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Memory formation is associated with constant modifications of neuronal
networks and synaptic plasticity gene expression in response to different
environmental stimuli and experiences. Dysregulation of synaptic plasticity
gene expression affects memory during aging and neurodegenerative
diseases. Covalent modifications such as methylation on DNA and acetylation
on histones regulate the transcription of synaptic plasticity genes. Changes in
these epigenetic marks correlated with alteration of synaptic plasticity gene
expression and memory formation during aging. These epigenetic
modifications, in turn, are regulated by physiology and metabolism. Steroid
hormone estrogen and metabolites such as S-adenosyl methionine and acetyl
CoA directly impact DNA and histones’ methylation and acetylation levels. Thus,
the decline of estrogen levels or imbalance of these metabolites affects gene
expression and underlying brain functions. In the present review, we discussed
the importance of DNA methylation and histone acetylation on chromatin
modifications, regulation of synaptic plasticity gene expression and memory
consolidation, and modulation of these epigenetic marks by epigenetic
modifiers such as phytochemicals and vitamins. Further, understanding the
molecular mechanisms that modulate these epigenetic modifications will help
develop recovery approaches.
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Introduction

The brain is the most complex and dynamic organ of an organism. It controls numerous
vital functions, such as decision-making, cognition, learning, and memory. Memory is a
higher-order brain function that stores and recalls previously acquired experiences, facts,
and information. This acquired information is stabilized in the form of long-term memory
by strengthening the synaptic connections, and it requires the expression of memory-linked
synaptic plasticity genes (Kandel, 2001). The expression of these synaptic plasticity genes is
altered during aging and neuropathological conditions, which affects learning and memory
(Hermann et al., 2014). Previous research revealed that epigenetic mechanisms play an
essential role in the regulation of these synaptic plasticity genes and dysregulation of which
can lead to memory impairment during aging and age-associated neurodegenerative
diseases such as Alzheimer’s disease (AD) and Parkinson’s disease (PD) (Singh et al., 2017).
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Epigenetic modifications

Chromatin is a complex interaction of DNA and histones that
packs the large size of DNA inside the nucleus. The nucleosome is
the smaller unit of the chromatin and is made of 147 bp DNA
wrapped around a histone octamer core. The linker DNA is
associated with a linker histone H1 (Handy et al., 2011).
Chromatin is present in two states. During the condensed state,
it inhibits the interaction of transcription factors on gene promoters
and does not allow gene transcription. On the other hand, the
relaxed state allows the interaction of transcription factors on gene
promoters and allows gene transcription. The most important
factors that regulate the condensation and relaxation of
chromatin are the covalent modifications of DNA and histone
proteins and thus influence gene expression (Lossi et al., 2024).
The covalent modifications found on DNA are methylation and
hydroxymethylation. Similarly, themost common post-translational
modifications found on the n-terminal tail of histones are
acetylation, phosphorylation, methylation, etc. These covalent
modifications on DNA and histone alter their interactions in the
nucleosome, thus regulating chromatin’s condensation and
relaxation and thereby regulating gene expression (Kelly
et al., 2010).

DNA methylation

The methylation of DNA takes place on the cytosine (C) residue
followed by a guanine (G) residue called CpG island and regulates
gene expression at the transcriptional level. During this
modification, a methyl (CH3) group is transferred from
S-adenosyl methionine to the fifth carbon of cytosine (5 mC) in
a CpG island (Gao et al., 2018). The transfer of methyl group on
DNA is catalyzed by DNA methyltransferases (DNMTs). DNMTs
are classified as de novo methyltransferase (DNMT3a and
DNMT3b) which transfers a methyl group on a previously
unmethylated CpG island on DNA and maintenance
methyltransferase (DNMT1) which transfers a methyl group on a
hemimethylated CpG site that arises as a result of DNA replication
and maintains the DNA methylation pattern similar to pre-
replication (Moore et al., 2013). The epigenetic mark, DNA
methylation is found on the CpG sites on the promoter of a gene
affecting the binding of transcription factors, and regulating gene
expression. Also, the cytosine methylation on the CpG island at the
promoter recruits a group of proteins called methyl-binding
proteins. This interaction of cytosine methylation and methyl-
binding proteins forms the repressor complex and suppresses
gene transcription (Lu et al., 2013). DNA methylation also
activates the expression of genes by recruiting activator
complexes at their promoter region (Chahrour et al., 2008).

