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Sciences, Institute of Zoology, Beijing, China, *Optispan, Seattle, WA, United States

Caloric restriction (CR) is known to extend lifespan across different species and
holds great promise for preventing human age-onset pathologies. However, two
major challenges exist. First, despite extensive research, the mechanisms of
lifespan extension in response to CR remain elusive. Second, genetic
differences causing variations in response to CR and genetic factors
contributing to variability of CR response on lifespan are largely unknown.
Here, we took advantage of natural genetic variation across 46 diploid wild
yeast isolates of Saccharomyces species and the lifespan variation under CR
conditions to uncover the molecular factors associated with CR response types.
We identified genes and metabolic pathways differentially regulated in CR-
responsive versus non-responsive strains. Our analysis revealed that altered
mitochondrial function and activation of GCN4-mediated environmental
stress response are inevitably linked to lifespan variation in response to CR
and a unique mitochondrial metabolite might be utilized as a predictive
marker for CR response rate. In sum, our data suggests that the effects of CR
on longevity may not be universal, even among the closely related species or
strains of a single species. Since mitochondrial-mediated signaling pathways are
evolutionarily conserved, the dissection of related genetic pathways will be
relevant to understanding the mechanism by which CR elicits its longevity effect.
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Introduction

Caloric restriction (CR) is an energy-balanced, non-invasive nutrient intake without
malnutrition aimed at reducing food intake by 20%-40% (Anderson and Weindruch, 2012;
Lopez-Lluch and Navas, 2016). CR leads distinct metabolic reprogramming and adaptive
changes in gene expression and, as a result, increases health and lifespan in various model
organisms, from invertebrates to most likely primates, while also slowing down age-related
diseases (Sinclair, 2005; Ungvari et al., 2008; Anderson and Weindruch, 2012; Lopez-Lluch
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and Navas, 2016; Hoshino et al., 2018). CR in yeast is modeled by
simply reducing the glucose concentration in the growth medium
from 2% to 0.05% (or less), which causes an increase in the
replicative lifespan (RLS) (Lin et al., 2002; Schleit et al, 2013;
Zou et al.,, 2020), defined as the number of times a mother cell
can divide (Steffen et al., 2009). Besides extending lifespan, CR also
holds great promise for treating many human age-onset pathologies,
and the molecules underlying its effects are sought as targets of
pharmaceutical aging therapeutics (Sinclair, 2005; Ungvari et al,
2008; Anderson and Weindruch, 2012; Lopez-Lluch and Navas,
2016; Hoshino et al,, 2018; Lee et al, 2021). However, despite
extensive research, the mechanisms of lifespan extension in
response to CR remain elusive. In addition, several studies in
different aging models have now demonstrated that the longevity
effect of CR can vary dramatically across different genotypes within
a population (Liao et al., 2010; Schleit et al., 2013; Stastna et al., 2015;
Mitchell et al., 2016; Jin et al., 2020; McCracken et al., 2020). As such,
CR might be beneficial for some yet detrimental for others, and the
mechanisms underlying such genotype-dependent variation are not
clear (Lee et al., 2021). A more integrated approach is needed to
understand how the natural environment and natural selection
interact to shape genotype and lifespan under CR condition.

In this study, we meet these challenges by dissecting molecular
response to CR in ecologically and genetically diverse wild isolates of
Saccharomyces species (Carter et al., 2009; Kaya et al., 2015a; Kaya
et al, 2021), aiming to characterize pathways that mediate the wide
range of RLS phenotypes under CR conditions. We found that the
longevity effect of CR varies dramatically within and between
populations across different genotypes and species of budding
yeast. Examination of the relationships between transcriptomes
and the RLS phenotypes under CR and non-CR conditions
provided insights into the mechanisms, mediated by GCN4, a
nutrient-responsive transcription factor, and mitochondrial
function-dependent CR effect on lifespan regulation, together,
explaining a portion of heterogeneity in cellular processes that
affect lifespan variation and CR responses.

Overall, we present evidence that mitochondrial-mediated
mechanisms linking nutrition sensing to stress response
pathways through GCN4 is associated with the positive
response to CR, and the abundance of mitochondrial metabolite
n-formylmethionine can be utilized as a predictive marker for CR-
mediated lifespan extension rate. Considering the conservation of
pathways and the regulators, the principles of mechanisms learned
through this work might apply to regulating lifespan in more

complex organisms.

Results

The longevity effect of CR varies within and
between populations across different
genotypes and species of budding yeast

To analyze genotype-dependent responses to CR, we took
advantage of natural genetic variation across 46 diploid wild
yeast isolates of S. cerevisiae (Saccharomyces cerevisiae) and six
other closely related budding vyeast species; Saccharomyces
kluyveri, Saccharomyces bayanus, Saccharomyces kudriavzevii,
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Saccharomyces  paradoxus, — Saccharomyces  castellii, — and
Saccharomyces mikatae. We analyzed their RLS phenotype under
both control (high glucose, 2%) and CR (low glucose, 0.05%)
conditions.

Within the S. cerevisiae population, we found ~10-fold median
RLS variation under the control condition, and RLS analysis under
the CR condition revealed a 7-fold variation among them
1A, Supplementary Material S1). While 26 strains

displayed significant (Wilcoxon rank sum test, adjusted p < 0.05)

(Figure

CR response (either decreased or increased) in median RLS, the
remaining 20 strains did not respond to CR (no significant changes
in median RLS) (Figure 1A, Supplementary Material S1). Among the
26 CR responding strains, 11 of them showed various degrees of
median RLS extension, while the remaining 15 displayed a wide
range of decreased median RLS (Figure 1A, Supplementary Material
S1). For example, under the CR condition YJM978 strain showed a
decreased median RLS (50% decrease), whereas CR caused a 75%
median RLS increase of the Y9 strain compared to the control
condition (Figure 1B, Supplementary Material S1). Consistent with
the previous report (Zou et al., 2020), the control diploid laboratory
WT strains BY4743, which is a derivative of the original S288c
isolate, also increased median RLS by 12% (Wilcoxon rank sum test,
adjusted p = 0.009). On the other hand, the original S288c strain did
not respond to CR (Figure 1B), indicating adaptive changes to
laboratory conditions resulted in an alteration to CR response in
this strain background.

