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While earlier first-generation epigenetic aging clocks were trained to estimate
chronological age as accurately as possible, more recent next-generation clocks
incorporate DNAmethylation informationmore pertinent to health, lifestyle, and/
or outcomes. Recently, we produced a non-invasive next-generation epigenetic
clock trained using Infinium MethylationEPIC data from more than 8,000 diverse
adult buccal samples. While this clock correlated with various health, lifestyle, and
disease factors, we did not assess its ability to capture mortality. To address this
gap, we applied CheekAge to the longitudinal Lothian Birth Cohorts of 1921 and
1936. Despite missing nearly half of its CpG inputs, CheekAge was significantly
associated with mortality in this longitudinal blood dataset. Specifically, a change
in one standard deviation corresponded to a hazard ratio (HR) of 1.21 (FDR q =
1.66e-6). CheekAge performed better than all first-generation clocks tested and
displayed a comparable HR to the next-generation, blood-trained DNAm
PhenoAge clock (HR = 1.23, q = 2.45e-9). To better understand the relative
importance of each CheekAge input in blood, we iteratively removed each clock
CpG and re-calculated the overall mortality association. The most significant
effect came from omitting the CpG cg14386193, which is annotated to the gene
ALPK2. Excluding this DNA methylation site increased the FDR value by nearly
threefold (to 4.92e-06). We additionally performed enrichment analyses of the
top annotated CpGs that impact mortality to better understand their associated
biology. Taken together, we provide important validation for CheekAge and
highlight novel CpGs that underlie a newly identified mortality association.
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Introduction

Machine learning models that predict age using DNA methylation information are
referred to as epigenetic aging clocks. Their output, which is often described as epigenetic
age or DNA methylation age, represents a unique, more contemporary aging biomarker.
These epigenetic clocks can be trained for a variety of tasks, such as estimating chronological
age or predicting health outcomes in a population (Bell et al., 2019). Thus, they have value
across multiple lines of inquiry, including forensics and biogerontology. First-generation
clocks are simply trained to predict chronological age and are more relevant to forensics.
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Conversely, next-generation clocks are optimized to incorporate
methylation information linked to health, lifestyle, and/or outcomes.

The majority of next-generation clocks require blood
collection, which can be challenging to perform in a home
setting and in older adults. To address this, we recently
created the next-generation clock CheekAge using a large
Infinium MethylationEPIC buccal dataset spanning more than
8,000 adults (Shokhirev et al., 2024). This model, which utilizes
more than 200,000 DNA methylation sites to produce an
epigenetic age estimate in an easy-to-collect tissue, was trained
to correlate with a variety of lifestyle and health factors, including
weekly exercise, sleep quality, diet, stress, smoking status, alcohol
intake, and body mass index. For example, health-promoting
behaviors like more frequent weekly exercise were associated
with a lower delta age (epigenetic age – chronological age) while
less health-promoting behaviors like heavy alcohol intake
correlated with a higher delta age. In addition to correlating
with chronological age in external datasets, CheekAge was
significantly elevated in patients with progeria, meningioma,
or respiratory infections as well as in childhood cancer
survivors who had undergone radiation therapy (Shokhirev
et al., 2024). However, CheekAge’s ability to estimate
mortality has not yet been assessed. Since an ideal aging
biomarker is one that can capture mortality risk in a
longitudinal setting, we sought to evaluate the ability of this
buccal clock to predict the risk of death.

