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No clear consensus has emerged from the literature on the gene expression
changes that occur in human whole blood with age. In this study we compared
whole blood ageing genes from the published literature with data on gene
specificity for leukocyte subtypes. Surprisingly we found that highly ranked
ageing genes were predominantly expressed by naïve T cells, with limited
expression from more common cell types. Highly ranked ageing genes were
also more likely to have decreased expression with age. Taken together, it is
plausible that much of the observed gene expression changes in whole blood is
reflecting the decline in abundance of naïve T cells known to occur with age,
rather than changes in transcription rates in common cell types. Correct
attribution of the gene expression changes that occur with age is essential for
understanding the underlying mechanisms.
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1 Introduction

Ageing is a deleterious process that is inevitable for any multicellular organism that
survives for enough time. In humans it is associated with an increased burden of disease
(Lopez-Otin et al., 2013) and is a considerable challenge for health systems as lifespans
increase (Prince et al., 2015).

Several studies have investigated differences in gene expression between young and aged
individuals to elucidate the mechanisms of ageing. Whole blood is commonly used for
human gene expression studies as it is one of the easiest sample types to obtain and the RNA
profile can be rapidly stabilized (Asare et al., 2008). However, there is no clear consensus on
the genes or pathways that are differentially expressed with age in whole blood
(Supplementary Table S1).

Some studies have suggested that changes in the relative proportion of blood cell types
has a considerable influence on the transcriptional changes observed in blood with age.
Nakamura et al. (2012) reported that of the 16 age related genes identified, most were
strongly associated with lymphocyte lineages. Limitations of this study include the small
number of ageing genes identified, and the use of in vitro cell culture data to determine gene
specificity. Pellegrino-Coppola et al. (2021) proposed a regression model to correct for
changes in cell composition and found this reduced the number of differentially expressed
genes. Jonkman et al. (2022) identified a decrease in expression of genes associated with
naïve T cells and an increase in expression of genes associated with activated T cells.

In this study we sought to characterize the relative contribution of different leukocyte
subtypes to the expression of age associated genes in whole blood. Age associated genes were
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identified from a review of published literature, and gene specificity
was determined using ex vivo expression data.

2 Methods

2.1 Selecting age associated genes

Age associated genes used in this analysis were derived from
Peters et al. (2015) (Peters). Several published studies were
considered (Supplementary Table S1) however, only Peters meet
the following eligibility criteria:

Studies collected peripheral whole blood from humans, and
stabilized the samples using Tempus, PAXGene or equivalent
technology. The rationale for this was to eliminate potential
confounding factors that could change gene expression signatures
after sample collection. Eligible studies had at least 500 unique
donors that spanned an age range of at least 25–70 years old and
were reasonably representative of the general population. To be
included, studies also had to quantify at least half of all protein
coding genes using either gene expression arrays or RNA-Seq.
Group assignment for differential expression needed to be based
on chronological age, with a list of differentially expressed genes
publicly available or obtainable from the authors on request. For
cases where the same data was analyzed in multiple studies, only the
larger study was included.

Peters determined differentially expressed genes by
conducting a meta-analysis of 13 independent cohort studies
(Supplementary Table S2), containing a total of 14,983 unique
donors. For each of the cohorts, differentially expressed genes
were determined using linear regression analysis, with potentially
confounding variables modelled as random variables. For 6 of the
13 studies, counts of granulocytes, lymphocytes and monocytes
were modelled as random variables. Despite this we believe the
Peters differentially expressed genes are suitable for this analysis
as only three broad leukocyte categories were modelled, and only
for a minority of cohorts within the meta-analysis. Additionally,
up to 10 random variables were included in each model, reducing
the degree to which any one covariate could influence the model
(Zhang, 2014).

2.2 Gene sets

Peters identified 1,497 age associated genes, and gave each gene a
ranking reflecting the strength of association with donor age.
Because of the high power achieved from the large sample size,
many of the lower ranked genes were associated with small effect
sizes and may be less biologically relevant. Due to this consideration,
we focused on two gene sets for our analysis.

The first gene set included the 20 most highly ranked ageing
genes (Supplementary Table S3), which corresponded with a
Z-score of at least half the highest ranked gene. The second
gene set included all genes reported by Peters to be differentially
expressed with age. 1,459 out of 1,497 (97.5%) could be mapped
to proteins in the Human Blood Atlas, and were used in
this analysis.

2.3 Attributing gene expression to
leukocyte subtypes

The specificity of genes to leukocyte subtypes was determined
using data from the Human Blood Atlas (Uhlen et al., 2019). The
Human Blood Atlas is an open-access database containing genome
wide single cell expression data for protein coding genes for
18 leukocyte subtypes. The markers used by the Human Blood
Atlas to define the cell types are summarized in
Supplementary Table S4.