DNA methylation and memory

Covalent modification of DNA regulates synaptic plasticity
genes’ expression and underlying neuronal functions such as
learning and memory. Levenson et al. (2004) first examined the
role of DNA methylation and DNMTs in regulating synaptic

plasticity and memory formation. To check the role of DNA
methylation on synaptic plasticity gene expression, they treated
hippocampal slices with DNMT inhibitor zebularine, and
observed decreased CpG methylation levels at the promoter of
reelin and BDNF. Further, the treatment of hippocampal slices
with phorbol-12,13-diacetate, an activator of protein kinase C
upregulated DNMT3a expression in the CA1 of the
hippocampus. They also reported that zebularine or 5-aza-2-
deoxycytidine, an inhibitor of DNA methylation, treatment
impaired LTP in brain slice culture, which suggests that basal
activity DNMTs are required for learning and memory.

To investigate further, reports from the same group checked the
involvement of DNMTs during contextual fear memory. They
observed that the expression of de novo DNMTs DNMT3a and
3b increased in the hippocampus 30 min post contextual fear
paradigm in adult rats. However, the level of maintenance methyl
transferase DNMT1 remained unchanged. The fear memory
formation was impaired when DNA methylation was inhibited in
these animals after contextual fear conditioning. Further, they
checked the methylation level at the promoter of protein
phosphatase 1 (PP1), which negatively regulates memory and
reelin, which is important for learning and memory.
Interestingly, they observed hypermethylation at the promoter of
PP1 decreased its expression, and hypomethylation at the promoter
of reelin increased its expression after fear memory formation. This
suggests that DNA methylation marks are dynamic in nature and
important for hippocampal-dependent memory formation during
normal physiological condition (Miller and Sweatt, 2007).

Knockout studies in animal models showed that DNMTs play an
important role in synaptic plasticity and memory formation.
Conditional knockout (CKO) of DNMT1 in the forebrain of
mice showed impaired barrel cortex development, the brain
region important for processing touch inputs. Also, a patch
clamp study showed impaired induction of LTP in DNMT1 KO
brain slices, suggesting DNMT1 is important not only for
development, however, also for synaptic plasticity (Golshani
et al., 2005). CKO of DNMT1 and DNMT3a mice showed
around 10% reduction in hippocampal volume and the volume
of the neurons, mainly in the dentate gyrus region, with impaired
LTP induction and enhanced LTD. DKO mice show impaired
spatial memory and fear memory consolidation (Feng et al.,
2010). Similarly, Liu et al. (2011) investigated the effect of
DNMT1 haploinsufficiency in heterozygous DNMT1 ± mice
during aging. They observed that the heterozygous DNMT1 ±
mice showed lowered DNA methylation in the cerebral cortex
and hippocampus during aging compared to age-match control.
They observed a positive correlation between hypomethylation and
impaired spatial memory during aging in DNMT1 ± mice as
compared to the control.

DNA methylation during aging and
neurodegeneration

Several reports show that an imbalance of epigenetic changes,
such as DNA methylation, is observed during aging and different
neuropathological conditions (Table 1). Elsner et al. (2013) reported
that the expression of DNMT1 but not DNMT3b declined in the
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hippocampus of old rats compared to young rats. Similarly, Singh
and Thakur (2014) also reported that the level of DNMT1 but not
DNMT3a and DNMT3b declined in the cortex and hippocampus of
old compared to young and adult mice. Further, the decline of
DNMT1 level is associated with impaired recognition memory in
old mice. Mastroeni et al. (2011) reported that the expression of
DNMT1 declined in Alzheimer’s disease (AD) patients as compared
to age-matched healthy control. Further, the decline of
DNMT1 level is associated with a reduction of total cytosine
methylation in AD patients. In humans, DNMT1 mutation
causes hereditary sensory and autonomic neuropathy (HSAN1).
Mutation of DNMT1 leads to abnormal DNA methylation levels,
resulting in neurodegeneration, hearing loss, and dementia in
patients. At the molecular level, DNMT1 mutation causes
aberrant heterochromatin formation during the G2 phase of the
cell cycle, global-level hypomethylation, and local-level
hypermethylation (Klein et al., 2011). Oliveira et al. (2012)
observed that the Dnmt3a1 and Dnmt3a2 expression decreased
in the hippocampus and cortex of old mice. CKO of
DNMT3a2 reduced the expression of Arc, BDNF, Egr-1, and
Nur-77 and hippocampal-dependent fear memory and
recognition memory. Further, rescuing of DNMT3a2 expression
improved cognitive functions in old mice. Further, age-dependent
impairment in spatial memory consolidation is associated with
increased promoter-specific methylation of ARC and EGR1 genes
and decreased expression of synaptic plasticity genes in the CA1 and
DG regions (Penner et al., 2011; Penner et al., 2016). Genome wide
methylation studies showed that he global level of Cytosine
methylation decreased in the hippocampus of AD patients as
compared to age matched control (Chouliaras et al., 2013;
Zocher, 2024). Similarly, decreased promoter level DNA
methylation of APP and PSEN1 gene leads to their higher
expression and Aβ formation in AD patients (West et al., 1995;
Monti et al., 2020). PD is a neurodegenerative disease associated
with the accumulation of α-synuclein (α-syn) protein (Negi et al.,
2024). Analysis of postmortem brain sample of PD patients showed
hypomethylation of SNCA gene promoter associated with
upregulation of α-syn expression (Jowaed et al., 2010). On the
other hand, promoter hypermethylation of PGC-1α associated