Methods and materials

The Lothian Birth Cohorts (LBC) research group is based in the
department of Psychology at the University of Edinburgh. The core
purpose is to understand cognitive and brain aging and their
determinants including metrics such as lifestyle and psychosocial
factors as well as biomedical, genetic, epigenetic, and brain imaging
data. The cohorts comprise two longitudinal studies, one starting with
older individuals born in 1921 and a second with individuals born in
1936 (Deary et al., 2012; Taylor et al., 2018). Participants are tested
every 3 years. In order to test whether delta CheekAge was
significantly associated with mortality risk, we obtained access to
the Infinium HumanMethylation450 and phenotypic data from both
cohorts. Raw methylation data was processed using theminfi package
v1.46.0 as described in detail previously (Shokhirev et al., 2024). Since
our clock was trained on Infinium MethylationEPIC array buccal
data, the Infinium HumanMethylation450 array data was missing
roughly half of the inputs used to calculate CheekAge. To use the
CheekAge clock on the Infinium HumanMethylation450 data, we
removed all missing inputs from the cluster averaging process and
clusters with no CpG inputs present were set to 0. This resulted in
surprisingly little loss of accuracy when testing in our previously
described internal buccal data (Shokhirev et al., 2024), so we were
encouraged to apply the same process to the Infinium
HumanMethylation450 blood data from the LBC. We then
normalized by dividing the resulting delta ages by the standard
deviation of the delta ages to obtain standardized 450 k delta
CheekAge predictions (s 450 k ΔCheekAge).

From there, we fit a Cox Regression Model to estimate the
associations of s 450 k ΔCheekAge and other confounding variables

on the survival function using the coxph function from the survival
package (v 3.5-3):

Surv Age, Status( ) ~ s 450kΔCheekAge +N + L +M +NI + Sex

+ Age + Cohort + Timepoint

where Surv(Age, Status) is the survival function and status is alive
(0), or deceased (1) at last measurement, s 450kΔCheekAge is the
standardized delta CheekAge at last measurement, and N, L, M, NI,
Sex, Age, Cohort, and Time point are neutrophil proportion,
lymphocyte proportion, monocyte proportion, non-immune cell
type proportion, predicted sex, chronological age, LBC cohort,
and LBC wave, respectively. Additional epigenetic aging clocks
were similarly analyzed using the R methylCIPHER package
(Thrush et al., 2022).

We then systematically set each of the 115,553 CpGs
overlapping with the CheekAge clock to zero, and recalculated
the Cox Regression Model using the updated s 450kΔCheekAge
for each CpG, to reveal the effect (defined as the magnitude of the
statistical change between base and removed/set-to-zero models) of
each CpG on mortality association in the normalized CheekAge
clock. Gene annotations for the CpGs with the largest effect on
mortality association were manually reviewed. The cell type
proportions were predicted using the EpiDISH package
v2.16 hepidish function with ref1.m = centEpiFibIC.m, ref2.m =
centBloodSub.m, h.CT.idx = 3 (Zheng et al., 2019). We defined the
lymphocyte proportion as the sum of the CD8T, B, and CD4T cell
proportions, and the non-immune proportion as the sum of the
fibroblast and epithelial cell proportions. The sex was predicted
using theminfi package v1.46.0, getSex function (Aryee et al., 2014).
The forest plot was generated using ggforest and the adjusted survival
curves were generated using the ggadjustedcurves function with
method “marginal” from the survminer package (v 0.4.9).
Adjusted p-values were calculated using the p.adjust R function
with the “fdr” method.

Similarly to before (Shokhirev et al., 2024), we used WebGestalt
(Elizarraras et al., 2024) to perform network topology-based
enrichment analyses of annotated CpGs that had the most
dramatic impact on the overall mortality association. The
network used was PPI BioGrid (Oughtred et al., 2021), the set
number of top ranking neighbors was equivalent to 125 (half the
input size), and the significance level cut-off was set to an FDR of
0.05. For the Gene Ontology (Gene Ontology et al., 2023) results that
were returned, a category size cut-off of 1,000 was put in place and a
weight set cover algorithm was employed to reduce redundancy to
the top 15 categories. We specifically used the WebGestaltR package
(https://cran.r-project.org/package=WebGestaltR).