Next, to understand whether the longevity effect of CR also
varies across different species, we also analyzed the RLS of six
different budding vyeast species of Saccharomyces genus; S.
kluyveri, S. bayanus, S. kudriavzevii, S. paradoxus, S. castellii, and
S. mikatae. Interestingly, only two of them, S. mikatae and S. kluyveri
showed significant (Wilcoxon rank sum test, adjusted p < 0.05)
lifespan (median RLS) extension when subjected to the CR
(Figure 1C, Supplementary Material S1).

Overall, this data showed considerable variation in lifespan
phenotype under CR conditions among the genetically diverse
natural isolates of the same species and the closely related species
of the same genus. This data suggests that CR at the 0.05% glucose
level does not promote lifespan extension for most of the wild-
derived yeast strains and species, and this applies to other non-
laboratory adapted model organisms.

Comparison of gene expression pattern
between CR responding and non-
responding strains

Gene expression variation has been suggested to play a
significant role in adaptive evolution. Existing research also
highlights the potential influence of gene expression levels on
various phenotypic traits and its plasticity (Gilad et al.,, 2006; Vu
et al,, 2015), such as changes in lifespan (Whitaker et al., 2014; Liu
et al., 2023).

Accordingly, we examined whether the comparison of
transcriptome profiles of these strains, obtained under the high
glucose condition, can reveal molecular signatures that can predict
the CR response type. First, we examined whether evolutionary
relationships based on the gene expression variation are associated
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FIGURE 1

Intra- and interspecies distribution of median RLS distribution. (A) Cells were grown in yeast peptone dextrose (YPD). Dashed lines represent the
average median RLS of YPD (2% glucose gray) and YPD-CR (0.05% glucose). The bar graph depicts the media RLS of each strain analyzed under YPD (gray)

and YPD-CR. Bar colors indicate CR response types based on the statistical

significance of median RLS changes under CR conditions compared to the

YPD. Blue is for negatively responding strains (NEG), green is for non-responding strains (NON), and orange bars represent positively responding

strains (POS). (B) Examples of lifespan curves for the selected strains of Sacch
black curve shows the lifespan under YPD conditions, and the red curve s
significance can be found in Supplementary Material S1.

with the CR response types; we constructed gene expression
phylograms for S. cerevisiae strains using a distance matrix of
one minus Spearman correlation coefficients (Brawand et al,
2011) and based on normalized reads (Kaya et al., 2021). We
found that CR response types are mainly branched through early
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aromyces cerevisiae. (C) Lifespan curves for six Saccharomyces species. The
hows the lifespan under YPD CR conditions. The raw data and statistical

adaptation of strain-specific life history trajectories at gene
expression level, and this adaptation is mostly acquired
independently (Figure 2A). Subsequently, principal component
analysis (PCA) was conducted, and the result did not reveal a
distinct segregation pattern, except for a few outlier strains that
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Sample clusters. (A) Dendrogram plot of sample cluster. Clustering is generated by hierarchical clustering using the Ward D2 method. The color
represents three groups, as shown in Figure 1; Orange represents the positively responding (POS) group. Green represents the non-responding (NON)
group. Blue represents the negatively responding (NEG) group. (B) Principal component analysis of gene expression across three groups. The first two
principal components (PCs) and their variance explanation percentages are shown. Each repetition is treated as a point. (C) Partial least squares
discriminant analysis (PLS-DA) based on the gene expression data across wild isolates of three phenotypic groups is shown. The scatter plot of the first
two partial least squares (PLS) components and their variance explanation percentages are shown. The model parameters are also shown in the figure,
including the explanatory degree of the model to independent variables (R2X), the explanatory degree of the model to dependent variables (R2Y), the
predictive ability of the model (Q2Y), the root mean square error (RMSEE) and the number of PLS components used when calculating these parameters
(pre). Each sample is treated as a point. Each phenotypic group is represented by different colors.

were separated by PCI1 and PC2. Intriguingly, this separation
resembled the phylogenetic relationship, with the cumulative
effect of the first three principal components accounting for
approximately 35% of the total variance in gene expression
(Figure 2B). We then employed a different dimensionality
reduction method, partial least squares discriminant analysis
(PLS-DA), particularly suited for distinguishing different
groups (Please see methods). PLS-DA analyses revealed
distinct clusters for positively responding strains (Figure 2C).
The model evaluation metrics provided further validation, with
an R2Y value of 0.926 indicating that the model accounts for
92.6% of the variability in these three groups and a Q2Y value of
0.766, suggesting a predictive accuracy of 76.6%.

Next, to identify molecular signatures and genetic regulators of
CR response types, we compared the gene expression pattern
between CR responding strains (increased median RLS) to non-
responding strains (no significant change) and negative responding
strains (decreased median RLS). Under high glucose conditions,
222 genes differentially expressed (DEGs), including 146 genes that
had significantly reduced expression and 76 genes that had increased
expression in the CR responding group in comparison to the non-
responding group (adjusted p < 0.05 and log2-fold >0.5) (Figure 3A,
Supplementary Material S2). Similar analysis revealed 176 DEGs,
including 50 genes with significantly reduced expression and
120 genes with increased expression in the CR responding group
to the
Supplementary Material S2).

compared negative-responding group (Figure 3B,

To further investigate the molecular patterns associated with the
CR response type, we analyzed the commonalities and differences in
gene expression between two groups (positively responding vs. non-
responding and positively responding vs. negatively responding).
Among the downregulated DEGs identified from both comparisons,
32 genes were in common. The GO term associated with these
commonly downregulated genes in positively responding strains
was enriched in cellular amino acid biosynthesis (Figure 3C).
Among the upregulated DEGs, there were 34 genes in common.
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Functional enrichments of these commonly upregulated DEGs
resulted in a single GO term associated with mitochondrial
translation (Figure 3D).