The Human Blood Atlas used the same blood samples, sample
preparation protocol and sequencing pipeline for all 18 leukocyte
subtypes. In addition, a normalization strategy was employed with
the specific objective of facilitating comparison of expression values
between cell types.

Using the normalized expression data from the Human Blood
Atlas, the proportion of expression (x) of each protein coding gene
attributable to each cell type was estimated using the
following formula:

xi,j � nTPMi,j

Σ nTPMi( )
Where (i) is the protein coding gene, (j) is the leukocyte subtype

and (nTPM) is the normalized transcripts per million reported by
the Human Blood Atlas.

2.4 Statistical analysis

The median proportion of expression attributable to a cell type
for a gene set was compared with the median for all protein coding
genes using the one-sample Wilcoxon test (α = 0.05). When
performing multiple comparisons, p-values were adjusted for
multiple testing using the Benjamini & Hochberg approach
(Benjamini and Hochberg, 1995).

The proportion of differentially expressed genes reported
to decrease or increase with age was compared with a
theoretical distribution of 0.5 using the two tailed
binomial test.

All data processing and statistical analysis was performed using
R (v4.3.1) (R Core Team, 2023) with the packages tidyverse (v2.0.0)
(Wickham et al., 2019), biomaRt (v2.58.0) (Durinck et al., 2009),
cumstats (v1.0) (Erdely and Castillo, 2017) and ggpubr (v0.6.0)
(Kassambara, 2003). Code used for this analysis can be accessed at
https://github.com/systematicmedicine/Naive-cell-publication/.

3 Results

3.1 Highly ranked ageing genes
predominantly expressed by naïve T cells

Highly ranked ageing genes in whole blood were
predominantly expressed by CD4+ and CD8+ naïve T cells
(Figure 1). This is surprising as naïve T cells are a relatively
rare sub population within whole blood. 87% of the expression of
CD248 (Peters rank 1) and 91% of the expression of LRNN3
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FIGURE 1
Percentage of gene expression attributable to each of the 18 leukocyte subtypes, for the 20 highest ranked ageing genes reported in Peters. Genes
listed in rank order (highest at top). Naïve CD4+ and CD8+ T-cells account for considerably more expression of highly ranked ageing genes than would be
expected by chance. Statistical significance was assessed with one-sample Wilcoxon tests. The stars indicate statistical significance: ***p ≤ 0.001, **p ≤
0.01, *p ≤ 0.05. Dashed red line corresponds to median for all protein coding genes. Direction of expression change refers to direction of gene
expression change reported by Peters (negative denotes decreased expression with age).
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(Peters rank 2) was attributable to naïve T cells. For the top
20 ranked genes, the median expression attributable to naïve
T cells was 35%, 3.8 fold higher than would be expected from a
random selection of 20 genes (p = 8.1 × 10−12). The median
proportion of gene expression attributable to naïve T-cells
reduced as lower ranked genes were included (Figure 2).
However, this remained higher for the entire set of
1,459 ageing genes, compared to the median for all protein
coding genes (p = 2.9 × 10−24).

3.2 Highly ranked ageing genes negatively
associated with age

Of the top 20 ranked ageing genes reported by Peters, 17 (85%)
had decreased expression with age. Compared with a theoretical
distribution of 50% (half of differentially expressed genes increase
with age, half decrease) this is unlikely to occur by chance (p = 2.6 ×
10−3). For all 1,497 ageing genes reported by Peters, 60% had
decreased expression with age which is also unlikely to occur by
chance (p = 1.7 × 10−14). The abundance of naïve T cells is widely
accepted to decline with age (Britanova et al., 2014; Li et al., 2019;
den Braber et al., 2012; van der Geest et al., 2015; Nasi et al., 2006),
potentially explaining this observation.

3.3 Highly ranked ageing genes are
expressed less than expected in common
leukocyte subtypes

Several common leukocyte subtypes were weakly associated
with the expression of highly ranked ageing genes, especially
myeloid lineages (Figure 1). Expression attributable to basophils,

monocytes (classical and intermediate), eosinophils, neutrophils
and myeloid dendritic cells were all significantly lower than
expected for both gene sets (Table 1). If changes in
transcription rates of these common cell types was a major
contributor to age related expression changes, we would
expect genes they express to feature more prominently in the
highly ranked ageing genes.

3.4 Ageing genes that increase in expression
with age associated with several
T-cell lineages

The majority of ageing genes used in this study decrease in
expression with age. When restricting the analysis to the subset of
ageing genes that increase expression with age, a significant
association was found with several T-cell lineages. For the
20 highest ranked genes that increase expression with age
(Supplementary Table S5), expression attributable to
GdT-cells, CD8 T cells (memory and naïve) and natural killer
cells were significantly higher than expected
(Supplementary Figure S1).

4 Discussion

A common assumption is that differential gene expression is
primarily driven by changes in cellular transcription. While this
is often the case, in heterogenous tissues such as whole blood it
can also be driven by changes in the relative proportion of
cell types.