Results

To further investigate CheekAge, we turned to the longitudinal
mortality data from the LBC of 1921 and 1936 (LBC1921 and
LBC1936) (Deary et al., 2012; Taylor et al., 2018). These two
studies of community-dwelling older adults comprise
1,513 participants (712 males and 801 females) with methylation
data who were monitored in four different waves. Mortality status
was derived based on dates of death, identified via data linkage from
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the National Health Service Central Register, provided by the
National Record of Scotland. These were converted to age in
days at death by the LBC team and used as the outcome variable.
Looking at all four waves, chronological age varied from 67.8 to
90.6 years. The censor dates were January 2022 and September
2023 for the LBC1921 and LBC1936 cohorts, respectively. Cohort
characteristics, including age, sex, and number of subjects for each
wave, are provided in Supplementary Table 1.

As visualized in Figure 1, our aim was to determine whether or not
CheekAge significantly associates with mortality in LBC data and, if so,
identify which specific DNAmethylation sites are driving the mortality
association. We began by predicting CheekAge using the final
methylation data measured in participants prior to their death or
censor date. Since the LBC data were measured using Infinium
HumanMethylation450 arrays, roughly half of the CpGs used by
CheekAge were not measured. We first evaluated the effect of using
available Infinium HumanMethylation450 CpGs to predict CheekAge
in our previously described methylomic buccal data derived frommore
than 8,000 diverse adults (51.9% male and 48.1% female) spanning a
chronological age range of 18–93 years (Shokhirev et al., 2024). While
the R2 and mean absolute error (MAE) values of the full CheekAge
model (using all available CpGs) were respectively 0.93 and 3.05 years
(Shokhirev et al., 2024), the R2 was 0.91 and the MAE was 3.87 years in
the current model using only Infinium HumanMethylation450 CpGs
(Figure 2A). Encouraged by this minimal loss in accuracy, we next
predicted CheekAge in the LBC data directly (Figure 2B) and then
standardized the delta age by dividing the delta age by the standard
deviation of all delta ages (Figure 2C).

To test for a significant association between this epigenetic clock
and mortality risk, we trained a Cox proportional hazards regression
model taking into account sex, age, cohort, time point of last
measurement, cell type proportions, and standardized delta
CheekAge (s 450 k ΔCheekAge). We demonstrate that s 450 k
ΔCheekAge has a significant hazard ratio (HR) of 1.21 for each
standard deviation with an adjusted false discovery rate (FDR) of
1.66e-6 (Figure 2D). Compared to the −3 to 0 standard deviation
group, the HR for the three to 6 standard deviation group was 2.48

(FDR = 0.004). To demonstrate the effect on survival, we show the
survival curves for three groups stratified by s 450 k ΔCheekAge,
with the lowest s 450 k ΔCheekAge group expected to reach 50%
survival 7.8 years after the highest s 450 k ΔCheekAge group
(Figure 2E). To better contextualize the relative significance of
this association, we looked at the ability of five other epigenetic
aging clocks to capture mortality in the LBC data (Figure 3).
Specifically, we looked at the Hannum 2013, Horvath 2013,
Horvath 2018, DNAm PhenoAge (Levine et al., 2018), and
Zhang 2019 clocks. DNAm PhenoAge represents a next-
generation model while the other epigenetic biomarkers
(Hannum et al., 2013; Horvath, 2013; Horvath et al., 2018; Zhang
et al., 2019) are first-generation clocks. Scatterplots (Figures 3A–F)
and mortality association statistics (Figure 3G) are shown for each
clock. The Horvath 2018 (HR = 1.00, FDR = 0.97) and Zhang 2019
(HR = 1.04, FDR = 0.41) showed non-significant mortality
associations while the Hannum 2013 (HR = 1.15, FDR = 3.90e-4)
and Horvath 2013 (HR = 1.15, FDR = 2.15e-4) displayed mortality
associations that were significant, albeit less so compared to
CheekAge. The HR for the blood-trained, next-generation clock
DNAm PhenoAge (HR = 1.23, FDR = 2.45e-9) was comparable to
CheekAge and in line with what has been previously reported
(Stevenson et al., 2019). These analyses suggest that, even with
limited CpG inputs collected in a different tissue, CheekAge is
significantly associated with mortality in a longitudinal dataset
and outcompetes first-generation clocks trained in datasets
containing blood data. All of the CpGs included in the s 450 k
ΔCheekAge model as well as DNA methylation sites that overlap
between our model and externally tested clocks are listed in
Supplementary Table 2. Interestingly, the CpG cg19722847
(annotated to the gene IPO8) was shared across the CheekAge,
Hannum 2013, Horvath 2013, Horvath 2018, DNAm PhenoAge,
and Zhang 2019 clocks. Not only do zebrafish lacking the gene
annotated to this CpG display skeletal and cardiovascular defects,
but human loss of function mutations in IPO8 underlie a connective
tissue disorder characterized by immune dysfunction as well as
skeletal and cardiovascular anomalies (Ziegler et al., 2021).