We then performed GO enrichment and KEGG pathway
analysis for the uniquely altered genes in positively responding
strains compared to the non-responding or negatively
responding strains alone. The 114 unique downregulated
DEGs, resulting from the comparison of positively responding
versus non-responding strains, revealed that positively
responding strains have decreased lipid and amino acid
biosynthesis and metabolism compared to the non-responding
strains. (Figures 4A, B). A similar result was also obtained for
24 downregulated DEGs versus negative
responding 4C, D). The

upregulated 42 unique DEGs resulted from a comparison of

from positive

strains comparison (Figures
positively responding versus non-responding strains enriched
in the ribosome (both mitochondrial and cytosolic) and
mRNA Additionally, GO

enrichment iron metabolism in

surveillance term

pathways.
indicated an increase in
positively responding strains (Figures 4A, B). The GO terms
for 86 upregulated DEGs resulted from positively responding
versus negatively responding strains comparison were enriched in
mitochondrial translation, ATP synthesis coupled proton
transport, ATP biosynthetic process, and mitochondrial
respiratory chain complex IV assembly (Figures 4C, D).
Overall, these results suggest that responding strains maintain
higher translation under high glucose conditions and are
uniquely adapted to regulate mitochondrial function for
energy production compared to the non-responding and
negatively responding strains. In addition, our data suggests
that negative responding strains are characterized by high
amino acid biosynthesis and metabolisms. On the other hand,
non-responding strains might also be compromised for iron and
copper homeostasis. Further analyses of KEGG pathways and GO
term enrichment from each comparison revealed decreased fatty
acid and branched-chain amino acid synthesis in positively
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complete list of DEGs with p values can be found in Supplementary Material S2.

responding strains. At the same time, these two processes are
upregulated in other groups under high glucose conditions
(Figures 4C, D; Supplementary Figure S1). Overall, we showed
a phenotype-specific gene expression that, in comparison to the
non- or negatively responding strains, specific group genes were
selectively up or downregulated in positively responding strains
under high glucose conditions (Figure 5 and Supplementary
Material S2).

Next, to further understand the relationship between gene
expression variation and CR-mediated lifespan variation, we
performed, phylogenetic regression by generalized least
squares (PGLS), as we described previously (Kaya et al., 2015a;
Kaya et al,, 2021). Our analyses further showed that expression
levels of some of these genes were significantly correlated with CR
response variability across all
S2). For example, we identified
118 transcripts with significant correlation with median RLS
(adjusted p < 0.01; 48 with positive correlation and 70 with
negative correlation) (Supplementary Material 52). Among the
top hits with positive correlation were a major mitochondrial
D-lactate dehydrogenase (DLD1-oxidizes D-lactate to pyruvate),
homeodomain-containing protein and putative transcription
factor (TOS8), and SKI complex-associated protein (SKAI-

strains  (Figure 6 and

Supplementary Material
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involved in involved in 3'-5' degradation of long 3'UTR-
containing mRNA) (Figure 6A). The top hits with negative
correlation included the genes coding for DNA end-binding
protein required for nonhomologous end joining (NEJI),
GTPase-activating protein for Gpalp (SST2), and Subunit of G
protein involved in pheromone response (GPAI) (Figure 6A).
The data indicates a role for GPAI function in regulating lifespan
under CR condition, which plays a role in mating-related nuclear
migration and karyogamy also involved in inositol lipid-
mediated signaling and regulation of MAPK export from
the nucleus.

In agreement with the cross-comparison transcriptome data,
the KEGG pathway analysis of these positively correlated genes
revealed that strains with increased oxidative phosphorylation
activity and amino acid and fatty acid degradation pathways
show effective CR response (Figure 6B). Contrarily, negatively
correlating genes enriched in MAPK signaling pathway, branched-
chain amino acid biosynthesis, mismatched repair, and cell
cycle (Figure 6B).

In conclusion, the comprehensively analyzed transcriptome data
across diverse genetic backgrounds and the lifespan variation under
CR conditions uncover the molecular factors associated with CR
response types.
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FIGURE 4

Gene enrichment analysis of different expressed genes. (A) Heatmap depicting differentially expressed genes (DEGs) in positively responding (POS)
versus non-responding (NON) groups. Each column represents an individual strain, and each row represents a single gene expression change between
the POS and NON groups. The color intensity indicates the level of gene expression, and the expression value is scaled (Z-score). Red indicates higher
expression, and blue indicates lower expression. (B) Bar plot depicting gene enrichment analysis of DEGs. The Y-axis shows each significantly
enriched KEGG pathway while the X-axis denotes —logl0 (adjusted p-value). Red bars represent pathways expressed at higher levels in the POS group,
while blue bars represent pathways with higher expression levels enriched in the NON group. Point size represents the number of genes in this pathway.
(C, D) Similar analyses were also done for POS and NEG groups. The complete list of DEGs with p values can be found in Supplementary Material S2.

Comparison of metabolite abundance
pattern between CR responding and non-
responding strains

We also searched for metabolites whose abundances identified
under high glucose condition are associated with CR response type.
The metabolome represents a snapshot of relevant biological
processes downstream of the proteome, and it has been widely
used for characterizing aging-regulated metabolic pathways and
biomarkers for age-associated diseases (Cheng et al., 2015; Laye
et al,, 2015; Ma et al.,, 2015). Among the 166 metabolites that we
examined, none of them showed significant differences at adjusted
p-value cut-off (p < 0.05) in both responding versus non-responding
and responding versus negatively responding comparisons
(Supplementary Material S2). At the non-adjusted p-value cut-off

Frontiers in Aging 06

(p £0.01), we found responding strains with decreased abundance of
leucine and S-Adenosyl-homocysteine and increased abundance of
inositol monophosphate in comparison to both non- and negatively
responding groups. Three metabolites, nicotinic acid, mevalonate, and
1-metyhylnicotinamide were specifically characterized by decreased
abundance in responding strains in comparison to the non-
responding group. Oxidized glutathione and phenylalanine were
specifically characterized by decreased abundance in positively
responding strains in comparison to the negatively responding
group (Figures 7A, B and Supplementary Material S2).