with impaired mitochondrial biogenesis in the mice model of PD
(Su et al., 2015).

Scopolamine is a M1 muscarinic antagonist used to induce
amnesia animal models. Singh et al. (2015) reported that the
expression of DNMT1 upregulated in the hippocampus of
scopolamine-induced amnesic mice and associated with the
decline expression of synaptic plasticity genes BDNF and Arc.
Similarly, Srivas and Thakur (2017) also reported that the
methylation level at the promoter of synaptic plasticity genes
NARP, Homer1, and EGR1 increased, and their transcription
decreased in the hippocampus of scopolamine-induced amnesic
mice. Further, treatment of DNMTs inhibitor 5-aza-2′-
deoxycytidine, reduced promoter level methylation of BDNF and
Arc, upregulated their expression, and improved memory in
amnesic mice. Sevoflurane is a general anesthetic that induces
neurobehavioral abnormalities in rodents (Kameyama et al.,
2022). Ju et al. (2016) reported that repeated exposure to
sevoflurane decreased dendritic spines, impaired hippocampal-
dependent spatial and fear memory in rats, and was associated
with upregulation in the expression of DNMTs. Further, they
observed that the downregulation of synaptic plasticity genes
BDNF and Reelin was due to hypermethylation at their promoter
regions. Further, pre-treatment of DNMTs inhibitor 5-AZA rescued
the sevoflurane-induced memory impairment. These reports suggest
that DNMTs are crucial during development and essential in
regulating memory consolidation during aging and different
physiological and pathological conditions.

Histone acetylation

Histone proteins undergo several covalent modifications after
the translation. These modifications include acetylation,
phosphorylation, ubiquitination, methylation, etc. Among these,
histone acetylation is correlated with active gene expression,
while deacetylation leads to gene repression (Ramazi et al., 2020).
Two groups of enzymes that regulate the acetylation level on the N
terminal of the tail of histones are histone acetyltransferases (HATs)
and histone deacetylases (HDACs). HATs transfer an acetyl group

TABLE 1 DNA methylation, DNMTs and their involvement in brain function and memory.

DNA methylation and
DNMTs

Brain function and memory References

DNMT1 Declined in the hippocampus during aging and associated with declined of hippocampal-
dependent recognition memory. Upregulated in the hippocampus of amnesic mice and
associated with declined of synaptic plasticity genes BDNF and Arc expression

Elsner et al. (2013)
Singh and Thakur (2014)
Srivas and Thakur (2017)

DNMT3a1 and 2 Declined in the hippocampus and cortex of old mice, regulate expression of synaptic plasticity
genes Arc, BDNF, Egr-1, and Nur-77 and hippocampal-dependent fear and recognition
memory

Oliveira et al. (2012)

Global DNA methylation Decreased in the hippocampus of AD patients Mastroeni et al. (2011) Chouliaras
et al. (2013)

Increased Promoter Methylation Increased promoter methylation of synaptic plasticity genes BDNF, NARP, Homer1, and
EGR1, Reelin and associated with declined of hippocampal-dependent memory

Srivas and Thakur (2017)
Singh et al. (2015)
Ju et al. (2016)

Decreased Promoter Methylation Decreased promoter level DNAmethylation of APP and PSEN1 in AD patients and associated
with higher Aβ formation

