a
group of progeroid syndromes associated with defects in nuclear
organization and stability (Foo et al., 2019). LMNA gene encodes for
the lamin A protein and an alternative splice variant lamin C, which
together with lamins B1 and B2 constitute parts of a dense
intermediate filament meshwork (type V) just beneath the inner
nuclear membrane, the so called nuclear lamina (Buxboim et al.,
2023). Lamins are key nucleocytoskeletal connectors conferring
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shape and stability to the nucleus (Osmanagic-Myers et al., 2015;
Buxboim et al., 2023). The role of lamins goes beyond a solely
mechanical function and includes a plethothora of other tasks such
as heterochromatin organization, scaffolding of transcriptional
factors and affecting DNA replication and DNA repair as well
(Dechat et al., 2010; Gonzalo, 2014; Osmanagic-Myers and
Foisner, 2019).

In the majority of cases, HGPS is caused by de novo single-base
substitution G608G (GGC>GGT) in exon 11 of LMNA gene with no
change in the coding amino acid (De Sandre-Giovannoli et al., 2003;
Eriksson et al., 2003). Lamin A, expressed as prelamin A, undergoes
extensive post-translational modifications including farnesylation,
carboxymethylation and finally cleavage of carboxyl terminal
15 amino acids by Zmpste24/FACE1 that results in removal of
these post-translational modifications and formation of mature
lamin A (Dechat et al., 2010). HGPS mutation leads to activation
of cryptic RNA splice donor site within exon 11 of LMNA gene and
formation of shorter, permanently farnesylated prelamin A named
progerin (Gordon et al., 2012). Permanently farnesylated prelamin
A is toxic to cells inducing nuclear shape irregularities (De Sandre-
Giovannoli et al., 2003; Eriksson et al., 2003) such as lobulation of
the nuclear envelope, thickening of the lamina, loss of peripheral
heterochromatin, clustering of nuclear pore complexes and linkers
of nucleoskeleton and cytoskeleton (LINC) Sun proteins (Goldman
et al., 2004; Chen et al., 2012). Similar effects are observed inMADA,
MADB, and RD associated with accumulation of prelamin A either
due to mutations in different parts of LMNA gene or those affecting
ZMPSTE24 gene that lead to total or partial loss of its proteolytic
activity (Figure 1 (Foo et al., 2019)). Treatment of cells with
farnesyltransferase inhibitor lonafarnib or antisense
oligonucleotides to target mutated splice site restores nuclear
architecture and rescues nuclear defects (Capell et al., 2005;
Scaffidi and Misteli, 2005). In addition, as expected from
multifaceted role of lamin A, it is conceivable that many other
lamin A functions are perturbed by accumulation of mutated
prelamin A as depicted in more details in the following chapters.

Werner syndrome

Werner syndrome (WS) is an autosomal recessive disorder
characterized by progeroid features that develop at late
adolescence such as short stature, atrophied skin, loss of
subcutaneous fat, graying of the hair, cataracts, type 2 diabetes
mellitus (T2DM), osteoporosis, atherosclerosis and increased
incidence of cancer (Oshima et al., 2017). Classical WS is caused
by mutations in the WRN gene encoding a WRN-helicase that
belongs to the family of five RecQ-helicases: RecQ1, WRN, BLM,
RecQ4 and RecQ5. Mutations in three of these RecQ family
members, WRN, BLM, RecQ4 lead to WS, BS and RTS
(Figure 1), respectively, whereby WS is considered a prototype
progeroid disorder (de Renty and Ellis, 2017). WRN helicase, is
an ATP-dependent 5′-3′ DNA unwinding enzyme harboring also
3′-5′ exonuclease activity. It has a key role in preserving genome
stability through several important functions in DNA replication,
telomere maintenance, and DNA damage repair (Rossi et al., 2010;
Shimamoto et al., 2015). Both helicase and exonuclease activities are
essential for resolving DNA forks, D-loops, Holliday junctions and

telomeric G-quadruplexes (G4) that normally occur during DNA
replication but also at sites of DNA damage (Rossi et al., 2010). One
of its key roles is enabling restart of stalled replication forks that
occur at sites of DNA damage or G-quadruplexes formed at G-rich
telomere sequences (Kipling et al., 2004; Shimamoto et al., 2015).
WRN promotes DNA damage repair pathway also through
interaction with several major players involved in base excision
repair (BER) and double-strand break repair (DSBR; see Box 1). In
BER, WRN interacts with glycosylase NEIL1 promoting removal of
DNA lesions by this enzyme (Das et al., 2007). Through direct
binding and helicase activity WRN stimulates the strand
displacement polymerase β DNA synthesis (Harrigan et al., 2003)
and enhances the efficiency of exonuclease FEN1mediating removal
of generated DNA flaps (Brosh et al., 2002). In DSBR involving non-
homologous end-joining (NHEJ, see Box 1), WRN binds to Ku-
proteins in the presence of which its additional intrinsic exonuclease
activity is strongly enhanced that contributes to efficient digestion of
DNA lesions at DSB termini (Cooper et al., 2000). In parallel, WRN
physically interacts with DNA-PK which is suggested to structurally
stabilize this complex. Consistent with this role, in the absence of
WRN, reduced rate of NHEJ associated with slower loss of γH2AX
foci is observed (Grundy et al., 2016). In HR-repair pathway WRN
helicase binding to MRE11 and NBS components of MRN complex
and nuclease DNA2 promotes 5′ end-resection and generation of
single strand DNA overhangs (Cheng et al., 2004; Lu and Davis,
2021). Furthermore, WRN binding to Rad52 increases the efficiency
of Rad52-mediated annealing of the invading strand. Thereby,WRN
presumably promotes double-strand opening in homologous DNA
strand through its helicase activity (Baynton et al., 2003). WRN is
further implicated in the process of translocation of Holliday
junctions (WRN functions in detail reviewed in (Lu and
Davis, 2021).

Cockayne syndrome

Cockayne syndrome (CS) together with trichothiodystrophy
(TTD) and xeroderma pigmentosum (XP), belongs to the group
of nucleotide excision repair (NER) progeroid disorders (Figure 1)
that affect transcription coupled NER (TC-NER) and global genome
NER (GG-NER), respectively (Niedernhofer et al., 2011). CS is in
~90% of cases caused by mutations in the “excision repair cross
complementation group” (ERCC) genes 8 and 6, encoding Cockayne
syndrome A (CSA) and B (CSB) proteins, respectively. The majority
of mutations reside in the ERCC6 gene (CSB) with many being
compound heterozygous (Jaarsma et al., 2013). CSB protein acts as
SNF family chromatin remodeler with ATPase activity that together
with CSA protein is best known for the role in transcription-coupled
nucleotide-excision DNA repair (TC-NER). These proteins also
have a role in repair of DSB, and a variety of other functions as
well (Jaarsma et al., 2013; Vessoni et al., 2020; Walker and Zhu,
2022). Mechanistically, during TC-NER, CSB recognizes nuclear but
also mitochondrial DNA lesions (Scheibye-Knudsen et al., 2012;
Scheibye-Knudsen et al., 2013) that cause RNA stalling in the active
transcribed regions, and in turn promotes either backtracking of
stalled RNA polymerase or its removal via ubiquitination. The latter
is mediated through recruitment of CSA and associated E3 ubiquitin
ligase complex. After initial DNA damage recognition, TC-NER and
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GG-NER use common mechanisms to remove DNA lesions
(Kraemer et al., 2007; Niedernhofer, 2008). This involves
recruitment of a 10 protein complex of the basal transcription
factor that is also part of NER, TFIIH with helicases XPB and
XPD that unwind the DNA followed by incision/excision of
damaged DNA via XPF-ERCC1 and XPG complexes, and finally
gap filling through DNA replication and ligation (Kraemer et al.,
2007; Paccosi et al., 2022). Thus, since GG-NER and TC-NER
converge at later stages of the NER, it is not surprising that
different XP mutations in the same genes involved in later stages
of the NERmay develop to TC-NER disorders (Kraemer et al., 2007)
as depicted in Figure 1.