Next, we examined the correlation between metabolite abundance
and CR-mediated lifespan variations. Our phylogenetic regression
(PGLS) analyses identified a single metabolite, n-formylmethionine
(fMet), with a significant (adjusted p = 0.041) positive correlation
(Figure 7C, Supplementary Material S2). Methionine (Met) derivate
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fMet initiates protein synthesis in mitochondria. Our data showed
that fMet abundance was not coupled to Met abundance since there
was no significant correlation between Met and median RLS
S2). Given that both
transcriptomic and metabolomic data were obtained under high

(Figure 7D, Supplementary Material
glucose conditions, our regression analysis was not aimed at
predicting CR response type. However, it gives an association
between CR-mediated lifespan extension rates and molecule
abundance which can be utilized as a predictive marker.

CR mediates response type specific
molecular changes

Next, to further investigate CR-mediated strain-specific
transcriptional changes, we CR responding
(DBVPG1106, DBVPGI1373) and non-responding (BC187,
DBVPG6765) strains and collected cells that were grown under
YPD-CR condition and subjected them transcriptomics analyses.

selected two

We observed a distinct transcriptional response between
responsive and non-responsive strains under CR conditions
(Figures 8A, B). Our calculation of distances between strains
the (BCV)
(McCarthy et al, 2012) of gene expression revealed two

based on biological coefficient of variation
separate clusters. The CR regimen caused transcriptional
changes that segregated the non-responding strains, mainly
BCV1 and BCV2. Conversely, CR responding strains only
separated along BCV2 (Figure 8B). The segregation pattern
indicates unique transcriptional changes among the responding
and non-responding groups. To analyze DEGs, we analyzed CR-

mediated changes compared to the controls (high glucose) for each
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group. We found that CR caused more robust expression changes
in the non-responding group. Overall, there were 2,185 DEGs
(1213 downregulated and 972 upregulated) significantly altered
(adjusted p < 0.01, log2-fold change >1) in the non-responding
group when subjected to CR. On the other hand, we identified only
422 DEGs (230 downregulated and 192 upregulated) significantly
altered in the positively responding group when subjected to CR
8C, S3). them,
134 downregulated and 110 upregulated genes were shared

(Figure Supplementary Material Among
between the responding and non-responding groups (Figure 8C,
Supplementary Material S3). These commonly altered genes are
enriched in cytoplasmic translation for downregulated and
Gluconeogenesis, TCA cycle, Biosynthesis of nucleotide sugars,
Tryptophan metabolisms and Longevity regulating pathways, and
Fatty Acid degradation for upregulated genes (Supplementary
Material S3).

Then, we analyzed response type-specific DEGs for each
group. For the non-responding group, we found that CR induces
gene expression changes that upregulate the pathways associated
with Carbon metabolism, TCA cycle, Oxidative phosphorylation,
Propanoate metabolisms, Branched Chain amino acid and Lysine
degradation, Longevity regulating pathway, Biosynthesis of
cofactors, and Autophagy (Figure 9A). Among the downregulated
pathways were Ribosome biogenesis, Amino acid biosynthesis and
metabolism, and Nucleotide metabolisms (Figure 9B). Analysis of
DEGs in CR responding strains revealed that CR caused
downregulation of Ribosomal genes and Tryptophan metabolisms
and upregulation of MAPK signaling, TCA cycle, Amino acid
metabolic pathways, and Biosynthesis of secondary metabolites.
This data suggests that CR selectively acts on specific sets of

genes to alter targeted pathways to extend lifespan in responding
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Selected genes whose expression under high glucose condition correlates with median replicative lifespan (RLS) under CR condition. (A) DLD1,
TOS8, and SKA1 gene expression levels, determined under high glucose condition correlate positively, and NEJ1, SST1, and GPA1 correlate negatively with
median RLS under CR conditions. The Y-axis denotes the expression level, and the X-axis represents the lifespan. Each color point represents an individual
strain. Error bars represent standard error (SE). The gray area represents a 95% confidence interval. The regression coefficient and adjusted p values

are included in the figure. The complete list of significantly correlating genes, regression slopes, and p values can be found in. Supplementary Material S2.
(B) Bar plot depicting gene enrichment analysis of lifespan-correlated genes. The Y-axis shows each significantly enriched pathway of the KEGG database
while the X-axis denotes —logl10 (adjusted p-value). Red bars represent pathways expressed at higher levels in higher lifespan strains, while blue bars
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strains (Figures 10A, B). For example, responding strains are
characterized by higher mitochondrial respiration and translation
under high glucose conditions (Figures 4B, D). Accordingly, the
altered genes were only related to decreased ribosomal biogenesis,
and there were no further alterations for genes associated with
mitochondrial function in responding strains under CR conditions.
However, CR-induced expression of genes alters mitochondrial
function and decreases ribosomal biogenesis and translation for
non-responding strains. Considering that the non-responding
strains are characterized by decreased ribosomal biogenesis and
translation under high glucose conditions (Figures 4B, D),
nonselective repression of ribosomal biogenesis genes under CR
conditions might further decrease translation. Thus, the imbalance
between mitochondrial and cytosolic translation might be a
confounding factor for preventing CR-mediated lifespan
extension in non-responding strains, as suggested previously
(Molenaars et al., 2020).

Next, to understand the regulatory network under CR
conditions, we identified core Transcription Factors (TF) for up-
and downregulated genes of responding and non-responding
strains. In responding strains, increased expressions of genes are
regulated by several transcription factors, including SKN7, RPN4,
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GCN4, HSF1, MSN2/4, YAPI, and MIGI (Figure 11A). Many of
these transcription factors regulated genes associated with
environmental stress response genes (ESR) (Gasch et al., 2000).
In fact, 53 of the 192 upregulated genes in responding strains
belonged to the (Supplementary  File S3).
Furthermore, our data suggests that many of the ESR genes and
other upregulated genes are regulated by GCN4 (Figure 11B). On the
other hand, decreased expressions of genes are regulated by HMSI,
CRZI, and UMEI (Figure 11C) in the responding strains.