West et al. (1995) Monti et al. (2020)
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(−COCH₃) from the acetyl CoA to the histones and HDACs remove
the acetyl group from the histones. Acetylation on histone reduces
its interaction with DNA and results in relaxed or open chromatin,
which allows the binding of transcription factors on the gene’s
promoter region and, thus, active gene transcription (Clayton et al.,
2006). On the contrary, deacetylation increases the interaction
between histones and DNA, resulting in a closed or condensed
chromatin, which inhibits the binding of transcription factors
leading to gene repression. HATs are mostly transcriptional
activators as they positively regulate gene expression. They are
divided into the GNAT family, p300/CBP family, MYST family,
Transcription-related HATs, and nuclear receptor-associated HATs
(Selvi et al., 2010). The p300/CBP family is one of the vital histone
lysine transferases and a transcription activator. This HAT family
regulates many functions, including neurogenesis, neuronal
development and differentiation, and memory formation
(Partanen et al., 1999; Bedford and Brindle, 2012; Chatterjee
et al., 2013; Alarcón et al., 2004; Barrett et al., 2011; Crump
et al., 2011; Lopez-Atalaya et al., 2011). Deacetylases are classified
into class I, II, III, and IV HDACs based on their localization in the
cells. The class I includes HDAC1, 2, 3, and 8, and primarily present
in the nucleus. They mostly regulate gene expression and act as
transcriptional repressors. HDAC2 is one of the most important
classes of HDACs studied extensively about the regulation of
synaptic plasticity genes and memory (Kilgore et al., 2010).

Histone acetylation and memory

CREB binding protein (CBP) is an important HAT that
performs its role as a transcriptional activator of many synaptic
plasticity genes and helps in memory consolidation. Mice with CBP
CKO showed normal neuronal morphology but lowered histone
acetylation levels and reduced long-term associative and recognition
memory formation. Further, they reported downregulating synaptic
plasticity genes such as NMDARs, AMPARs, PSD95, etc (Chen
et al., 2010). CKO of CBP in the forebrain of mice reduced histone
acetylation at H2A, H2B, H3, and H4 and impaired recognition
memory (Valor et al., 2011). Similarly, mice with CKO of CBP in the

medial prefrontal cortex showed impaired long-term spatial, object
location, and fear memory (Vieira and Korzus, 2015; Korzus et al.,
2004). Guan et al. (2009) reported that HDAC2 overexpression
decreased spine density, histone H3K14/K12 acetylation, negatively
regulated synaptic plasticity gene expression such as BDNF, GluR,
EGR1, etc., and impaired memory consolidation. However, no
changes in synaptic plasticity gene expression, and memory were
observed when HDAC 1 was overexpressed. Hsiao et al. (2017)
reported that HDAC2 knockout APP/PS1 mice showed improved
freezing behavior. Further, the binding of HDAC2 decreased at the
promoter of synaptic plasticity gene BDNF which results increased
BDNF gene expression. This showed that HDAC2 is an important
regulator of gene expression and learning, and memory.

Histone acetylation is dependent on neuronal activity and is
essential for regulating synaptic plasticity gene expression and
memory consolidation (Table 2). Levenson et al. (2008) reported
that acetylation on H3 is essential for long-term hippocampal-
dependent memory formation. Fischer et al. (2007) reported that
acetylation at H3K9/14 and H4K5/8/12 in the hippocampus
increased upon environmental enrichment and is associated with
improved memory consolidation in CK-p25 mice. Acetylation on
the cortex and hippocampus is very dynamic. Gräff et al. (2012)
reported that acetylation at H3K14 and H4K5 increased rapidly and
transiently in the hippocampus however increased slowly and
persistently in the cortex after a novel object recognition test.
This difference in acetylation pattern may be due to their
difference in functions during memory consolidation.

Histone acetylation during aging and
neurodegeneration

Total histone acetylation level and gene promoter-specific
histone level decreased during aging and neurodegenerative
diseases. This change in acetylation level is a result of alteration
in HATs and HDACs expression. Chung et al. (2002) reported that
the CBP immunoreactivity decreased significantly in the cerebral
cortex and the CA1 and DG region of the hippocampus in old rats as
compared to the adult. Further, the decline of CBP is mainly

TABLE 2 List of histone acetylation and their involvement in learning and memory.

Histone acetylation Function in memory References

H3K9 Ac Recovered spatial and associative memory in a neurodegenerative mouse, recovered recognition memory in an
amnesic mouse, enhanced fear memory

Fischer et al. (2007)
Lubin and Sweatt
(2007)
Singh et al. (2015)

H3K14 Ac Recovered spatial and associative memory in a neurodegenerative mouse, recovered recognition memory in an
amnesic mouse, enhanced object recognition memory, enhanced contextual fear conditioning memory

Fischer et al. (2007)
Lubin and Sweatt
(2007)
Gräff et al. (2012)
Singh et al. (2015)

H4K5 Ac Recovered spatial and associative memory in neurodegenerative mouse Fischer et al. (2007)

H4K8 Ac Recovered spatial and associative memory in a neurodegenerative mouse, enhanced object location memory due to
exercise, enhanced object recognition and location memory, enhanced spatial memory

Fischer et al. (2007)
Gräff et al. (2012)
Intlekofer et al. (2013)

H4K12 Ac Recovered spatial and fear memory associative memory in neurodegenerative mice, recovered of fear memory in old Fischer et al. (2007)
Gräff et al. (2012)