CS originally described in 1936 (Cockayne, 1936) is inherited in
an autosomal recessive fashion and has varying degrees of clinical
symptoms ranging from moderate to severe, with average life
expectancy of ~16 and ~5 years in type I and II CS, respectively.
Type III CS displays a milder phenotype with average life expectancy
of ~30 years (Laugel, 2013; Vessoni et al., 2020). CS is characterized
by typical short stature involving cachectic dwarfism, loss of
subcutaneous fat, premature aging facial features, microcephaly,
cerebellar ataxia due to strong effects in the neural system
characterized by intellectual disability. It is mainly associated
with severe white matter loss and atrophy of cerebrum,
cerebellum and brain stem, pyramidal and extrapyramidal signs,
peripheral and sensorial nerve impairment (hearing loss,
retinopathy, cataracts) (Laugel, 2013; Karikkineth et al., 2017;
Spitz et al., 2021). However, CS affects also other systems such as
cardiovascular system with early onset hypertension, increased
vasculature in subarachnoid space and subdural hematoma
(Hayashi et al., 2012). In contrast to mutations in genes
responsible involving GG-NER, CS is not associated with higher
incidents of cancer (Lu et al., 2001).

Hallmarks of aging in the context of
progeroid syndromes

Here we will focus on aging hallmarks of selected progeroid
syndromes HGPS, WS and CS and at relevant parts involve findings
in other progeroid disorders as well. Mechanistic insights will be

further elaborated particularly to those aspects hitherto relevant to
physiological aging and key intervention strategies in progeroid
syndromes. The emerging concept highlighting interconnection of
aging hallmarks (Lopez-Otin et al., 2023) may provide explanation
for the presence of almost all aging hallmarks in selected progeroid
diseases as depicted below, even in the absence of obvious common
disease-causing genes as in the case of WS and HGPS.

Primary causes of damage in WS, CS and
other DNA damage repair
progeroid disorders

In regard to primary aging hallmarks involving causes of
damage, it is difficult and probably incorrect to attribute to each
of the here described progeroid syndromes one primary cause of
damage. However, we will attempt to highlight those that are
prevalent or appear most upstream causes of damage. For WS
including its family members, BS and RTS (Rossi et al., 2010)
but also for CS (Lodato et al., 2018) and XP (de Boer and
Hoeijmakers, 2000) genomic instability, defined as the tendency
of the genome to acquire mutations, appears to be the prevalent
cause of damage (Figure 2). This is expected as exemplified in case of
WS and CS due to reduced efficiency of DNA-repair machinery in
the absence of functioning WRN-helicase, as a key protein involved
in BER, NHEJ and HR and that of CS-proteins in TC-NER.
Consistently, elevated levels of DNA damage “foci”, marked by
ataxia ATM-phosphorylated histone 2A variant (γH2AX) and p53-
binding protein 1 (53BP1) were reported for WS (Chang et al., 2004;
Szekely et al., 2005; Saha et al., 2014; Zhang et al., 2015) and CS
(Batenburg et al., 2015; Pascucci et al., 2018; Wang et al., 2020).
Thereby is ATM the key kinase that recognizes these damaged DNA
sites leading either directly or indirectly to phosphorylation of
several downstream substrates such as NBS, Chk2/p53, γH2AX
(Shiloh, 2003). Thus, it is not surprising that genomic instability
is a prevalent feature in progeroid disorders affecting ATM gene
(AT) and its family members (Figure 1) (Shiloh, 2003).

Another driving cause of damage inWS (Crabbe et al., 2004) and
CS (Batenburg et al., 2012) is accelerated loss of telomeres (Figure 2).
In physiological aging telomere attrition occurs due to inability of

FIGURE 2
Primary aging hallmarks in selected progeroid disorders CS, WS and HGPS. Note that darker red shading indicates genomic instability together with
epigenetic changes and telomere attrition as the primary cause of damage in WS and CS and uniform color in HGPS, no prevalent primary cause of
damage in HGPS. Figure created with Biorender.com.
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TABLE 1 Different aging hallmarks for progeroid diseases HGPS,WS, and CS. Tissue and cell origins used in experiments are highlighted in the columns right
to respective disease since they may contribute to variability. Primary vs. immortalized cell cultures are distinguished.

Hallmark/
Disease

HGPS References WS References CS References

Genomic
instability

✓HGPS FB Liu et al. (2005), Liu et al. (2006)
Reviewed in Gonzalo and
Kreienkamp (2015)

✓WS
whole
blood

Kyoizumi et al. (1998),
Chang et al. (2004), Crabbe
et al. (2007)Reviewed in
Rossi et al. (2010)

✓CS patient
FB & iFB

Pascucci et al. (2018)

✓WS FB ✓CS
neuronal
tissue

Lodato et al. (2018)

✓CS PFC
single
neurons

Kim et al. (2022)

Epigenetic
alterations

✓HGPS FB Shumaker et al. (2006), Heyn et al.
(2013), Horvath et al. (2018),
Chojnowski et al. (2020), Kohler
et al. (2020)

✓WS
whole
blood

Heyn et al. (2013),
Guastafierro et al. (2017);
Maierhofer et al. (2019)

✓CS FB Crochemore et al.
(2023)

✓WS
LCL

✓HGPS LCL ✓WS
MSC

Zhang et al. (2015) CS3BE and
CS1AN

Lee et al. (2019)

Telomere attrition ✓ HGPS FB Cao et al. (2011a), Aguado et al.
(2019)

✓WS FB Crabbe et al. (2004), Crabbe
et al. (2007), Gatinois et al.
(2019)

✓CS FB Batenburg et al. (2012)

✓HGPS FB and iFB ✓WS
iPSC

Loss of proteostasis ✓HGPS 3T3L1 iFB (GFP-
progerin), HGPS iFB
and FB

Mateos et al. (2015) ✓WS FB
and iFB

Maity et al. (2018) ✓CS iFB Alupei et al. (2018);
Qiang et al. (2021)

✓HGPS FB Vidak et al. (2023)

Cao et al. (2011b)

Disabled
macroautophagy

✓Zmste24−/− mice Marino et al. (2008),
Monterrubio-Ledezma et al. (2023)

✓WS FB,
Wrn-1
KD C.e.
& D

(Maity et al., 2018; Fang
et al., 2019)

✓Csbm/m

mice & MDF
Scheibye-Knudsen
et al. (2012), Majora
et al. (2018)✓HGPS FB*

Deregulated
nutrient sensing

✓Zmpst24 −/−MDSPC Marino et al. (2008), Kawakami
et al. (2019)

✓WS SVF Sawada et al. (2023) ✓CS m/m
mouse liver

Schumacher et al.
(2008)

✓Zmpst24 −/−skeletal
muscle

✓CS iPSC-
derived
neural cells

Vessoni et al. (2016)

Cellular senescence ✓HGPS FB Bramwell and Harries (2023) ✓WS FB Bramwell and Harries
(2023)

✓CS FB Bramwell and Harries
(2023)