For the nonresponding strains, the increased expressions
of genes were regulated by MET32, MSN2, HCMI, HAP4,
AFT2, and AFTI under CR condition (Supplementary Figure
S2A). The data that
respiratory genes were regulated by HAP4 and HCM]I in non-
responding strains. ATFI and ATF2 regulate iron homeostasis,

ESR  group

suggests increased expressions of

while MET32 is involved in transcriptional regulation of the
methionine biosynthetic and other sulfur metabolic genes.
Among the top TFs associated with downregulated genes were
SFP1, CST6, HSF1, RAPI, and FHLI (Supplementary Figure S2B).
Many of these TFs are involved in the regulation of ribosomal gene
expression and might be associated with decreased translation in
non-responding strains.
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Experimental testing of mitochondrial role
and GCN4 function in CR-mediated
lifespan extension

We further dissected the effect of mitochondrial respiration on
CR response by comparing median RLS variation between YPD-CR
and YPG (3% glycerol) conditions. A respiratory growth substrate,
glycerol can extend RLS (Kaeberlein et al., 2005; Burtner et al., 2009)
by a switch from fermentation to respiration; however, the exact
mechanism of glycerol-mediated lifespan extension is unclear. We
previously observed significant differences in RLS across these
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strains on YPG condition (Kaya et al, 2021). Interestingly, a
comparison of RLS phenotypes of these strains from YPG and
YPD-CR revealed a significant positive correlation (R* = 0.41,
p =

responding to CR also respond to YPG positively or vice versa

6.18 x 107 (Supplementary Figure S3) that strains

(Figure 12, Supplementary Material S1). This data further confirms
mitochondria associated with overlapping mechanisms mediating
lifespan under glycerol and CR conditions.

Next, to investigate the mitochondrial role in CR-mediated
lifespan extension further, we eliminated mtDNA in two
responding strains to isolate respiratory deficient cells (Woo and
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CR mediates phenotype specific transcriptional changes in responding and non-responding strains. (A) Heat map shows the differentially expressed
genes (DEGs) and clusters for selected responsive (POS; orange) and non-responsive (NON; blue) strains under CR conditions in comparison to the
matching control groups. (B) Calculation of distances between strains based on the biological coefficient of variation (BCV) of CR-mediated gene
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change values along with statistical significance can be found in Supplementary Material S3.
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Poyton, 2009; Kaya et al., 2015b). Then, we analyzed their RLS under
control and CR conditions. Elimination of mtDNA caused a
decrease in median RLS in all three of them under 2% glucose
condition (Figure 13A, Supplementary Material S1). These results
indicate mitochondria-specific metabolic adaptation in wild isolates
since the elimination of mtDNA has shown mixed effect on median
RLS in laboratory-adapted strains (Kacberlein and Guarente, 2005;
Woo and Poyton, 2009). Next, we found that eliminating respiratory
deficiency blocked the CR effect on lifespan extension (Figure 13A).
Together, these data pinpoint that CR-mediated lifespan extension
requires functional mitochondria in wild yeast isolates.

Finally, we wanted to test whether increased GCN4 expression
alone can promote lifespan extension in selected CR responding
strains (Figure 13B). Our transcriptome data showed that CR
induces GCN4 expression and alters GCN4-mediated pathways in
CR responding strains (Figure 12). We further found that GCN4
overexpression alone could induce lifespan extension (Figure 13B,
Supplementary Material S1). Our data represent unique adaptive
changes involving GCN4 function to mitochondria-mediated
metabolic and molecular adaptations to the environment as the
main factor for lifespan regulation under CR conditions.

Discussion

The initial studies reporting lifespan extension from reduced
food intake without malnutrition, referred to as caloric restriction
(CR) or dietary restriction (DR), were carried out more than a
century ago in female rats (Osborne et al., 1917). Soon thereafter,
similar observations were made in the water flea Daphnia longispina
(Ingle et al,, 1937), in brook trout (Titcomb et al., 1928), and most
definitively in the pioneering rat studies of McKay and colleagues
(Mccay et al., 1989). Since then, CR has been repeatedly shown to
induce lifespan extension and improve health outcomes across a
broad range of evolutionarily distant organisms, including yeast,
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worms, flies, mice, and monkeys in laboratory settings (Sinclair,
2005; Ungvari et al., 2008; Anderson and Weindruch, 2012; Lopez-
Lluch and Navas, 2016; Hoshino et al., 2018). Considerable research
has been directed toward understanding CR-mediated lifespan
regulation mechanisms. Consequently, several conserved genes
and nutrition signaling pathways (e.g, mTOR) have been
identified (Komatsu et al., 2019; Green et al,, 2022; Wu et al,
2022). Currently, CR is considered one of the most promising
dietary interventions for extending the lifespan of humans (Lee
et al,, 2021).

However, less attention has been paid to genotype-dependent
responses to CR in the field (Liao et al., 2013; Selman and Swindell,
2018). There have been few reports exploring the effect of CR on the
health and lifespan of genetically diverse flies (Jin et al., 2020; Wilson
etal,, 2020) and mice were published (Senturk et al., 2007; Liao et al.,
2010; Di Francesco et al., 2023). One commonly overlooked problem
is most of the studies have been performed on laboratory-adapted
model organisms, which have renewed our interest in understanding
how the environment and interventions modulate lifespan diversity,
leading to extended lifespan without significant reduction in fitness
or fecundity (Jenkins et al., 2004; Senturk et al., 2007; Ramani et al.,
2012; Selman and Swindell, 2018; Maklakov and Chapman, 2019).
On the other hand, there have been a few reports from different
model organisms, including yeast (Huberts et al., 2014), housefly
(Cooper et al.,, 2004), and mice (Forster et al., 2003), that CR did not
show significant lifespan effects or even reduced lifespan in some
cases. Although some of these observations can be attributed to the
methodologies (Mitchell et al., 2016) (e.g., the amount of restriction
on the diet), these studies from closely related species indicated that
genetic background is an important factor for CR response.

In this study, we tried to advance the understanding of the effect
of genetic background on CR-mediated lifespan regulation and CR
response by utilizing comparative genomics approaches using
transcriptome signatures across highly diverse aging phenotypes
of yeast isolates collected from different ecological niches (Carter
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et al,, 2009; Kaya et al., 2015a; Kaya et al., 2021). Our RLS analyses
showed that CR varies significantly within and between populations
across different genotypes and species of budding yeast. While we
observed that CR mediated positive response in some budding yeast
species and strains of S. cerevisiage, most did not respond or
decreased the lifespan, concluding that even among the closely-
related species or strains of a single species, CR might not mediate
lifespan extension commonly.