FIGURE 1
Visual summary of the experimental approach. After demonstrating that the buccal clock CheekAge can be applied to Infinium
HumanMethylation450 blood methylation data, we analyzed the relationship between mortality risk and the disparity between CheekAge and
chronological age in the longitudinal Lothian Birth Cohorts. After identifying a significant relationship, we iteratively removed each CpG from the model
and re-calculated the significance of the mortality association to better understand the relationship between each input and mortality.
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To better understand which CpGs have the biggest effect on the
association between CheekAge and mortality, we systematically
removed each of the 115,553 CpGs overlapping with the
CheekAge clock model in the LBC Infinium
HumanMethylation450 methylation data and recalculated the
adjusted FDR of the mortality association. If removing a CpG
made the mortality prediction less significant, it was presumed to
play a role in driving the mortality association and dubbed a mortality
CpG. Conversely, we refer to CpGs whose removalmade themortality
prediction more significant as anti-mortality CpGs. The distribution
of mortality and anti-mortality CpGs, including their effect on FDR, is
visually summarized in Supplementary Figure S1. When we sort these
115,553 CpGs (genes annotated to each CpG are indicated by
parentheses) by impact (Supplementary Table 2), the 10 CpGs that
most dramatically impair the clock’s mortality association when
removed are cg14386193 (ALPK2), cg00991744 (PDZRN4),
cg00664454 (CPNE2), cg16022279 (ZNF185), cg04249559
(B4GALNT3), cg20313963 (SLC2A3), cg18170680, cg18154784

(SAT1), cg09936008 (ZNF213), and cg20210051 (PDZRN4). It is
interesting to note that, among this top 10 list, two CpGs
(cg00991744 and cg20210051) are annotated to the putative tumor
suppressor gene PDZRN4 (Lu et al., 2019; Jin et al., 2022). The CpG
whose removal most prominently attenuated the model’s mortality
association was cg14386193 (ALPK2). Excluding this DNA
methylation site from the model increased the FDR value by
approximately threefold, from 1.66e-06 (full model using all
available CpGs) to 4.92e-06 (model lacking cg14386193). This
CpG is annotated to the gene ALPK2, which encodes for Alpha-
protein kinase 2 and is highly expressed in fibroblasts, heart, and
muscle relative to other tissues in the body (https://www.gtexportal.
org/home/gene/ENSG00000198796) according to the Genotype-
Tissue Expression (GTEx) project (Consortium, 2013).
Interestingly, this gene is upregulated in human bladder cancer
and knocking down ALPK2 in a mouse xenograft model of
bladder cancer suppressed tumor growth (Wang et al., 2021). The
gene alpk2 was found to be essential for proper cardiac development