This study found that the genes with the strongest association
with age were predominately expressed by naïve T-cells, and that

FIGURE 2
Median percentage of gene expression attributable to naïve T cells (CD4+ and CD8+) for ageing genes reported by Peters. Statistical significance was
assessed for 1,459 ageing genes with a one-sampleWilcoxon test (p= 2.9 × 10−24). Red dashed line corresponds withmedian for all protein coding genes.
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most of these age associated genes decreased in expression with age.
Given that naïve T-cells are known to decline in abundance with age
(Britanova et al., 2014; Li et al., 2019; den Braber et al., 2012; van der
Geest et al., 2015; Nasi et al., 2006), we propose that the largest gene
expression changes seen in ageing blood may reflect the reduction in
naïve-T cells rather than a change in transcription profiles of
common cell types.

This has important implications for fundamental research, as
incorrect attribution of observed gene expression changes could lead
to invalid conclusions being drawn about the underlyingmechanisms of
ageing. This potential confounding factor of cell composition may also
apply to other tissue types and be more difficult to identify if gene
expression data from subpopulations is unavailable or less robust. Other
age correlated measures, such as DNA methylation, chromatin
accessibility and protein abundance may also be confounded by age
related changes in tissue composition. For example, naïve T cells have a
lower epigenetic age than other blood cell types (Jonkman et al., 2022;
Tomusiak et al., 2023).

The findings of this study also have important implications for
translational research, especially transcriptomic age predictionmodels
(clocks). Transcriptomic clocks trained on bulk whole blood gene
expression data, with no regard for changes in cell composition, may
be little more than predictors of naïve T cell decline. Such models

would be poor surrogates of biological age and an unsuitable tool for
drug discovery. For translational applications, it may be best to use
measures that have a clear mechanistic link to the phenotype being
targeted (Vincent et al., 2015), rather than black box predictors.

Data availability statement

Publicly available datasets were analyzed in this study. This
data can be found here: https://www.proteinatlas.org/about/
download. Code used for this analysis can be accessed at
https://github.com/systematicmedicine/Naive-cell-publication/.

Ethics statement

Ethical approval was not required for the study involving
humans in accordance with the local legislation and
institutional requirements. Written informed consent to
participate in this study was not required from the
participants or the participants’ legal guardians/next of kin
in accordance with the national legislation and the
institutional requirements.

TABLE 1 Median proportion of gene expression attributable to each cell type, for ageing gene sets and all protein coding genes.

All protein coding
genes

Gene set 1 (Peters top 20) Genes set 2 (all Peters age associated)

Cell type Median expression
attributable (%)

Median expression
attributable (%)

p-valuea Median expression
attributable (%)

p-valuea

Naive CD8 T-cell 4.51 17.67 2.05 × 10−11 *** 5.68 2.89 × 10−31 ***

Naive CD4 T-cell 4.36 15.4 3.95 × 10−6 *** 5.23 5.62 × 10−12 ***

Memory CD4 T-cell 4.61 6.93 2.74 × 10−2 * 5.26 1.19 × 10−16 ***

NK-cell 4.85 6.7 3.33 × 10−1 4.97 1.63 × 10−1

Memory CD8 T-cell 4.73 5.89 7.55 × 10−2 5.33 2.89 × 10−15 ***

T-reg 4.94 4.03 9.06 × 10−1 4.93 5.11 × 10−1

GdT-cell 4.56 2.17 9.21 × 10−2 4.75 3.30 × 10−5 ***

MAIT T-cell 4.71 2.07 2.84 × 10−1 5.37 4.26 × 10−13 ***

Naive B-cell 4.34 1.67 9.14 × 10−2 4.17 8.67 × 10−1

Memory B-cell 4.58 1.6 3.33 × 10−1 4.49 2.30 × 10−1

Neutrophil 2.94 0.36 2.53 × 10−5 *** 1.06 6.56 × 10−32 ***

Basophil 4.53 0.24 8.53 × 10−4 *** 2.38 1.15 × 10−21 ***

Plasmacytoid DC 4.14 0.1 4.85 × 10−6 *** 3.62 1.19 × 10−5 ***

Non-classical
monocyte

4.81 0.06 5.58 × 10−6 *** 4.04 6.32 × 10−5 ***

Myeloid DC 4.61 0.05 8.79 × 10−6 *** 4.55 3.36 × 10−1

Classical monocyte 4.42 0.04 5.92 × 10−8 *** 3.83 4.05 × 10−7 ***

Eosinophil 4.55 0.04 2.28 × 10−6 *** 2.44 6.81 × 10−28 ***

Intermediate
monocyte

4.78 0.03 1.24 × 10−6 *** 4.31 3.68 × 10−3 **

aStatistical significance was assessed with one-sample Wilcoxon tests. The stars indicate statistical significance: ***p ≤ 0.001, **p ≤ 0.01, *p ≤ 0.05.
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