Next, a comparison of gene expression patterns between CR
responding and non-responding strains revealed unique sets of
genes and pathways and regulators of CR response. We found
that responding wild strains uniquely adapted to increase
mitochondrial translation coupled with oxidative phosphorylation
and ATP biosynthesis under high glucose conditions. The
laboratory-adapted budding yeast strain of S. cerevisiae mainly
generates energy through glycolysis, and high glucose conditions
suppress mitochondrial respiration. It is possible that niche-specific
adaptations to the carbon source might be associated with increased
mitochondrial function in these strains (Kaya et al, 2021). In
addition, responding strains were characterized by decreased
amino acid biosynthesis and increased cytosolic translation in
comparison to both non-responding and negatively responding
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strains. In another observation, in addition to the decreased
mitochondrial translation, non- and negatively responding strains
are also characterized by respiratory chain complex IV assembly,
inner mitochondrial membrane organization, cytochrome complex
assembly, and ATP biosynthesis. This data suggests that under high
glucose conditions (2%), negatively responding strains might have
decreased mitochondrial capacity for energy derivation by oxidative
phosphorylation, indicating adaptation of higher respiratory
metabolisms under high glucose condition in responding strains.
Overall, our data suggest mitochondrial function, cytosolic
translation, and amino acid biosynthesis as the main factors for
CR response type, and we further showed that 2 TFs, HAP4 and
GCN4, differentially regulate these pathways in responding strains.

There have been reports that focused on elucidating the GCN4-
dependent lifespan regulation mainly in yeast and worm models
(ATF-4; worm and mammalian functional orthologues of yeast
GCN4) (Mittal et al., 2017; Hu et al, 2018; Anderson and
Haynes, 2020; Vasudevan et al, 2020; Statzer et al, 2022;
Mariner et al., 2023). GCN4 is a primary transcriptional activator
of amino acid biosynthesis genes in yeast and regulates various stress
resistance mechanisms (Larossa et al., 2000; Natarajan et al., 2001;
Patil et al., 2004; Mascarenhas et al., 2008; Wortel et al., 2017; Kref3
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et al, 2023). Increased expression of GCN4 has been shown to
increase yeast and worm lifespan, and increased expression of ATF4
was revealed to be a hallmark shared by many long-lived mice
compared to those of normal-lived mice (Li et al., 2014; Li and
Miller, 2015). Increased GCN4 expression was also found to decrease
overall protein translation by regulating the expression of genes
involved in translational machinery (Hinnebusch, 2005; Mittal et al.,
2017). Furthermore, long-lived yeast strains that lack non-essential
ribosomal proteins have been characterized by an increased
abundance of GCN4, and the increased RLS of these strains is
mostly suppressed by the deletion of GCN4 (Steffen et al., 2008;
Mittal et al., 2017), indicating Gen4-dependent longevity regulation
in these strains. Interestingly, other studies also showed longevity
promoting the function of Gcen4, independent of reduced global
protein synthesis but through autophagic regulation in both yeast
and mammalian cells (Hu et al., 2018; Mariner et al., 2024). Finally,
consistent with our result of increased GCN4 transcription under CR
condition, the translational efficiency of Gen4 was found to have
significantly increased under CR (Yang et al., 2000; Mehta et al.,
2010; Zou et al., 2020), and it was also reported that Gen4 is partially
required for life span extension by CR (Steffen et al., 2008).
Similarly, studies have demonstrated that the plasticity of
mitochondrial function could be a potential target to promote
healthy aging (Lima et al., 2022; Phua et al., 2023). Mitochondria
have an important role in a wide variety of metabolic and cellular
processes, including energy production, amino acid synthesis, lipid
metabolism, cell cycle regulation, apoptosis, autophagy, and
signaling processes, and many of these processes are directly
linked to lifespan regulation and aging (Goodell and Rando,
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2015; Jang et al, 2018). However, mitochondrial function in
aging and lifespan is more complex. For example, altered
mitochondrial function is tightly linked to lifespan regulation,
but underlying mechanisms remain unclear. The age-associated
decline in mitochondrial function is associated with aging
hallmarks and age-related diseases [ (Pawley, 1989; Bovina et al,
1997)]. Modulation of mitochondria-related pathways through
genetic, environmental, and pharmacological interventions has
been shown to mediate longevity-promoting metabolic and
molecular changes in different organisms, including yeast
(Bonawitz et al.,, 2007; Ocampo et al., 2012; Kaya et al,, 2015a)
Caenorhabditis elegans (Schulz et al., 2007), and mice (Anderson
2010). On the other hand,
mitochondrial respiration has also been associated with increased

and Weindruch, inhibition of
lifespan in various species (Liu et al., 2005; Copeland et al., 2009;
Woo and Poyton, 2009; Lee et al, 2010; Van Raamsdonk
et al., 2010).

As a facultative anaerobe, yeast has been a valuable model for
studying the role of mitochondrial function in aging. However, the
continuous utilization of laboratory-adapted yeast has been the
primary model in these studies and introduced some conflicting
results. For example, the elimination of mtDNA (respiratory
deficiency) has resulted in decreased (Kaya et al, 2021) and
increased (Woo and Poyton, 2009) lifespan across different
strains. In addition, although CR has been proposed to mediate
its longevity effect through mitochondrial function in yeast (Lin
et al.,, 2002), strains lacking mtDNA were also found to extend their
lifespan under CR conditions (Kaeberlein and Guarente, 2005).
Recently, we showed that the elimination of mtDNA decreases
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RLS effect of mitochondrial DNA (mtDNA) elimination and GCN4 overexpression in selected responding strains. RLS phenotypes of Y12 (left panels)

and FL100 (right panels) strains (A) rho0 isolates under high glucose condition (gray lines) and CR condition (purple lines) along with the RLS phenotypes
of control parental strains under high glucose (YPD: black lines) and CR conditions (red lines) are also shown (B) Lifespan curves for control (black) and
GCN4 (green) overexpression. Lifespan data and the significance of lifespan changes can be found in Supplementary Material S1.

lifespan in many wild yeast isolates, indicating adapted metabolic
changes in the laboratory environment, illustrating that the species
has the potential genotype-specific lifespan traits regulated by
particular genes in laboratory settings and might introduce
artifact results (Kaya et al, 2021). In this study, we showed
mitochondrial function is needed for CR-mediated lifespan
extension in responding strains.