FIGURE 2
Standardized delta CheekAge is significantly associated with mortality in the Lothian Birth Cohorts. (A)CheekAge predictions on internal buccal data
using only CpGs found on InfiniumHumanMethylation450 arrays. (B)CheekAge predictions on blood data from the Lothian Birth Cohorts. (C) Scatterplot
showing standardized delta CheekAge as a function of chronological age. Since the scale for CheekAge is arbitrary, delta CheekAge was normalized by
dividing by the standard deviation. (D) Forest plot showing hazard ratios for the Cox regression model. Each row shows the variable, number of
observations, hazard ratio, 95% CI, and FDR adjusted significance of association. (E) Marginal survival curves for three categories of delta CheekAge:
−3 standard deviations to 0, 0–3 standard deviations, and 3–6 standard deviations. Labels indicate chronological age at a 50% survival rate (middle red
line). In the scatterplots (A–C), black lines indicate y = x or y = 0 lines and red lines indicate best fit lines. RMSE and MAE in the first two scatterplots (A, B)
stand for root mean squared error and mean absolute error, respectively.
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and function in zebrafish (Hofsteen et al., 2018), though cardiac
function and morphology were normal in mice lacking Alpk2
(Bogomolovas et al., 2020). Separately, Alpk2 was implicated as a
potential contributor to genetic hypertension in the Dahl salt-sensitive
rat model (Chauvet et al., 2011). It would be intriguing to determine if
the manipulation of this gene impacts lifespan in animal models.

For each annotated gene connected to these top 10 CpGs, an
interesting literature connection germane to aging and/or age-related
disease is provided in Table 1. Collectively, these literature
connections are pertinent to survival, cancer, osteoporosis,
inflammation, and metabolic syndrome. Two that are especially
worth highlighting are cg04249559 (B4GALNT3) and cg18154784
(SAT1), the former of which was previously reported to be associated
with all-cause mortality in the LBC (Lund et al., 2019). Excluding
cg04249559 (B4GALNT3) or cg18154784 (SAT1) from the model
respectively raised the FDR to 2.72e-06 (1.6-fold increase) or 2.43e-06
(1.5-fold increase). In mice, knocking out B4galnt3 (which encodes
Beta-1,4-N-acetylgalactosaminyltransferase 3) decreases bone mass
and elevates circulating levels of sclerostin, a small protein that can be
inhibited to reduce fracture risk. In humans, a Mendelian
randomization analysis found a causal association between
B4GALNT3 variants and a higher risk of fractures and lower bone
mineral density (Moverare-Skrtic et al., 2023). The CpG site
cg18154784 is found in the 3′UTR region of the X-chromosome-
located gene SAT1. SAT1 encodes for Diamine acetyltransferase 1, an
enzyme that regulates the metabolism of spermine and spermidine via
acetylation (Pegg, 2008). Tissue expression analysis by GTEx suggests
that it is highly expressed in minor salivary gland tissue (https://www.
gtexportal.org/home/gene/ENSG00000130066). In a mouse model of
diet-induced obesity, chemically activating Sat1 via the synthetic agent

triethylenetetramine dihydrochloride stimulated autophagy, reduced
weight, and improved both fatty liver and glucose intolerance
(Castoldi et al., 2020). Per the EWAS Data Hub (Xiong et al.,
2020), decreased methylation at this site has been reported in
Parkinson’s disease brain samples (https://ngdc.cncb.ac.cn/ewas/
datahub/probe/cg18154784). Moreover, the polyamine pathway has
been previously implicated in the pathogenesis of Parkinson’s disease
(Lewandowski et al., 2010). Spermidine, which is regulated by SAT1,
has also been reported to induce autophagy and extend lifespan in
multiple animal models (Hofer et al., 2022). Future investigations are
warranted to determine if the expression of these genes are impacted
by these mortality-linked CpG sites. Such work, for example, has been
done to demonstrate that the hypermethylation of Elovl2 decreases
gene expression and drives age-related visual dysfunction in mice
(Chen et al., 2020).