Frontiers in Aging frontiersin.org04

Singh and Paramanik 10.3389/fragi.2024.1480932

https://www.frontiersin.org/journals/aging
https://www.frontiersin.org
https://doi.org/10.3389/fragi.2024.1480932


observed in the pyramidal layer as well as in the granule cell layer
and the polymorphic layer of CA1/CA3 and DG region of the
hippocampus respectively. Giralt et al. (2012) reported that the
expression of CBP decreased and was associated with lowered
acetylation level at H3 and memory impairment in HD mice
model. Further, treatment of C646, a selective inhibitor of p300/
CBP, decreased histone acetylation level and impaired recognition
and fear memory consolidation (Mitchnick et al., 2016; Maddox
et al., 2013). On the other hand, CBP over-expression rescued spatial
memory and increased the expression of BDNF in the AD mouse
model (Caccamo et al., 2010). CBP positively regulates several
synaptic plasticity gene expressions such as ARC, BDNF, c-FOS,
EGR-1, etc., and thereby helps in memory consolidation. On the
other hand, the downregulation of CBP is associated with the
downregulation of these synaptic plasticity genes and memory
impairment (Wood et al., 2005; Wood et al., 2006).

Gräff et al. (2012) reported that the expression of
HDAC2 increased in the brains of AD patients and the
hippocampus of CK-p25 mice, a mouse model of
neurodegeneration. Further, the knockdown of HDAC2 rescued
histone acetylation, ARC, BDNF, and EGR1 expression andmemory
consolidation in CK-p25 mice. Similarly, Singh and Thakur (2014)
reported that HDAC2 level upregulated in the hippocampus and
negatively correlated with recognition memory consolidation in old
mice. Reports from the same group also showed that upregulation of
HDAC2 is also associated with reduced acetylation levels at the
promoter of BDNF and Arc. Inhibition with sodium butyrate (NaB)
or knockdown of HDAC2 in the hippocampus, rescued histone
acetylation level, gene expression, and memory (Singh and Thakur,
2018). Singh et al. (2015) reported that the level of HDAC2 was
upregulated in the hippocampus of scopolamine-induced amnesic
mice and negatively regulated synaptic plasticity gene expression
and hippocampal-dependent memory consolidation. Aging,
neurodegeneration, and amnesic conditions are associated with
decreased total histone acetylation levels at H3 and H4 as well as
at the promoter of synaptic plasticity genes and thus memory
impairment (Gräff et al., 2012; Singh et al., 2015; Singh and
Thakur, 2018).

Several reports showed that acetylation at H3K9 and
H3K27 increased in the brain of AD patients and upregulated
the expression of AD related gene and underlying
neurodegeneration (Marzi et al., 2018; Klein et al., 2019; Nativio
et al., 2020). Similarly, Nativio et al. (2018) reported that acetylation
at H3K16 position decreased in the brain of AD patients as
compared to cognitively normal aged individuals. Dysregulation
of histone acetylation is also observed in the PD patients. Genome
wide acetylation analysis in PD postmortem brain sample showed
increased H3K27 acetylation and higher expression of gene
associated with PD pathology such as SNCA, MAPT and PRKN
(Toker et al., 2021). Similarly, higher histone acetylation level was
observed in the brain sample of PD patients as well as cellular model
of PD and MPTP treated mice brain. This increased in histone
acetylation in PD brain samples associated with decreased
HDAC1,2 and 6 (Park et al., 2016). In a comparison study
between APP/PS1 and wild type mice during aging, McClarty
et al. (2024) reported that impaired recognition and spatial
memory in old (18 months) wild type mice and mid aged
(12 months) and old (18 months) APP/PS1 mice associated with

increased HDAC2 in the hippocampus and HDAC3 in the pre
frontal cortex. This increased in HDACs decreased
H3K9 acetylation level and synaptic plasticity gene expression.
On the other hand, different behavioral paradigms such as
environmental enrichment, contextual fear conditioning, and
object location memory is associated with increased total histone
acetylation at H3 and H4 as well as at the promoter of synaptic
plasticity genes during different physiological conditions such as
aging, neurodegeneration, etc. (Intlekofer et al., 2013; Lubin and
Sweatt, 2007; Fischer et al., 2007; Wang et al., 2020).

Regulation of DNA methylation and
histone acetylation

These epigenetic marks on DNA and histones are modulated by
physiology and metabolism. Folate/vitamin B12 pathway, acetyl
CoA metabolism as well as hormone-like estrogen 17β-estradiol
(E2) plays important roles in regulating DNA methylation and
histone acetylation (Fortress et al., 2014; Frick et al., 2015).
Alteration in metabolic pathways and hormonal levels during
aging and neurodegenerative diseases affects DNA methylation
and histone acetylation levels and, thus, gene expression and
underlying brain functions (Singh and Paramanik, 2022).