✓HGPS ECs Cao et al. (2011a), Osorio et al.
(2011), Atchison et al. (2020),
Manakanatas et al. (2022), Xu et al.
(2022)

✓WS SVF Sawada et al. (2023)

✓HGPS iECs inMSCs&
inNSCs

Wang et al. (2020)

✓HGPS FB

✓HGPS LAKI mice

Mitochondrial
dysfunction

✓LmnaG609/G609 mice Rivera-Torres et al. (2013) ✓WS FB,
Wrn-1
KD C.e.
& D

Fang et al. (2019) ✓CS FB
& IFB

Chatre et al. (2015)

✓HGPS FB Viteri et al. (2010) ✓Csbm/m

mice & MDF
Scheibye-Knudsen
et al. (2012)

✓HGPS 3 3T3L1 Mateos et al. (2015)

Altered
intercellular
communication

✓HGPS ECs and EC
HGPS mice with other
mouse models reviewed in
Benedicto et al.,

Osmanagic-Myers et al. (2019), Sun
et al. (2020), Benedicto et al. (2021),
Manakanatas et al. (2022)

✓WS SVF Sawada et al. (2023) ✓Csa−/−
mice

Kajitani et al. (2021)

✓Csa−/
−Xpa−/−
mice

(Continued on following page)
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classical DNA polymerase to synthetize telomeric repeats at
chromosome ends that cannot be entirely compensated by
telomerase reverse transcriptase (Martinez and Blasco, 2017). In
WS accelerated telomeric loss is linked to the key function of WS
helicase in efficient replication process of G-rich telomeric DNA
regions. Consequently, in mice with longer telomeres than humans,
WS-like disease pathology could only be recapitulated upon
breeding in mTERC−/− background (see Box1) highlighting
telomere attrition as one the key causes of damage in WS
(Chang et al., 2004). In CS, CSB association with shelterin
protein complex subunit, a telomeric repeat binding factor 2
(TRF2), was shown to be essential for telomere protection that
suppressed the formation of telomere-dysfunction induced foci
(Batenburg et al., 2012). Thus, for both WS and CS elevated
telomere attrition is expected to further exacerbate genomic
instability by activating DNA-damage response and promoting
chromosome fusions. This will add up to already elevated DNA
damage in these progeroid syndromes which exemplifies the
interconnectedness of aging hallmarks as explained in detail
below (Crabbe et al., 2007; Rossi et al., 2010). Consistent with
this notion genomic instability is also a prevalent cause of
damage in typical telomere biology disorders with substantial
telomere shortening, such as dyskeratosis congenita (DC) and
Hoyeraal-Hreidarsson syndrome (HHS) (Figure 1) as reviewed in
(Martinez and Blasco, 2017; Fiesco-Roa et al., 2022). Finally,
genomic instability appears to be the driving cause of damage in
progeroid disorders with defective ICL-repair (see Figure 1;
~20 genes affected). Here due to lack of DSB repair through HR,
cells entirely rely on error-prone NHEJ to repair the DNA damage
resulting in severe cases of chromosome instabilities and cancer
(Fiesco-Roa et al., 2022). Altogether, the above mentioned
mechanisms may be highly relevant in deciphering major players
and conditions causing decline in the efficiency of DNA repair
machinery in physiological aging and age-related diseases
(Gorbunova et al., 2007).

Primary causes of damage in HGPS and
other nuclear envelope disorders

For HGPS, several reports have validated increased levels of
DNA damage (Liu et al., 2005; Varela et al., 2005; Osorio et al., 2011;
Chojnowski et al., 2020) associated with replication stalling
(Kreienkamp et al., 2018) and shift towards error prone NHEJ
with reduced fidelity (Joudeh et al., 2023). Altogether all these factors
contribute to increased genomic instability of progerin expressing
cells (reviewed in (Gonzalo and Kreienkamp, 2015)). However, for
HGPS no prevalent primary hallmark may be attributed since in
addition to genomic instability (Liu et al., 2005; Liu et al., 2006),
telomere attrition (Cao et al., 2011a), loss of proteostasis (see below;
(Vidak et al., 2023)) and changes in epigenome appear to be
similarly abundant as well ((Chojnowski et al., 2020) (Figure 2;
Table 1). This may be explained by highly multifunctional role of
lamins in diverse cellular function as stated above (Dechat et al.,
2010; Buxboim et al., 2023). For similar reasons no dominant cause
may be attributed to other nuclear envelope progeroid syndromes
affecting LMNA and ZMPSTE genes as reviewed in (Gonzalo and
Kreienkamp, 2015; Cenni et al., 2018).

Some of the mechanisms underlying genomic instability in
HGPS may be caused by changes in the lamina that perturb
binding of factors involved in DNA damage repair. In such a
way, delayed recruitment to DNA damage foci was shown in
HGPS for phospho-NBS and MRE11 (Constantinescu et al.,
2010), RAD51 and 53BP1 (Liu et al., 2005) which are mainly
involved in HR and NHEJ, respectively (see Box 1). In analogy, it
may be speculated that changes in lamina and lamina associated
proteins known to be occurring under specific conditions during
physiological aging (Swift et al., 2013; Kristiani et al., 2020; Kirkland
et al., 2023) may contribute to age-induced changes in the
recruitment of DNA damage repair (DDR) factors. For instance,
recent findings show for lamin B association with 53BP1 and its
release upon DDR. Authors suggested that lamin B may serve as a

TABLE 1 (Continued) Different aging hallmarks for progeroid diseases HGPS, WS, and CS. Tissue and cell origins used in experiments are highlighted in the
columns right to respective disease since they may contribute to variability. Primary vs. immortalized cell cultures are distinguished.

Hallmark/
Disease

HGPS References WS References CS References

Chronic
inflammation

✓HGPS ECs and HGPS
ECmice with other mouse
models reviewed in
Benedicto et al.,

Osmanagic-Myers et al. (2019), Sun
et al. (2020), Benedicto et al. (2021),
Manakanatas et al. (2022)

✓WS SVF Sawada et al. (2023) ✓Csa−/−
mice

Kajitani et al. (2021)

✓Csa−/
−Xpa−/−
mice

Stem cell
exhaustion

✓HGPS iMSCs Scaffidi and Misteli (2008),
Rosengardten et al. (2011), Choi
et al. (2018), Kawakami et al. (2019)

✓WS
SC SVF

Sawada et al. (2023) inMSCs &
inNSCs

Wang et al. (2022)

✓HGPS inMSCs

✓skin HGPS mice ✓WS FB,
Wrn-1
KD C.e.
& D

Fang et al. (2019)

✓Zmpst24 −/−MDSPC

Dysbiosis LmnaG609G/G609G mice Barcena et al. (2019) X X X X

aAsterisk indicates alterations occurring in opposite directions compared to physiological aging, e.g., autophagy increase in HGPS, cells; EC, endothelial cell; EC HGPS mice, endothelial specific

HGPS, mice; FB, primary fibroblasts; iFB, immortalized fibroblasts; MSCs, mesenchymal stem cells; iMSCs, immortalized MSCs; inMSCs and inNSCs, MSCs, and NSCs, differentiated from

iPSCs of patients, respectively; LCL, immortalized B-cells (lymphoblastoid cell line; LCL);MDF, mouse dermal fibroblasts;MDSPC,muscle-derived stem cell/progenitor cells; NSCs, neural stem

cells; 3 T3L1 pre-adipocyte cell line; PFC, prefrontal cortex; SC, stem cells; SVF, stromal vascular fraction from patient adipose tissue;Wrn-1 KD C.e. & D, Wrn-1, knockdown in C. elegans and

Drosophila.
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reservoir for 53BP1 allowing its efficient recruitment to DNA
damage foci upon DDR signals, a process shown to be sensitive
to alterations in lamin B levels (Etourneaud et al., 2021). Thus, it
remains to be elucidated if similar regulatory mechanisms associated
with structural changes in lamin A and DDR factor perturbations in
HGPS may give us important clues for physiological aging.