If we expand beyond these top 10 CpGs and look at the top
100 mortality CpGs (Supplementary Table 2), several DNA
methylation sites are annotated to genes with tangible
connections to lifespan and/or age-related disease. As an example
of this, the top 100 CpG cg25163611 is annotated to IGF1, which
encodes for Insulin-like growth factor I. Insulin/insulin-like growth
factor I signaling represents a canonical, evolutionarily conserved
pathway that modulates longevity in model organisms (Singh et al.,
2019). Similarly, the top 100 CpG cg15826479 is annotated to
RPTOR, which encodes for Regulatory-associated protein of
mTOR. Not only does mTOR signaling also represent a
canonical longevity pathway in model organisms (Singh et al.,
2019), but the neuronal knockdown of daf-15 (Caenorhabditis
elegans ortholog of RPTOR) extends lifespan and improves age-
related health in worms (Zang et al., 2024). Yet another example

FIGURE 3
Performance of other published epigenetic age clocks in the Lothian Birth Cohorts. (A–F) Scatterplots showing predicted age versus chronological
age and best fit linear regression lines for the Hannum 2013 (A), Horvath 2013 (B), Horvath 2018 (C), DNAm PhenoAge 2018 (D), Zhang 2019 (E), and
CheekAge 2024 (F) clocks. Root mean squared error (RMSE), mean absolute error (MAE), and squared Pearson correlation coefficient (R2) values are
shown for each clock. (G) Hazard ratios with 95% CI and FDR values are shown for each clock. Cox regression models include delta age,
chronological age, timepoint, cohort, sex, and cell type composition as covariates.
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worth highlighting is the top 100 CpG cg05433642, which is
annotated to the gene MBNL2. This gene encodes for
Muscleblind-like protein 2, a regulator of pre-mRNA alternative
splicing. Suggestive of an important role relevant to age-related
disease, a recent study showed thatMbnl2 levels accumulate with age
in the rat heart and that the inhibition of Mbnl2 decelerates cardiac
fibrosis in aging rats (Lu et al., 2024).

Finally, we used WebGestalt (Elizarraras et al., 2024) to perform
network topology-based enrichment analyses of the top 250 annotated
mortality CpGs (Supplementary Figure S2) and the top 250 annotated
anti-mortality CpGs (Supplementary Figure S3). For each set of top
annotated genes, the 15 most significant Gene Ontology (Gene
Ontology et al., 2023) processes are shown (Supplementary Figures
S2, S3). The 15 most significant processes for mortality CpGs–DNA
methylation sites whose removal made the mortality association less
significant and were therefore driving significant association with
mortality–were as follows: “response to organonitrogen compound,”
“post-translational protein modification,” “negative regulation of
developmental process,” “regulation of catabolic process,”
“rhythmic process,” “regulation of cell cycle,” “response to organic
cyclic compound,” “regulation of cellular localization,” “trans-
synaptic signaling,” “import into cell,” “apoptotic signaling
pathway,” “enzyme-linked receptor protein signaling pathway,”
“head development,” “positive regulation of intracellular signal
transduction,” and “protein localization to organelle.” These results
can be grouped into themes of proteostasis (“post-translational

protein modification” and “protein localization to organelle”), cell
signaling (“trans-synaptic signaling,” “apoptotic signaling pathway,”
“enzyme-linked receptor protein signaling pathway,” and “positive
regulation of intracellular signal transduction”), cellular responses
(“response to organonitrogen compound” and “response to organic
cyclic compound”), and development (“negative regulation of
developmental process” and “head development”). The two
proteostasis-relevant terms are germane to the established aging
hallmark loss of proteostasis (Lopez-Otin et al., 2023).

Turning to the top 250 annotated anti-mortality CpGs
(Supplementary Figure S3), the 15 most significant Gene Ontology
processes were “gliogenesis,” “response to organonitrogen
compound,” “regulation of cell cycle,” “regulation of anatomical
structure morphogenesis,” “activation of immune response,” “cell
junction organization,” “regulation of membrane potential,”
“animal organ morphogenesis,” “synaptic signaling,” “negative
regulation of developmental process,” “protein catabolic process,”
“negative regulation of multicellular organismal process,” “protein
modification by small protein conjugation,” “central nervous system
development,” and “supramolecular fiber organization.” It is
interesting to note that, for these genes linked to DNA
methylation sites that hinder the clock’s mortality association,
development and morphogenesis was such a prominent theme
(i.e., “regulation of anatomical structure morphogenesis,” “animal
organ morphogenesis,” “negative regulation of developmental
process,” and “central nervous system development”). In addition,

TABLE 1 The 10 CpGs that most markedly reduced the significance of the mortality association when removed from the full model. For each CpG, the FDR
for the model lacking that CpG is provided. For each gene annotation, the full name for the protein encoded by that gene and an interesting literature
connection are provided.