The methyl group transferred to the CpG is donated by
S-adenyl-methionine (SAM). The synthesis of SAM is catalyzed
by methionine adenosyltransferase enzymes using the amino acid
methionine and ATP (Cantoni, 1953). After removal of a methyl
group, SAM is converted to S-adenosyl-homocysteine (SAH) and
finally to homocysteine. This homocysteine is then recycled
methionine by a vitamin B12-dependent enzyme methionine
synthase with the help of 5-methyltetrahydrofolate, a folate
derivative. Thus, methionine, vitamin B12, and folate are
essential to maintain the methylation level. SAH is a potent
inhibitor of DNMTs, therefore, accumulation of SAH affects the
DNA methylation process. In a long-term population-based study,
Mihara et al. (2022) reported that a high SAM/SAH ratio is
associated with a lower risk of dementia and death. Using a
folate and vitamin B12-deprived media to mimic AD-like
conditions, Fuso et al. (2005) reported that the methylation at
the promoter of APP and Presenilin1 decreased, and their
expression increased in neuroblastoma cell lines. The
upregulation of APP and Presenilin1 leads to the production of
higher amyloid β levels. Further, administration of SAM in the
deprived media reversed promoter methylation, APP, and
Presenilin1 expression, and the reduced amyloid β level.
Similarly, they also showed that deprivation of vitamin B12, B6,
and folate dietary deficiency leads to hyperhomocysteinemia due to
alteration of SAM and SAH level in TgCRND8 and 129Sv mice. The
imbalance of SAM and SAH is associated with the upregulation of
PS1 and BACE with higher amyloid β deposition and cognitive
impairment (Fuso et al., 2008). This showed that an imbalance in
SAM and SAH levels decreased methylation at the promoter of APP,
PS1, and BACE that leads to higher amyloid β deposition, a
characteristic feature of AD. To check the effect of early-life
SAM supplementation on AD symptoms in an AD mice mouse
model, Raia et al. (2023) reported that perinatal supplementation of
SAM repressed PS1 expression and amyloid β deposition in adult
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AD mice. Further, the effect of perinatal SAM supplementation is
similar to long-term post-weaning supplementation of SAM
regarding AD symptom manifestation in adult AD mice. This
showed early life SAM supplementation is beneficial and can lead
to healthy aging.

The acetyl group on histone acetylation is donated by Acetyl
CoA, a product of glucose metabolism. Metabolic enzymes like
Pyruvate dehydrogenase complex (PDC) and ATP citrate lyase
(ACL) regulate the synthesis of Acetyl CoA and are thus
involved in chromatin remodelling and gene expression (Brinton,
2008; Biju et al., 2024). Wellen et al. (2009) reported that ATP citrate
lyase (ACL), a key metabolic enzyme that converts citrate into
acetyl-CoA in the cytoplasm and is an essential link between
cellular metabolism and histone acetylation level in the nucleus.
Further, the metabolic enzyme PDC consists of three enzymes
Pyruvate Dehydrogenase (E1), Dihydrolipoyl transacetylase (E2),
and Dihydrolipoyl dehydrogenase (E3) is first to convert pyruvate
into Acetyl CoA in the mitochondria which then used in the citric
acid cycle to generate ATP and Citrate which ACL then uses to
synthesize Acetyl CoA, Acetyl group donor for histone (Choudhary
et al., 2014). Alterations in the expression and activities of these
metabolic enzymes are found in aging and neurodegenerative
diseases. Perry et al. (1980) reported that the ACL and PDC
activity decreased in the post-mortem brain tissue of AD
patients. Similarly, Sorbi et al. (1983) observed that PDC activity
decreased the brain of AD and Huntington disease patients. Further,
Wellen et al. (2009) established that ATP-citrate lyase and citrate are
essential for metabolism and histone acetylation. Jiang et al. (2008)
elucidated the metabolic profile in SAMP8 mice, a rodent model, to
study age-associated memory impairment and neurodegeneration.
They reported that the level of many metabolites that are responsible
for cellular metabolism, including citrate and pyruvate, is reduced in
the serum. Further, the alteration of these metabolites is higher in
females than males. This may be one reason that females are more
vulnerable to neurodegenerative diseases. Peleg et al. (2010) also
reported that the citrate level is crucial for nuclear histone
acetylation and gene expression. The reduction of citrate level
impaired histone acetylation level, gene expression, and memory
in old age. Short-chain fatty acid such as butyrate is synthesized as a
result of the fermentation of dietary fiber by the microbes in the
intestine. Further, dietary supplementation of high fiber diet or
butyrate producing microbe improve cognitive functions, reduced
anxiety and stress as compared to low fiber diet in human subjects
and animal models (Khan et al., 2015; Bourassa et al., 2016). In a
“MitoPark” PD mice model, mitochondrial stress associated with
increased H4K12 acetylation and degeneration of DAergic neurons.
This change in H4K12 acetylation level is due to imbalance of HATs
and HDACs (Huang et al., 2024).