Epigenetic alterations

Epigenetic changes during aging affect posttranslational
modifications of histones such as lysine methylations, cytosine 5-
methylations at DNA regions within CpG-rich islands, chromatin
remodelers and non-coding RNAs (Zhang et al., 2020). Repressive
histone marks that involve lysine methylations of histones, usually
associated with a more condensed state of chromatin,
heterochromatin, reduce access to transcriptional factors causing
gene silencing. Some of the well-known repressive histone marks
involving lysine trimethylations (me3) on core histones 3 (H3) and 4
(H4) are H3K9me3 and H3K27me3. Typical active histone marks
involve acetylations of lysine residues on histones such as H3K9ac
and H3K27ac or specific methylations such as H3K4me3. In
physiological aging a general loss of heterochromatin occurs, but
this is a highly heterogeneous phenomenon in regard to different
gene loci, cell context and state of the cell. For instance, in senescent
cells, despite general heterochromatin loss, increase in particular
senescence-associated heterochromatic foci (SAHF) involved in
silencing of genes responsible for cell division is observed (Lee
et al., 2020). Despite this heterogeneity there seems to be a global
trend in reduction of core histone levels, and repressive histone
marks such as H3K9me3 and H3K27me3 in physiological aging and
progeroid syndromes (Booth and Brunet, 2016; Lee et al., 2020;
Zhang et al., 2020).

Heterochromatin loss in HGPS appears to be rooted in
downregulation of chromatin modifier, methyltransferase
EZH2 and chromatin remodeler, heterochromatin protein
1 alpha (HP1a) (Goldman et al., 2004; Scaffidi and Misteli, 2005;
Shumaker et al., 2006; Chojnowski et al., 2020). This may be caused
by altered scaffolding function of lamin A in HGPS, alterations of
which, may similarly contribute to delocalization and decreased
levels of chromatin remodelers in physiological aging (Lee
et al., 2020).

Through association with the key chromatin remodeler HP1a,
H3K9me3-specific methyltransferase SUV39H1 and lamina-
heterochromatin anchoring protein LAP2β, WRN appears to act
as a gatekeeper of heterochromatin stability (Zhang et al., 2015).
Consequently, global heterochromatin loss occurs in WS adding
epigenetic modifications to other two dominant causes of damage in
this disease (Figure 2). Importantly, since WRN, HP1a, and
SUV39H1 decline was detected in cells from aged donors, similar
mechanism may apply to physiological aging as well (Zhang
et al., 2015).

Epigenetic alterations associated with global heterochromatin
loss appear to dominate CS as well (Figure 2). Decondensed
H3K9me3 loci were shown to be associated with excessive PARP
activation and downregulation of H3K9me3-specific
methyltransferases, SUV39H1 and SETDB1. These effects may be
attributed to the key function of ATP-dependent chromatin

remodeler CSB in actively controlling the packaging state of
DNA thereby regulating protein access (Lee et al., 2019). Since
CSB and SETDB1 levels were found to decline in cells from aged
individuals and senescent cells similar mechanisms may operate in
physiological aging as well (Crochemore et al., 2019; Lee et al., 2019).

Interconnectedness of primary hallmarks:
genomic instability and epigenetic changes

To demonstrate the causal complexity between aging hallmarks in
progeroid syndromes relevant to physiological aging let us consider
connections between the above highlighted genomic instability, and
changes in the epigenetic landscape. A question that arises is how
could increase in DNA damage be connected to global changes in the
epigenetic landscape and altered chromatin accessibility observed in
these progeroid models (Shumaker et al., 2006; Carrero et al., 2016;
Chojnowski et al., 2020; Kohler et al., 2020). Besides direct enrollment
of the affected proteins, the plausible explanation for the correlation of
such phenomena is offered by recent findings showing that acute
DNA damage erodes the epigenetic landscape presumably due to
persistent relocation of chromatin modifiers (RCM) such as silent
information regulators (sirtuins) or Ten-eleven translocation enzymes
(TET) to sites of DNA damage, postulated as “Information Theory of
Aging” (Yang et al., 2023). Consistent with this theory in progeroid
syndromes where DNA damage is associated with excessive PARP
activation, treatments improving the activity of sirtuins have shown to
be very beneficial (Liu et al., 2012; Fang et al., 2014). To add to the
complexity level of this scenario, in HGPS, that harbors wide-spread
loss of heterochromatin (Shumaker et al., 2006; Chojnowski et al.,
2020), progerin-induced perturbation of heterochromatic lamina-
associated domains (LADs) may additionally contribute to changes
in epigenetic landscape (Osmanagic-Myers and Foisner, 2019).

Moreover, predictable epigenetic changes involving DNA hypo-
and hypermethylation (DNAm) particularly at CpG rich regions
have even led to generation of epigenetics clocks licensed for
estimating chronological age and used as biomarkers of biological
aging (Horvath, 2013; Moqri et al., 2023). In analogy, all progeroid
syndromes have been shown to exhibit DNAm changes resembling
those observed in physiological aging to a variable extent
(Guastafierro et al., 2017; Maierhofer et al., 2019; Crochemore
et al., 2023). Using modified epigenetic clocks adopted to specific
cell types, Horvath and colleagues could even validate epigenetic
clocks showing age acceleration in HGPS (Horvath et al., 2018)
further supporting the view that there is much more of tale to tell
from studying progeroid disorders.

Loss of proteostasis and disabled
macroautophagy

The interconnectedness of primary aging hallmarks in the
context of progeroid disorders can be further extended to last
two primary hallmarks, loss of proteostasis and disabled
macroautophagy. These are regulated through amounts of
respective waste products generated, misfolded protein and
dysfunctional organelles and the cells ability to get rid of the
“excessive garbage material”. Waste products arise in respective
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progeroid syndromes due to accumulation of misfolded proteins
involving accumulation of mutated proteins as well. The latter is
mainly due to reduced efficiency and errors in DNA repair
machinery that give rise to accumulations of mutations (Rossi
et al., 2010; Lodato et al., 2018). In addition, CSB proteins
directly stimulate RNA polymerase I transcription enhancing
ribosome translational fidelity, a process that is impaired in CS
(Alupei et al., 2018). Since the efficiency of the DNA damage repair
machinery declines in physiological aging (Gorbunova et al., 2007),
defects in similar processes may contribute to the accumulation of
misfolded proteins in age-related conditions as well. For HGPS
accumulation of misfolded proteins, and damaged organelles such as
mitochondria have been reported (Viteri et al., 2010; Vidak et al.,
2023), as well as in WS (Maity et al., 2018; Fang et al., 2019) and CS
(Scheibye-Knudsen et al., 2012; Alupei et al., 2018; Qiang et al.,
2021). In HGPS this is further exacerbated by the primary cause of
the disease, i.e., accumulation of progerin at nuclear periphery that
activates the UPR (Vidak et al., 2023). On the other hand, in
physiological aging and in WS and CS accumulation of garbage
is partly also caused by reduced garbage disposal pathways through
either unfolded protein response (UPR), chaperone mediated
autophagy, proteosomal activity or macroautophagy (Lopez-Otin
et al., 2023). Studies in CS and WS revealed impaired removal of
damaged mitochondria through mitophagy highlighting the
enrollment of both CSB and WRN in this process. A plausible
mechanism for defective mitophagy in progeroid syndromes, CS,
WS, XP and AT, appears to lie in defective DNA damage repair
associated with persistent PARP1 activation depleting NAD+ cell
reservoirs. This in turn leads to inhibition of NAD-dependent
deacetylase Sirt, its downstream target PGC1α affecting the key
protein involved in the process of mitophagy, uncoupling protein 2
(UCP2) (Fang et al., 2014; Fang et al., 2019). Thus, this signalling
cascade provides key mechanic insights that relate to NAD+
depletion known to play a fundamental role in the biology of
aging (Verdin, 2015). In HGPS, autophagy (Marino et al., 2008),
UPR (Vidak et al., 2023) and mitophagy (Monterrubio-Ledezma
et al., 2023) are apparently not compromised but even increased
likely in an attempt to compensate for massive progerin
accumulation. Consistent with this notion Vidak and colleagues
have shown that in HGPS UPR machinery of the endoplasmic
reticulum senses nucleoplasmic progerin aggregates through
clustered Sun proteins a mechanism that awaits to be tested in
physiological age-related conditions (Vidak et al., 2023).

