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Introduction: DNA methylation (DNAm) age clocks are powerful tools for
measuring biological age, providing insights into aging risks and outcomes
beyond chronological age. While traditional models are effective, their
interpretability is limited by their dependence on small and potentially
stochastic sets of CpG sites. Here, we propose that the reliability of DNAm
age clocks should stem from their capacity to detect comprehensive and
targeted aging signatures.

Methods: We compiled publicly available DNAm whole-blood samples (n =
17,726) comprising the entire human lifespan (0–112 years). We used a pre-
trained network-coherent autoencoder (NCAE) to compress DNAm data into
embeddings, with which we trained interpretable neural network epigenetic
clocks. We then retrieved their age-specific epigenetic signatures of aging and
examined their functional enrichments in age-associated biological processes.

Results: We introduce NCAE-CombClock, a novel highly precise (R2 = 0.978,
mean absolute error = 1.96 years) deep neural network age clock integrating
data-driven DNAm embeddings and established CpG age markers. Additionally,
we developed a suite of interpretable NCAE-Age neural network classifiers
tailored for adolescence and young adulthood. These clocks can accurately
classify individuals at critical developmental ages in youth (AUROC=0.953, 0.972,
and 0.927, for 15, 18, and 21 years) and capture fine-grained, single-year DNAm
signatures of aging that are enriched in biological processes associated with
anatomic and neuronal development, immunoregulation, and metabolism. We
showcased the practical applicability of this approach by identifying candidate
mechanisms underlying the altered pace of aging observed in pediatric
Crohn’s disease.

Discussion: In this study, we present a deep neural network epigenetic clock,
named NCAE-CombClock, that improves age prediction accuracy in large
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datasets, and a suite of explainable neural network clocks for robust age
classification across youth. Our models offer broad applications in personalized
medicine and aging research, providing a valuable resource for interpreting aging
trajectories in health and disease.
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Introduction

Age estimation through DNA methylation (DNAm) age clocks
has been a considerably successful application of epigenetic data for
modeling purposes. A wide variety of these clocks have been
developed, differing in their training approaches, sources of
tissue, and study populations (Horvath, 2013; Horvath et al.,
2018; Hannum et al., 2013; Levine et al., 2018; Zhang et al., 2019;
Li et al., 2018; Aanes et al., 2023), even including non-human species
(Lu et al., 2023). First-generation DNAm clocks aim to accurately
track chronological age by leveraging variations in the methylation
levels of specific genomic locations (CpG sites) that occur
throughout lifetime (Zavala et al., 2024), whereas second-
generation age clocks incorporate other biological and clinical
parameters to predict all-cause mortality risk (McCrory et al.,
2021; Liu et al., 2018; Levine et al., 2018). The divergence
between estimated and true chronological age is called epigenetic
age acceleration, with a positive value indicating a faster rate of
biological aging. An accelerated aging pace has been linked to an
increased risk of cardiovascular, musculoskeletal, and
neurodegenerative disorders (Chen et al., 2016; Levine, 2013;
Levine et al., 2018) and general adverse health outcomes, such as
frailty, cognitive decline, or immune dysregulation (Belsky et al.,
2015; Elliott et al., 2021). However, while changes that slow
epigenetic aging often correlate with increased longevity, recent
research demonstrated that interventions extending cellular lifespan
do not consistently affect epigenetic aging rates (Kabacik et al.,
2022). Altogether, this emphasizes the premise that aging is the
distinct, deterministic, and malleable consequence of genetic,
environmental, and stochastic mechanisms operating and
interacting in parallel (Rando and Wyss-Coray, 2021; Tong
et al., 2024).

The importance of precise age estimation is particularly
pronounced in adolescents and young adults due to the profound
biological changes occurring during these stages, which shape the
future health trajectory of an individual. During childhood and
adolescence, DNAm patterns undergo significant modifications,
accelerating epigenetic aging as part of natural development
(Simpkin et al., 2017; Jones et al., 2015). These changes can be
further influenced by adverse conditions such as disease, physical or
emotional abuse, familial instability, and economic hardship, which
can expedite the aging process (Marini et al., 2020; Sumner et al.,
2023). Consequently, providing accurate age estimates for
individuals in their adolescence and young adulthood is highly
relevant in developmental healthcare, forensic science,
criminology, and the study of population dynamics (Bozack
et al., 2023; Vidaki and Kayser, 2017; Hjern et al., 2012). DNAm
age clocks can help identify individuals with developmental
disorders or those at risk of accelerated aging due to

environmental stressors, enabling timely interventions to mitigate
these effects. They can also provide assistance in legal and criminal
proceedings and inform public health strategies and policies about
the aging patterns of populations exposed to different
socioeconomic conditions. This information may allow for the
adequate allocation of resources, infrastructure, and services to
improve the wellbeing of these populations.