Sex steroid hormone, such as estrogen 17β-estradiol (E2), plays
a crucial role in learning and memory by regulating hippocampal
neuronal morphology, plasticity, and memory in different models,
and its decline after menopause severely increases cognitive
declined and chance of neurodegenerative during aging (Frick,
2009; Pike et al., 2009; Viña and Lloret, 2010; Zárate et al., 2017;
Singh and Paramanik, 2022). Initial research in the field of E2-
mediated epigenetic regulation showed E2-induced DNA
demethylation and histone acetylation in the brains of young
and adult rats as compared to old rats (Thakur et al., 1978;

Thakur and Kanungo, 1981). These changes in DNA
methylation and histone acetylation were associated with higher
gene transcription in young and adults when compared to old rats
(Kanungo and Thakur, 1979). Estrogen-mediated signaling
pathways help mitochondria to enhance aerobic respiration
through the coupling of glycolysis to the Krebs cycle and ATP
synthesis in hippocampal and cortical neurons. Apart from
mitochondrial function and bioenergetics, E2 regulates the
expression of enzymes like DNMTs, HDAC2, CBP, PDC, and
ACL and thus indirectly regulates chromatin remodelling and gene
expression (Pearce and Balnave, 1976; Brinton, 2008). Zhao et al.
(2010) observed that hippocampal administration of E2 increased
the expression of DNMT3a and DNMT3b and improved
recognition memory in mice. Further, this effect of E2 was
diminished when mice co-treated with 5-aza-2′-deoxycytidine.
Further, they also reported that intrahippocampal
administration of E2 decreased HDAC2 expression, increased
H3/H4 acetylation level, and improved recognition memory.
Thus, E2 plays an important role in regulating histone
acetylation modifications and synaptic plasticity gene expression
and improves cognitive performance in aged as well as AD mouse
models (Frick et al., 2002; Heikkinen et al., 2004; Frye et al., 2005).

Therapeutic potential of
epigenetic modifiers

Epigenetic modifications such as DNA methylaton and histone
acetylation are reversible in nature. Therefore, these modifications
are suitable for drug targeting. Several drugs, small molecules as well
as plant derived molecules and herbal formulations are known to be
target chromatin modifying enzymes and underlying epigenetic
modifications.

Phytoestrogens are a group of plant derived compounds having
similar chemical structure to steroid hormone estrogen. Similar to
estrogen, phytoestrogens also shown to modulate the DNA
methylation and histone PTMs. Genistein is a plant polyphenols,
most abundantly found in soy and soy-based product. Due to its
structural similarities with estrogen, genistein is also known as
phytoestrogen. Studies in animal model suggests that genistein is
neuroprotective in nature and help in learning andmemory. Bagheri
et al. (2012) reported that genistein treatment reduced the Aβ1-40
plaque formation in the hippocampus and improved learning and
memory in AD rat model. Khodamoradi et al. (2017) reported that
intraperitoneal administration of soy extract containing genistein
improved long term potentiation, learning and memory in
ovariectomized rats as compared to control rats. Studies in
different cancer cell line suggests geneistein also found to be
regulate epigenetic modification such as DNA methylation and
histone acetylation. Genestein treatment alters the expression of
chromatin modifying enzymes. The expression of DNMTs
(DNMT1, DNMT3a and DNMT3b) and HDACs (HDAC1,
HDAC5 and HDAC6) downregulated while HATs (CIITA and
ESCO2) upregulated in geneistein treated HeLa cells. Also
geneistein treatment decreased the activity of DNMTs and
HDACs as well as global DNA CpG methylation level
(Sundaram et al., 2019). Geneistein treatment decreased DNMT
activity, DNMT1 expression and global DNA methylation. In slilico
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analysis showed genestein inhibit the activity of DNMT1 by
interacting directly with its catalytic domain Xie et al. (2014).