Antagonistic aging hallmarks

Finally, in all progeroid syndromes, similar to physiological
aging, increased cellular damage will result in accumulation of
cell cycle arrested senescent cells, mitochondrial dysfunction and
deregulated nutrient sensing as an initial antagonistic response to
counteract damage that becomes eventually detrimental (Table 1).
Accordingly nutrient sensing pathways involving somatotrophic
growth hormone (GH)-insulin growth factor (IGF) axis that
promotes growth via mTOR signalling pathway decreases in
aging (Lopez-Otin et al., 2013) and progeroid disorders WS
(Sawada et al., 2023), CS (Schumacher et al., 2008; Vessoni et al.,
2016) and HGPS (Marino et al., 2008) presumably in an attempt to

decrease damage through cessation of growth. In HGPS this may not
apply to muscle progenitor cells in which conversely elevation of
mTOR was observed (Kawakami et al., 2019).

Mitochondrial deficiency that may be beneficial in its mild forms
due to mitohormesis peaks in accumulation of damaged mitochondria
associated with ATP reduction and elevated reactive oxygen species
(ROS) in aging (Lopez-Otin et al., 2013) and similarly in progeroid
syndromes WS (Fang et al., 2019), CS (Scheibye-Knudsen et al., 2012)
and HGPS (Viteri et al., 2010; Rivera-Torres et al., 2013; Mateos et al.,
2015). To some extent this may be attributed to direct effects of affected
proteins in progeriod disorders in such that CSB localization to
mitochondria may stimulate mitochondrial DNA (mtDNA) damage
repair, WRN ability to stimulate transcription of NAD + biosynthethic
enzyme, nicotinamide nucleotide adenylyltransferase 1 (NMNAT1)
(Fang et al., 2019) and in HGPS deteriorating effects of progerin
nucleoplasamic aggregates activating UPR (Vidak et al., 2023).

Accumulation of damage in chronological aging as well as
accelerated damage in progeroid syndromes mainly contributes
to the development of cellular senescence, which is a permanent
arrest in cell cycle. Senescent cells gradually increase in numbers
during chronological aging with variable extent depending on tissue
origin and disease progression such as in the case of atherosclerosis
(Childs et al., 2016; Lopez-Otin et al., 2023). Senescent cell burden is
particularly high in aortic, liver, and kidney tissues of naturally aged
and premature aged Ercc1-/Δmice (Yousefzadeh et al., 2020). Many
studies have shown accumulation of senescent cells in HGPS (e.g.,
(Cao et al., 2011a; Osorio et al., 2011) with reports also inWS and CS
(Wang et al., 2020; Bramwell and Harries, 2023). Particularly
affected by cellular senescence are endothelial cells (EC) and
vascular smooth muscle cells (VSMCs) in HGPS (Osmanagic-
Myers et al., 2019; Atchison et al., 2020; Benedicto et al., 2021;
Manakanatas et al., 2022; Xu et al., 2022) and adipose tissue derived
stem cells in WS (Sawada et al., 2023). This is consistent with strong
impact of these diseases in cardiovascular and adipose tissue. Thus,
selected progeroid disorders may serve as good models to study the
effects of senescent cell on particular disease states.

Integrative aging hallmarks

Accumulation of senescent cells is detrimental to micro- and
macroenvironment through development of senescence-associated
secretory phenotype (SASP) promoting inflammation as reviewed in
(Coppe et al., 2010). This altered intercellular communication
together with many other factors contributes to chronic
inflammation associated with stem cell exhaustion and dysbiosis.
These are parts of integrative response to damage that eventually
leads to loss of tissue homeostasis in aging. Chronic inflammation in
adipose tissue is shown to significantly reduce the adipogenic
potential of adipose-derived stem cells in WS that may explain
strong subcutaneous fat loss observed in this disease that may also be
relevant to loss of fat tissue in physiological aging (Sawada et al.,
2023). In HGPS selectively introducing aged progerin expressing
endothelial cells in mice results in severely altered communication of
these cells with their environment inducing myofibroblast switch in
surrounding fibroblasts and promoting fibrosis of cardiovascular
tissues (Osmanagic-Myers et al., 2019). Furthermore, chronic
inflammation is observed involving increased immune cell
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infiltration in different tissues associated with elevation of SASP
factors and pronounced plasma secretion of senescence-associated
microRNAs (SA-miRs). Inhibition of one of these SA-miRs, miR
34a-5p was shown to alleviate cellular senescence phenotype, an
approach that may be beneficial in physiological aging as well
(Manakanatas et al., 2022). In contrast to HGPS, in CS, chronic
inflammation, residing mainly within non-vascular neural tissues
involving glial cell activation, appears to exacerbate the function of
the surrounding vasculature disrupting the blood-brain barrier
(Kajitani et al., 2021).

Altered intercellular communication, chronic inflammation and
other age-related changes in the microenvironment eventually lead
to stem cells exhaustion associated with impaired tissue regeneration
and its reduced ability for repair after injury in aging (Brunet et al.,
2023). Similar to physiological aging in progeroid syndromes
reduced differentiation potential of stem cells, particularly
mesenchymal stem cells in HGPS (Scaffidi and Misteli, 2008;
Choi et al., 2018), WS (Fang et al., 2019; Sawada et al., 2023), CS
(Wang et al., 2020), muscle derived stem cell progenitors in HGPS
(Kawakami et al., 2019) and depletion of stem cell pool in the

FIGURE 3
Models depicting accelerated tissue aging in progeriod disorders HGPS, WS and CS according to prevalent disease pathologies. Whereas
accelerated cardiovascular aging is a prevalent characteristic in HGPS andWS, accelerated neural aging is predominant feature in CS. Skin and bone aging
is a common characteristic for all three progeriod disorders. Simplifiedmechanistic insights into key aging hallmarks of respective disease pathologies are
depicted. Sn, senescent; MSC, mesenchymal stem cell; FB, fibroblasts; Mnc, melanocyte; EC, endothelial cell; VSMC, vascular smooth muscle cell;
SASP, senescence-associated secretory phenotype. Figure created with Biorender.com.
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epidermis in HGPS (Rosengardten et al., 2011) is reported. The
latter together with accumulation of different senescent cell
populations may contribute to the characteristic skin and bone
phenotype in these diseases as depicted in more detail in
Figure 3 and in the next chapter.