CpG FDR Annotated
gene

Full name Interesting literature connection

cg14386193 4.92E-06 ALPK2 Alpha-protein kinase 2 In a mouse xenograft model of bladder cancer, suppressing
ALPK2 in injected cells suppresses tumor formation

(Wang et al., 2021)

cg00991744 3.53E-06 PDZRN4 PDZ domain-containing RING finger protein 4 Inhibiting PDZRN4 in human prostate cancer cells increases
tumor weight in nude mice (Jin et al., 2022)

cg00664454 3.52E-06 CPNE2 Copine-2 CPNE2 is underexpressed in glioblastoma patient-derived glial
cells overexpressing the tumor suppressor WWOX

(Kaluzinska-Kolat et al., 2023)

cg16022279 2.75E-06 ZNF185 Zinc finger protein 185 In response to inflammatory stimuli, mice lacking Zfp185
(mouse ortholog of ZNF185) display higher amounts of vascular

leakage (Suzuki et al., 2023)

cg04249559 2.72E-06 B4GALNT3 Beta-1,4-N-acetylgalactosaminyltransferase 3 Bone mass is reduced in mice lacking B4galnt3 and, in humans,
B4GALNT3 variants causally associate with a lower bonemineral
density and higher fracture risk (Moverare-Skrtic et al., 2023)

cg20313963 2.60E-06 SLC2A3 Solute carrier family 2, facilitated glucose transporter
member 3

Neuronal deletion of Slc2a3markedly decreases survival in mice
(Shin et al., 2018)

cg18170680 2.47E-06 N/A N/A N/A

cg18154784 2.43E-06 SAT1 Diamine acetyltransferase 1 In a mouse model of diet-induced obesity, chemical activation of
Sat1 increases autophagy as well as decreases obesity,

hepatosteatosis, and glucose intolerance (Castoldi et al., 2020)

cg09936008 2.41E-06 ZNF213 Zinc finger protein 213 The expression of ZNF213 in breast tissue associates with longer
relapse survival in patients with triple-negative breast cancer

(Liu et al., 2021)

cg20210051 2.39E-06 PDZRN4 PDZ domain-containing RING finger protein 4 In a xenograft cancer model, knocking down PDZRN4 in breast
cancer cells exacerbates tumor growth and metastasis

(Lu et al., 2019)
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the results “protein catabolic process” and “protein modification by
small protein conjugation” suggest a smaller theme of proteostasis.
The remaining top processes are eclectic and disparate enough that
they’re difficult to group into coherent motifs.

Discussion

Toour knowledge, this is the first study to demonstrate that an aging
biomarker optimized for buccal tissue can be applied to blood for
mortality prediction. Our findings build on previous work by Lowe et al.
(2013) from more than a decade ago, which found that buccal
methylation data was highly informative for a variety of phenotypes
and diseases. The magnitude of the HR for mortality prediction
outcompetes all first-generation clocks tested and compares favorably
to the next-generation blood-trained clock DNAm PhenoAge. These
data suggest that adult buccal tissue, which is relatively painless and easy
to collect in a variety of settings, may represent a rich source of aging
biomarkers. Furthermore, it is encouraging that an Infinium
MethylationEPIC clock trained in buccal tissue can capture mortality
risk in Infinium HumanMethylation450 blood data. Because most
methylation changes that occur with age are tissue-specific (Slieker
et al., 2018), we hypothesize that the mortality association would be
stronger in a longitudinal dataset containing either cheek swab or saliva
methylation data. In summary, this work provides further evidence that
CheekAge is a next-generation model and reveals novel CpGs linked to
human mortality.
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