Epigallocatechin-3-gallate is a polyphenols found in tea. Fang
et al. (2007) reported that Epigallocatechin-3-gallate inhibits
DNMTs that leading to promoter specific hypomethylation and
increased gene expression in esophageal cancer cell line. Apart from
acts as DNMT inhibitor, Epigallocatechin-3-gallate also inhibits
HDACs and decreased the expression of APP in neuronal cell
(Hu et al., 2015). Epigallocatechin-3-gallate treatment inhibited
HDAC1 activity, downregulated APP expression and decreased
Aβ level in AD mice model (Chang et al., 2015). Curcumin is
polyphenolic compound found in the turmaric. Due to its anti-
inflammatory and antioxidant properties turmaric is commonly
used in tradiational Indian ayurvedic medicine (Hatami et al.,
2019; Sharifi-Rad et al., 2020). Apart from these, curcumin also
modulates chromatin modifying enzymes and underlying gene
expression (Abdul-Rahman et al., 2024). Several studies showed
that curcumin inhibits DNMTs activity and expression; and thus
decreased methylation level in cancer cell (Liu et al., 2009; Yu et al.,
2013; Hassan et al., 2015). Lu et al. (2014) reported that curcumin
inhibits HAT/P300, decreased promoter level histone H3 acetylation
and the expression of PS1 and BACE in cellular model of AD.
Dysregulation of SAM level altered expression and accumulation of
APP and phosphorylated Tau, which in turn increased Aβ secretion
in AD cellular model (Sontag et al., 2007). Similarly, Fuso et al.

(2007) reported that folic acid, vitamin B12 and B6 deprivation
reduced SAM level and increased AD related genes and Aβ secretion
in neuroblastoma cell line. Further, supplementation SAM reverse
the AD related gene expression and Aβ secretion. Lee et al. (2024)
reported that supplementation of folic acid and vitamin B12 for
6 months improved Mini-Mental State Examination scored in AD
patients as compared to controls. These result suggest
phytochemicals and small molecules regulate expression and
activities of chromatin modifying enzymes and plays important
role in recovery of brain functions and learing and memory in
during aging and associated pathologies.

Conclusion

Due to their dynamic nature, DNA methylation and histone
acetylation levels alter during different physiological conditions
including aging, which inhibits gene expression and impaired
synaptic plasticity. Reports also showed that these epigenetic
marks modulated by physiology and metabolic processes and
dietary supplementation epigenetic modifiers are beneficial in
improving chromatin modifications and brain functions
(Figure 1). Growing evidence showed the presence of PDC in the
nucleus, synthesizes Acetyl CoA, and donates the acetyl group for
histone acetylation. This nuclear PDC is translocated directly from

FIGURE 1
Schematic diagram showing the regulation of gene expression by DNAmethylation and histone acetylation. DNMT, a part of the repressor complex
methylates DNA that inhibit gene expression. On the other hand, CBP, a part of activator complex acetylates histone that activate gene expression. SAM,
which is the substrate of DNA methylation is a product of Methionine cycle. After donating the methyl group, SAM converted to SAH and then
homocysteine to continue the metheonine cycle. Further, Acetyl-CoA, the substrate for the histone acetylation is mainly synthesized by PDC in the
nucleus and ACL by using the citrate, a product of TCA cycle in themitochondria. Therefore, SAM and Acetyl-CoA play an important role in regulating the
epigenetic modifications and gene expression. E2 also plays a crucial role in regulating histone acetylation and gene expression. E2-ER dimer after
translocate to the nucleus recruits the activator complex and helps in histone acetylation and gene expression.

Frontiers in Aging frontiersin.org07

Singh and Paramanik 10.3389/fragi.2024.1480932

https://www.frontiersin.org/journals/aging
https://www.frontiersin.org
https://doi.org/10.3389/fragi.2024.1480932


the mitochondrial matrix to the nucleus (de Boer and Houten, 2014;
Ng and Tang, 2014; Sutendra et al., 2014). Therefore, it will be
essential to study the translocation of PDC from mitochondria as
mitochondria are mostly affected during aging and
neurodegenerative diseases. Further, these epigenetic marks, gene
expression, and memory can be reversed by applying enzyme
inhibitors. Phytochemicals such as phytoestrogens, polyphenols
and as well as B vitamins plays important role in regulating the
expression and activities chromatin modifying enzymes, global and
promoter level DNA methylation, histone acetylation and gene
expression. Further, many phytochemicals and small moleules
also showed chromatin modifying activities but they have not
been explored in brain or neuronal cells. As chromatin-
modifying enzymes regulate diverse functions apart from
regulating synaptic plasticity, the application of these inhibitors
showed many side effects (Subramanian et al., 2010; Zhang et al.,
2022). Thus, the designing of specific inhibitors is also needed apart
from supplementation to rescue epigenetic dysregulation and
memory during neurodegenerative diseases.
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