Lastly introduced hallmark of aging is dysbiosis that characterizes
the altered host-gut microbiota bidirectional communication
associated with the reduction of bacterial diversity in aging (Lopez-
Otin et al., 2023). Dysbiosis was also found in HGPS and NGPS
patients and corresponding mouse models. In HGPS and NGPS
models, Barcena and colleagues could show enhanced healthspan
and lifespan upon fecal microbiota transplantation from wild-type
animals that should open new avenues in treatment and our
understanding of age-related disease conditions (Barcena et al.,
2019). Altogether as demonstrated by interconnectedness of
exemplified aging hallmarks it is not surprising that exaggerated
primary damage observed in progeroid syndromes will further
exacerbate antagonistic and integrative hallmarks. Consistent with
this, almost all 12 hallmarks were reported for selected progeroid
syndromes, HGPS, WS and CS (Table 1).

Progeroid syndromes: Accelerated
aging models of characteristic diseases

Due to their segmental nature, clinical features in HGPS, WS
and CS, appear to resemble accelerated forms of physiological aging
more or less accurately only for certain tissues subsets (Burtner and
Kennedy, 2010). Here we want to elaborate on lessons so far gained
from studying these progeroid syndromes particularly relevant to
molecular mechanisms underlying characteristic age-dependent
deterioration of specific tissues. In this respect HGPS and WS are
particularly interesting since similar clinical features such as
accelerated cardiovascular disease and atherosclerosis are
observed in both diseases despite apparently different molecular
functions of affected proteins. This phenomenon may at least partly
be explained by interconnectedness of aging hallmarks as elaborated
above. On the other hand, CS and XP as opposed to WS, despite
similar engagement in DNA damage repair pathways, exhibit
fundamental differences in phenotypes developing neurological
abnormalities associated with intellectual disability in affected
patients. Here, it is presumably the crucial function of CS and
XP proteins in specific type of DNA-repair, NER, as described in
detail below that may be of key importance for neural tissues. In this
part we will describe the most prevalent disease characteristics in
selected progeroid disorders in human patients but also mouse and
cell models and at relevant parts provide mechanistic links to
specific age-related disease pathologies.

Cardiovascular diseases in HGPS and WS

One of the most pronounced clinical features in HGPS is severe
cardiovascular disease characterized by preserved ejection fraction
and significantly increased E/E’ ratio indicating diastolic
dysfunction (Prakash et al., 2018). Diastolic dysfunction together
with many other functional changes of the cardiovascular system
strongly resemble CVD in aging population (Chang et al., 2014;

Hamczyk et al., 2018a). Moreover, severe atherosclerosis develops
early in the childhood of HGPS patients with characteristics of
intimal thickening, cholesterol crystals and necrotic core regions in
such resembling atherosclerosis features of aging population (Olive
et al., 2010). Similar to HGPS, in WS patients, age-related
atherosclerosis, myocardial infarction but also arteriosclerosis
obliterans are reported suggesting a common “aging”
denominator as the upstream cause for such alterations as
depicted in Figure 3 (Okabe et al., 2012; Oshima et al., 2017;
Kato and Maezawa, 2022). However, in contrast to HGPS
patients that show no significant changes in lipid profile with
merely HDL-cholesterol levels decreasing with age (Gordon et al.,
2005), WS patients develop severe hyperlipidemia associated with
T2DM (Okabe et al., 2012) indicating different initial triggers of
CVD in these two progeroid disorders.

In HGPS a whole plethothora of research in different HGPS
mouse models has provided more clarity for the cellular basis of
accelerated cardiovascular aging pathology as elaborated in
(Benedicto et al., 2021). Severe vascular smooth muscle cell
(VSMC) depletion and increased propensity to development of
atherosclerosis in VSMC conditional HGPS mouse models
indicates key importance of this cell type in CVD progression
(Hamczyk et al., 2018b). On the other hand, endothelial
dysfunction in ubiquitous HGPS mouse model LmnaG609/G609G

(Del Campo et al., 2020; Sun et al., 2020) and diastolic
dysfunction associated with strong profibrotic changes of aging
vasculature in endothelial conditional HGPS mouse models
(Prog-Tg) highlights the importance of the endothelial system in
the disease progression as well. Moreover, compromised alignment
of progerin-expressing vasculature to blood flow showing reduced
nuclei elongations (Osmanagic-Myers et al., 2019) is very much
reminiscent of defective endothelial mechanoresponse observed
during physiological aging (Collins and Tzima, 2011; Tian et al.,
2022). A detailed comparison of the above findings between HGPS
and WS is still hard to be made due to relatively mild pathology
reported for Wrn−/− mouse model system (Lebel and Leder, 1998).
Significant pathology, however, with no reports on cardiovascular
phenotype is only found after additional deletion of telomerase RNA
component (Terc−/−Wrn−/−mice) (Chang et al., 2004; Chang, 2005).
Thus, future research on CVD in Terc−/−Wrn−/−mice and generation
of atheroprone Terc−/−Wrn−/−mice may reveal additional insights
into CVD disease pathology and affected cell types in WS.

On the mechanistic level much of the new findings regarding
CVD in progeriod syndromes came from the research on HGPS
patient derived iPSCs differentiated to VSMC and EC lineages,
respectively. Accordingly, increased DNA damage signals,
reduced telomeres, inflammation, and abundant cellular
senescence in dysfunctional VSMCs as well as ECs were reported
in HGPS (Atchison et al., 2020; Xu et al., 2022). Using endothelial-
specific progeria mice, accelerating aging in ECs, was shown to be
accompanied by strong paracrine effects on surrounding tissues
leading to global spread of paracrine senescence and inflammation
(Sun et al., 2020; Manakanatas et al., 2022). This highlights the
massive extent of tissue damage that is exerted by introducing
progeroid features in just one particular cell type, endothelial
cells. Similar scenario may be expected for WS, since knockdown
of WRN elevates inflammatory phenotype of endothelial cells
(Laarmann et al., 2019). For HGPS mouse models, adopted
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endothelium-targeted Sirt7 therapy and usage of microRNA agents,
shown to ameliorate aging features in progerin-expressing ECs, may
prove to be successful in treatment of CVD in progeroid diseases and
those associated with physiological aging as well (Sun et al., 2020;
Manakanatas et al., 2022). Altogether these findings demonstrate the
power of using progeroid particularly tissue specific mouse models
for aging research.

Non-cardiovascular diseases in HGPS
and WS

Loss of subcutaneous fat, scleroderma-like phenotype but also
osteopenia and osteolysis for HGPS and osteoporosis for WS with
no effects in neural tissue for HGPS implicates pronounced
premature aging of the skin and bone in these progeroid
syndromes as depicted in Figure 3 (Chang et al., 2004; Merideth
et al., 2008; Osorio et al., 2011; Oshima et al., 2017). Much of the
research regarding these defects has indicated stem cell depletion,
similarly observed in physiological aging (Brunet et al., 2023), as un
underlying cause for these distinct phenotypes. For instance,
increased cellular senescence associated with depletion of adult
stem cells in the epidermis and adipose tissue was shown to
accompany the skin phenotype in HGPS and WS, respectively
(Rosengardten et al., 2011; Sawada et al., 2023). On the other
hand, the bone phenotype in HGPS was demonstrated to be
associated with loss of mesenchymal stem cells (MSCs) associated
with their reduced potential to differentiate to osteoblast lineages
(Scaffidi andMisteli, 2008; Choi et al., 2018). Regarding latter, recent
advances in transcriptomic and Hi-C genomic analysis techniques
appeared to have shed some light on MSC involvement in bone
phenotype. Martin and colleagues could show that HGPS cells show
a general misregulation and shifts in genome compartmentalization
that particularly appear to coincide with expression changes of key
mesenchymal lineages genes (San Martin et al., 2022). Altogether,
these findings may provide important new insight into how changes
in the epigenetic landscape occur during the aging process and how
these in turn contribute to stem cell depletion and loss of cell
identity as well.