Although there have been numerous reports on understanding
the mechanism of CR-mediated lifespan extension using the yeast
model, our results represent the first comprehensive report on CR
response type and associated molecular factors across the diverse
lifespans of different genotypes. Our result identifies the possible
interplay between Gcn4 and mitochondrial function together,
mediating molecular and metabolic changes that ultimately exert
a significant influence on the determination of longevity under CR
of
mitochondrial stress response, known as an integrated stress

conditions.  Regulation mitochondrial ~ function and
response (ISR) have been characterized in various organisms (Zid
et al., 2009; Pakos-Zebrucka et al., 2016; Quirds et al., 2017; Sasaki
et al.,, 2020). For example, inhibition of the functional copy of ATF4
failed to upregulate several mitochondrial enzymes and exhibited a

reduction in ATP-dependent respiration in HeLa cells (Quirds et al.,
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2017). In the natural environment, GCN4 might mediate signaling
pathways connecting nutrient-sensing pathways to mitochondrial
metabolic adaptation in response to nutrient availability to regulate
phenotypic plasticity under varying stress environments. In fact, we
showed that most of the upregulated genes were previously
characterized as a component of ISR (Gasch et al, 2000).
Together, the GCN4-mediated ISR activation might be coupled to
maintain mitochondrial and cellular homeostasis and organismal
fitness under CR condition.

It should be noted here that we identified increased GCN4
expression and decreased cytosolic translation in both groups.
However, increased expression of mitochondrial genes was only
observed in non-responsive strains under CR conditions.
Responsive strains were characterized by higher mitochondrial
activity and increased cytosolic translation under high glucose
conditions compared to the non-responsive strains and CR did
not cause further increases in mitochondrial function. The data
suggest CR selectively acted only to decrease ribosomal biogenesis
genes on responsive strains to extend lifespan. A similar observation
was reported previously that knockdown of mitochondrial
prohibitin phb-2 induces the UPR™ in both yeast and worms

and shortens lifespan in both organisms. This effect of prohibitin
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deficiency can be suppressed by a reduction in cytoplasmic
translation in yeast or by deletion of the S6 kinase homolog rsks-
1 in worms, which both increases the GCN4/ATF4 function and
attenuates the UPR™ (Artal-Sanz and Tavernarakis, 2009; Schleit
et al,, 2013). Although it needs further research, we argue that the
absence of lifespan extension in non-responsive strains, even in the
event of increased mitochondrial respiration, might be linked to the
severely decreased cytosolic translation, indicating CR might cause
imbalanced cytosolic protein homeostasis, which is tightly linked to
mitochondrial translation efficiency and nuclear stress signaling
(Suhm et al.,, 2018; Molenaars et al., 2020).

In addition, we identified increased expression of methionine and
other sulfur-containing amino acid biosynthesis genes regulated by
MET32 in non-responding strains under CR condition. Given that
decreased methionine biosynthesis is required for CR-mediated
lifespan  extension, increased methionine biosynthesis might
abrogate CR-mediated lifespan extension, as it was shown
previously (Mehta et al., 2010; Lee et al., 2016). Further research is
needed on the mechanisms that differentially promote increased
expression of methionine biosynthetic genes in non-responding
strains in comparison to the responding strains under CR
Another
metabolism to CR response emerged from our analysis of

condition. piece of evidence linking methionine
metabolomics data that increased abundance of n-formylmethione
(fMet) under high glucose condition positively correlates with the rate
of lifespan extension, promoted by CR. fMet is a derivate of
methionine in which one of the hydrogens attached to the
nitrogen in amino group is replaced by a formyl group and mainly
compartmentalized in mitochondria, there it is used for initiation of
mitochondrial protein synthesis (Cai et al,, 2021; Lee et al., 2022). Our
data indicates that increased fMEt might be another key factor in
coordinating the nutrient status and the mitochondrial translation
linking CR-induced mitochondrial respiration. To our knowledge,
there have been no reports showing fMet association with CR-
mediated lifespan regulation and further research is needed
whether fMet can be utilized as a predictive marker for CR
response type and rate in higher eukaryotes.

Our comparison of transcriptome data revealed lower
mitochondrial respiratory capacity under high glucose conditions
for negatively responding strains. In addition, metabolomics data
showed increased oxidized glutathione levels in them. The
negatively responding strains may be suffering from oxidative
the

mitochondrial respiration, further increasing the intracellular

stress, and switching CR medium might activate
reactive oxygen species and thus decreasing lifespan.

Overall, our research has uncovered molecular determinants of
lifespan plasticity in response to nutrition signaling that in the
natural environment, it is employed to modify genotype and gene
expression, arriving at different lifespans. However, our study only
tested a single CR condition (0.05% glucose) that different levels of
CR may interact with genotype in different ways. In particular, each
genotype may have a different optimal (for longevity) level of
nutrient availability, or the activity of metabolic pathways might
differ significantly depending on genetic background under CR
condition, as it was shown in mice previously (Mitchell et al,
2016; Wilkie et al, 2020; Mulvey et 2021). Further

understanding of how gene-environment interaction modulates

al.,

genotype-dependent conserved molecular responses to various
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level of nutrition availability may open new therapeutic
applications to slow aging and age-related diseases through diet,

lifestyle, or pharmacological interventions.