Neurodegenerative disease in CS

For CS (Karikkineth et al., 2017; Han et al., 2023) and many
types of XP (Niedernhofer et al., 2011) the most severe pathology
seems to be in the neuronal system resembling to some extent
sporadic age-dependent neurodegenerative diseases. Similarly, to
age-dependent dementias and sporadic late onset Alzheimer’s
disease (LOAD) (Bouhrara et al., 2018; Lin et al., 2020), CS is
characterized by neuronal loss with severe demyelination, however
with so far no detectable amyloid-beta accumulation and no
hyperphosphorylated tau (Woody et al., 1991; Han et al., 2023).
Demyelination process implicates additional defects in
oligodendrocytes of the central- and Schwann cells of the
peripheral nervous system in CS disease progression. Thus, we
may gain important mechanistic insights from studying CS
animal models for underlying causes in CS that may be valuable
for age-dependent neurodegenerative diseases.

However, research on CS, has been initially hampered by lack of
adequate CS rodent models resembling human pathology. Hence,
the first generated CS models, Csb−/− and Csa−/−, displayed only
mild phenotypes with no obvious changes in myelin sheets typical
for CS patients (van der Horst et al., 1997; Jaarsma et al., 2011). In
mice with additional knockout of Xpa−/−, another protein involved
in NER, Csa−/−Xpa−/−, severe neurological defects with hindlimb
paralysis and dystonia were observed including progeroid features
such as kyphosis and lipodystrophy. However, the analysis of these
mice was limited, due to their premature death at 28 days which was
extended to~16 weeks in mice on soft diet (Brace et al., 2013).
Finally, Csb−/− mice with conditional knockout of Xpa−/− in
postnatal neurons appeared to resemble very much CS patient
pathology showing typical demyelination and progressive
neuronal degeneration (Jaarsma et al., 2011; Kajitani et al., 2021).
On the cellular level Mac2-positive microglia with elevated levels of
glial fibrillary acidic protein indicated increased microglia-activation
and neuronal injury (Jaarsma et al., 2011). For both, neurons and
astrocytes, increased levels of activated p53 accompanied by elevated
apoptosis suggested activation of p53-apoptotic- or senescence
pathway that likely was the cause for substantial neural loss
(Jaarsma et al., 2011). According to the current state of the
research, abnormal activation of microglia and astrocytes emerge
as key contributors to neuoroinflammatory response of aging brain
tissue indicating high resemblance of CS to age-dependent
neurodegenerative diseases in elderly and LOAD (Hou et al.,
2019) as proposed in Figure 3.

The question that arises at this point is why accelerated aging of
the neural tissue appears to be the prevalent characteristic in CS.
One of the plausible explanations for this phenomenon might lie in
the huge demand of neural tissue for oxygen causing increased
generation of reactive oxygen species (ROS) and accumulation of
DNA damage (Madabhushi et al., 2014). As implicated previously
(Niedernhofer, 2008), in neural tissue TC-NER may be the essential
way to repair such accumulated DNA-damage, providing
explanation why in CS, harboring defective TC-NER, specifically
premature neural aging is observed. Consistent with accumulated
unrepaired DNA damage in neural tissue, increased senescent
neural cell burden is reported in previous findings showing
increased levels of p53-positive cells in neural tissues and cell
cultures derived from CS patients (Jaarsma et al., 2011; Bramwell
and Harries, 2023). In analogy to this, LOAD, for which the highest
risk factor is aging, is characterized by accumulation of ROS and
accumulated DNA damage accompanied by increased senescent cell
burden suggesting common triggers in age-dependent
neurodegenerative diseases and CS (Lau et al., 2023).

Emerging new technologies provided a deeper mechanistic
insight into underlying causes of CS-pathologies that may be
applicable to physiological aging as well. For instance,
transcriptome analyses of several Csb−/− cell lines have
implicated Csb in chromatin remodeling able to affect active
histone marks in gene promoter regions. In such a way, Csb was
shown to suppress the key negative regulator of neuron-specific
growth, Necdin. Accordingly, NDN depletion, in CSB−/− neural cell
lines and Csb-mouse models, is shown to partially rescue motor
neuron deficits (Liang et al., 2023). Thus, this finding highlights the
importance of exploring direct but also indirect targets in regulation
of CS pathologies that may help solve puzzles in complex pathways
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involved in age-related neurodegeneration. Moreover, side-by-side
comparison of premature and physiological aging, may help identify
the pattern of long-term global changes involved in complex
neuronal pathologies of CS and elderly. Accordingly, Lim and
colleagues have used a new PhaseDel technology in single-cell
whole genome sequencing of a large number of single neurons
from aged and progeroid individuals (CS, Xeroderma pigmentosum
and Ataxia telangiectasia) to demonstrate accumulation of somatic
mutations particularly in DNA-repair genes as potential underlying
cause of neurodegenerative disorders in aged individuals (Kim
et al., 2022).

CS in non-neural tissues

It is not to exclude that in CS also non-neural tissues resemble to
some extent accelerated forms of physiological aging. For instance,
abnormal accumulation of subarachnoid arteries accompanied by
subdural hematoma are typical diseases of the elderly that are often
found in CS patients (Weigel et al., 2022). These may implicate
common vascular changes in affected brain regions in CS and
elderly. Atherosclerosis appears to be an atypical feature in CS
patients (Hayashi et al., 2012) in contrast to HGPS and WS
(Kato and Maezawa, 2022). Recent studies in CS mouse model,
Csa−/−Xpa−/−, found no changes in isolated endothelial cells or
aorta (Kajitani et al., 2021) suggesting rather non-cell autonomous
effects (Table 1) as an underlying cause for brain vascular defects
thereby favoring the hypothesis of neural-centric view of aging in
CS (Figure 3).

Regarding bone tissue in CS it is difficult to discriminate intrinsic
from extrinsic effects. One early CS case showing skeletal dysplasia
(Cirillo Silengo et al., 1986), general dwarfism, no incidents of bone
fractures and frequently observed osteoporosis are observed (Laugel,
2013). Some of these defects may be rooted in secondary causes such
as increased joint contractures and reduced mobility in these patients
(Laugel, 2013). On the other hand, reduced differentiation potential
to osteoblastic lineages of mesenchymal stem cells obtained from
CS-iPSCs pointed rather to intrinsic bone defects in CS (Wang et al.,
2022) as outlined in Figure 3. Skin, adipose and renal tissue
are affected in CS with typical accelerated aging features such as
lipodystrophy, cutaneous photosensitivity (Figure 3), and nephoronic
reduction shown also in different CS rodent models (Jaarsma et al.,
2013; Laugel, 2013). However, to what extent on the cellular levels
these non-neural features resemble physiological aging will require
further investigation.

Intervention strategies

Intervention strategies with therapeutic potential may be
subdivided into those designed specifically for progeroid
disorders and broad interventions mostly applicable for common
age-related diseases as well. For HGPS, FDA has even approved in
November 2020 a drug Lonafarnib (Zokinvy™) that significantly
reduces the risk of mortality in HGPS patients (Dhillon, 2021).
Lonafarnib is an orally active farnesyltransferase inhibitor that
prevents farnesylation and accumulation of progerin and thus its
toxic effects (Gordon et al., 2012). Furthermore, remarkable

advances are observed in experimental interventional strategies
applicable for particular progeroid disorder such as gene editing
procedures in HGPS (Beyret et al., 2019; Santiago-Fernandez et al.,
2019; Koblan et al., 2021; Whisenant et al., 2022) and in CS (Wang
et al., 2022), morpholino oligos to target aberrant splicing in HGPS
(Osorio et al., 2011) and antisense oligonucleotides (ASOs) that
reduce the levels of progerin transcripts (Puttaraju et al., 2021). The
latter oligo-based treatments that require no change in patient’s
DNA, may pave ground to alternative treatment options of specific
age-related conditions. This is exemplified by work of Auguado and
colleagues, who reported on sequence-specific telomeric antisense
oligonucleotides (tASO) that were able to prevent the DNA damage
response at dysfunctional telomeres. Thereby, tASOs reduced
cellular senescence, improved skin homeostasis and life span of
HGPS mouse models in vivo (Aguado et al., 2019). Such approaches
may be effective in treatment of other progeroid disorders but may
also represent first attempts in targeting fundamental causes of
“aging” that my prove efficient in treatment of multiple age-
related disorders as proposed in “geroscience hypothesis” (Sierra
and Kohanski, 2017).

Very effective broad experimental interventions in age-related
diseases and in progeroid disorders proved to be treatments
affecting the so called “waste generation”, “waste disposal
pathways” (aging hallmark: loss of proteostasis and disabled
macroautophagy) and agents reducing cellular senescence
(aging hallmark: cellular senescence). In such way, treatments
with chemical chaperons, that reduce the burden of misfolded
proteins and ROS (waste), have been highly beneficial
intervention strategies in CS (Alupei et al., 2018; Qiang et al.,
2021), and HGPS (Hamczyk et al., 2019) as well as those affecting
the waste disposal pathway such as rapamycin, spermidine or
NAD+ precursors. Rapamycin was shown to restore the
mitochondrial function in CS (Scheibye-Knudsen et al., 2012),
and to reduce misfolded proteins, likely also progerin at the
nuclear membrane in HGPS (Vidak et al., 2023) thereby
reversing the senescent phenotype of HGPS fibroblasts (Cao
et al., 2011b). Its beneficial effects have been mainly attributed
to the increase in autophagy. Mechanistically, rapamycin exerts
inhibitory effects on mTORC1, a key regulator of autophagy,
proteostasis, inflammation and senescence phenotype (Linke
et al., 2017; Lopez-Otin et al., 2023).

Similarly, autophagy inducer spermidine was proven to be
highly beneficial in treatment of WS (Yang et al., 2020), HGPS-
like Zmpste24−/−mice (Ao et al., 2019) with cardioprotective effects
in aged rodents as well (Eisenberg et al., 2016). Furthermore, in WS,
NAD+ precursors were shown to ameliorate accelerated aging
features including stem cell dysfunction through boosting NAD+
and mitophagy (Fang et al., 2019). Finally, selective elimination of
senescent cells termed senolysis, was demonstrated to be effective in
delaying aging-associated diseases first for premature aging mouse
model BubR1 (Baker et al., 2011), then in physiologically aged
mouse model (Baker et al., 2016) and recently specifically in
HGPS mouse model as well (Hambright et al., 2023).

Finally, experimental interventions involving cellular
reprogramming using short-term cyclic expression of Yamanaka
factors Oct4, Sox2, Klf4 and c-Myc that target the aging hallmark
“epigenetic alterations” were proven highly effective in ameliorating
the age-dependent phenotypes and improving life span in progeroid
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HGPS mouse models (Ocampo et al., 2016; Alle et al., 2022). This
appeared to have paved the ground to a slightly modified strategy
that omits c-Myc. The latter employs cyclic expression of OSK in
retinal ganglions which was shown to promote axon regeneration
(Lu et al., 2020). Such experimental approach harbors a high
therapeutic potential for treatment of glaucoma, which is one of
the prevalent diseases in the elderly. Altogether, from these findings
it is evident that broad interventions share many common
mechanistic links in disease pathologies of accelerated and
physiological aging highlighting progeroid cell and rodent models
as valuable tools in developing future therapeutic intervention
strategies to combat age-related diseases.

Conclusion

As outlined in this review progeroid syndromes share common
hallmarks with those observed in physiological aging and reflect more
or less accurately accelerated aging of particular tissues. Much of the
evidence causally linking those hallmarks to physiological aging came
from studies in premature aging animal models that exhibit those
hallmarks in exaggerated fashion as exemplified on the pronounced
genomic instability in WS. The availability of different progeroid
animal models, particularly in HGPS field, has very much pushed
the research field of aging forward allowing us to gain important
molecular insights into basic aging mechanisms and draw conclusions
relevant for age-related diseases. Particularly, generation of tissue-
specific accelerated aging mouse models enables selective introduction
of specific aging cell-type into organism as a whole in order to decipher
in a cell-type specific manner mechanisms underlying distinct disease
pathologies of aging. In sum, advances in technologies combined with
future studies in progeroid syndromes are expected to reveal further
mechanistic insights into fundamental processes driving age-related
pathologies.
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Glossary

AP apurinic

APS atypical progeria syndromes

AT ataxia telangiectasia syndrome

ATM ataxia telangiectasia mutated

BER base excision repair

BS Bloom syndrome

CS Cockayne syndrome

CVD cardiovascular disease

DC dyskeratosis congenita

DNA-PK DNA dependent protein kinase

DDR DNA damage repair

DSB double strand break

DSBR double-strand break repair

EC endothelial cell

ERCC excision repair cross complementation

FA Fanconi anemia

GFAP glial fibrillary acidic protein

GG-NER global genome nucleotide excision DNA repair

GH growth hormone

HGPS Hutchinson-Gilford progeria syndrome

HHS Hoyeraal-Hreidarsson syndrome

HP1a heterochromatin protein 1 alpha

HR homologous replication/recombination

IGF insulin growth factor

ICLR interstrand DNA crosslink repair

iPSCs induced pluripotent stem cells

LAD lamina-associated domain

LINC linker of nucleoskeleton and cytoskeleton complex

LOAD late onset Alzheimer’s disease

MADA/
MADB

mandibuloacral dysplasia type A and B

MSCs mesenchymal stem cells

mtDNA mitochondrial DNA

mTOR mammalian target of rapamycin

NAD+ nicotinamide adenine dinucleotide

NBS Nijmegen breakage syndrome

NGPS Nestor-Guillermo progeria syndrome

NHEJ non-homologous end joining

NMNAT1 nicotinamide nucleotide adenylyltransferase 1

PARP1 poly (adenosine-diphosphate-ribose) polymerase 1

PGC1α peroxisome proliferator-activated receptor gamma coactivator
1-alpha

RCM relocation of chromatin modifiers

RD restrictive dermopathy

ROS reactive oxygen species

RTS Rothmund-Thomson syndrome

SASP senescence-associated secretory phenotype

SA-miRs senescence-associated microRNAs

SSB single-strand DNA break

ssDNA single stranded DNA

tASO telomeric antisense oligonucleotides

TC-NER transcription coupled nucleotide excision DNA repair

T2DM type 2 diabetes mellitus

TET Ten-eleven translocation enzyme

TTD trichothiodystrophy

UCP2 uncoupling protein 2

UPR unfolded protein response

VSMC vascular smooth muscle cell

WRN Werner helicase

WS Werner syndrome

XP xeroderma pigmentosum
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