Materials and methods
Yeast strains and growth conditions

Diploid wild isolates of S. cerevisiae were obtained from the
Sanger Institute (Carter et al., 2009), and the other budding yeast
species were gifted by Mark Johnston (Cliften et al., 2001). We also
reported detailed information and lifespan phenotypes of these
strains analyzed under high glucose (2% glucose) and glycerol
(3% glycerol) conditions (Kaya et al, 2015a; Kaya et al, 2021).
For the expression of GCN4, we used a modified p426ADH plasmid
by inserting a hygromycin (HYG) cassette along with its promoter
and terminator at the Xbal restriction site (Kaya et al., 2021). We
omitted the 5'UTR sequence of the GCN4 as described previously
(Mittal et al., 2017). Yeast transformation was performed using the
standard lithium acetate method. Finally, to isolate rho” strains, cells
were cultured in YPD medium, supplemented with 10 pg/mL and
ethidium bromide (EtBr), and incubated at room temperature with
agitation for approximately 24 h. This procedure was repeated three
times, and after the third growth cycle, cells were diluted (1:100) in
water and plated on YPD to obtain single colonies. After that, several
individual colonies were selected to test their growth ability on YPG
(respiratory carbon source) plates. Colonies that were unable to
grow on YPG were selected as rho’.

Replicative lifespan analysis

RLS assay method and lifespan phenotypes of these strains on
YEP (yeast extract, peptone) medium supplemented with 2%
glucose or 3% glycerol was described in detail in our previous
publications (Kaya et al, 2015a; Kaya et al., 2021; Oz et al,
2022). We modified the YEP plates by supplementing them with
0.05% glucose (YPD-CR) to determine the RLS phenotypes on the
CR medium. For each natural isolate, at least 30 individual mother
cells were analyzed. Each assay also included the BY4743 strain as a
technical control. For RLS analysis of wild isolates harboring
expression plasmids for GCN4, several individual colonies were
picked up from selection medium (HYG) after transformation,
and YPD medium supplemented with 200 ug/mL HYG was used
for RLS determination of these cells. Survival analysis and Gompertz
modeling were performed using the survival (https://cran.r-project.
org/web/packages/survival/index.html) and flexsurv (https://cran.r-
project.org/web/packages/flexsurv/index.html) in R,

packages
respectively.

Comparison of gene expression and
metabolomics signature associated with RLS
phenotypes across strains

The RNAseq and metabolomics procedure and the data
analyses for cells collected on YPD (2% glucose) were described
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previously (Kaya et al., 2021). We used the same procedure to
collect cells and perform RNAseq analyses for Saccharomyces
species and for the cells collected don YPD-CR (0.05% glucose)
medium. Data analyses were also done by using similar
methodologies for consistency.

To assess the impact of experimental treatments on gene
expression, we conducted a Principal Component Analysis (PCA)
utilizing the “FactoMineR” package in R (Lé et al., 2008). The PLS-
DA analysis was performed by using the function ‘opls’ in R package
‘ropls’ with default parameters (https://bioconductor.org/packages/
devel/bioc/vignettes/ropls/inst/doc/ropls-vignette.html#43_Partial
least-squares: PLS_and_PLS-DA). Additionally, we computed the
Spearman correlation coefficient between samples based on their
gene expression values. The distance matrix among samples was
derived from the 1l-correlation coefficient and employed the
“hclust” function in R for hierarchical clustering using the “ward.
D2” method. For the differential expression analysis, we utilized the
“EdgeR” package in R (Robinson et al, 2009) to perform
comparisons between positively responding versus non- and
negatively responding groups. Briefly, we initially applied the
“calcNormFactors” function to calculate the normalization factor
for the raw counts of gene expressions by using the value of the total
used  the
“voomWithQualityWeights” function to estimate the weight of

expression of samples.  Subsequently, we
each sample and transformed the expression matrix using voom.
Given that there are multiple strains within each group, with each
strain having three biological replicates, treating biological
repetitions as independent observations would introduce noise
into the results. To address this, we employed the
function to calculate the correlation
then

“voomWithQualityWeights” function to re-estimate the sample

“duplicateCorrelation”
among  biological replicates. We reapplied  the
weights and transform the expression matrix, considering the
correlation between biological replicates. Finally, we utilized the
“lmFit” function to identify the significant differential expressed
gene by setting each strain as a block and incorporating the
correlation between biological replicates. The adjustment of the
p-value was performed using the Benjamini-Hochberg (BH)
method. Gene met adjusted p-value <0.05 and | log2 (Fold
> 05 as the identify

endophenotypes (transcripts and metabolites) correlating with

change) | significant genes. To
CR-mediated lifespan variation across wild isolates, we performed
phylogenetic regression using the generalized least squares method,

as we described previously (Kaya et al., 2015a; Kaya et al., 2021).

Functional enrichment and transcription
factor network analysis

We performed gene enrichment analysis using R packages
“clusterProfiler” (Yu et al, 2012). We selected the items
contained in the Gene ontology (GO) and the KEGG databases
to analyze up- and downregulated genes for each group. The
Benjamini-Hochberg (BH) method was used for the p-value
adjustment, and the terms with adjusted p-value <0.05 were
selected. For the KEGG database-based pathway enrichments,
terms with adjusted p values <0.5 were considered. To
identify TFs associated with DEGs identified under CR
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conditions, we utilized the yeastrack portal (Teixeira et al,
2023),
transcription

which provides a set of queries to predict

regulation  networks in  yeast  from

various -omics data.

Author summary

Caloric restriction (CR) is an energy-balanced nutrient intake
without malnutrition to reduce food intake by 20-40%. CR leads
to distinct metabolic reprogramming and adaptive changes in
gene expression and, as a result, increases health and lifespan in
various model organisms, from yeast to most likely primates.
Besides extending lifespan, CR also holds great promise for
treating many human age-onset pathologies, and the molecules
underlying its effects are sought as targets of pharmaceutical
aging therapeutics. However, despite extensive research, the
mechanisms of lifespan extension in response to CR remain
elusive. In addition, several studies in different aging models
have now demonstrated that the longevity effect of CR can vary
dramatically across different genotypes within a population. As
such, CR might be beneficial for some yet detrimental for others,
and the mechanisms underlying such genotype-dependent
variation are not clear. In this study, we meet these challenges
by dissecting molecular response to CR in diverse wild isolates of
yeast strains, aiming to characterize pathways and molecules
mediating CR’s effects on replicative lifespan (RLS) diversity.
We found that the RLS significantly differs across genetically
diverse wild yeast isolates under CR conditions. Examining the
relationships among the RLS phenotypes under CR and non-CR
conditions, transcript, and metabolite provided insights into the
functions in  CR-mediated

role of  mitochondrial

lifespan extension.
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