Despite the accuracy of existing DNAm age clocks, their role as
predictors of biological aging or lifespan is hindered by their limited
interpretability, even when trained using extensive clinical and
omics data (Fong et al., 2024). Current age clocks rely on
disparate sets of CpG sites with minimal overlap and ambiguous
association with risk factors of aging, which has led to concerns
about their signal-to-noise ratios (Oblak et al., 2021; Liu et al., 2020;
Higgins-Chen et al., 2022). The question has been raised of whether
the precise estimates achieved by these clocks primarily reflect
stochastic deviations of DNAm levels rather than true biological
aging processes (Tong et al., 2024; Zhang et al., 2019; Tarkhov et al.,
2024; Seale et al., 2022). Recent studies suggest that, while epigenetic
age can be accurately modeled as the cumulative variation across
methylation sites (Meyer and Schumacher, 2024), changes in
DNAm patterns at age-linked CpGs extend beyond mere
stochastic fluctuations, showing significant associations with
disease phenotypes (Dabrowski et al., 2024). Traditional CpG site
selection methods, such as elastic net, by definition omit large
portions of the epigenome. These approaches can be
advantageous as increasing the number of included sites yields
diminishing returns in age clock performance (Dabrowski et al.,
2024). However, they also risk excluding aging markers that could
hold relevant biological insights. Other approaches use principal
components of DNAm data and have demonstrated improved
reliability (Fong et al., 2024; Higgins-Chen et al., 2022), but they
are fundamentally constrained to modeling linear effects and may
fail to capture the complex, interconnected nature of aging
mechanisms. Instead, incorporating data from diverse, well-
annotated datasets within a non-linear framework, such as neural
network embeddings, may enhance the generalizability and
robustness of age clocks by better capturing subtle patterns
in DNAm data.

Here, we hypothesized that the reliability of an epigenetic age
estimation model should be grounded both in its accuracy and its
capacity to detect comprehensive and targeted DNAm signatures
linked to physical and psychological developmental mechanisms
associated with aging. We propose that leveraging a compressed
representation of DNAm data as input for explainable neural
network models, such as embeddings from a pre-trained
autoencoder, may provide an adequate balance between precision
and efficiency. Employing interpretable data-driven methods that
utilize markers across the measurable human methylome ensures
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that the model serves not only as a predictive tool but also as a
valuable informative resource, facilitating the understanding of the
biology behind epigenetic age prediction. Our approach aims to
improve the robustness of age estimation by capturing fine-grained
signatures of age-related DNAm variation throughout the human
lifespan, with a particular focus on critical developmental stages
such as adolescence and young adulthood, at single-year resolution.
In summary, we seek to uncover the underlying biological processes
driving age-related health trajectories and vulnerabilities, thereby
advancing the current knowledge on human aging and paving the
way for future applications at the clinical level.

Materials and methods

Data collection and preprocessing

The data used in this study consisted of publicly available DNA
methylation (DNAm) samples from individuals with reported age
from the Gene Expression Omnibus (GEO) repository (n = 30,228)
from either the Illumina Infinium HumanMethylation450K or
MethylationEPIC BeadChip arrays. DNAm beta values were
normalized using Gaussian mixture quantile normalization
(GMQN) (Xiong et al., 2022). Low-quality samples were filtered
out using the ChAMP R package (v2.30.0), and missing beta values
were imputed using k-nearest neighbors (k = 10) from the bnstruct R
package (v1.0.15). Non-CpG probes, probes related to single-
nucleotide polymorphisms (SNPs), multi-hit probes, and probes
not shared by both Illumina 450K and EPIC arrays were removed.
Probes located on the X and Y chromosomes were kept only for XY
models. In total, 384,629 CpG sites were left after pre-processing or
395,248 CpG sites for XY models.

DNAm samples were split into training and test sets
according to their application. Age regression performance
was evaluated using 17,726 whole-blood samples (0–112 years,
mean ± SD age = 41.0 ± 22.9 years, and 45.6% female). DNAm
samples from various other tissues were used to demonstrate the
model’s applicability across different contexts, including
peripheral blood lymphocytes (PBLs), peripheral blood
mononuclear cells (PBMCs), buccal epithelium, saliva, muscle,
and semen (Supplementary Tables S1, S2). Whole-blood samples
were divided into a young-age set (10–30 years, n = 1,404, mean ±
SD age = 21.8 ± 5.3 years, and 46.5% female) and a complete-age
set (1–101 years, n = 8,846, mean ± SD age = 48.6 ± 19.4 years,
and 45.2% female) to train and benchmark the classification
performance of DNAm age clocks with 15-, 18-, and 21-year
cutoffs. In addition, a sex-balanced set (14–24 years, n = 330,
mean ± SD age = 19.1 ± 3.1 years, and 48.7% female) formed by
11 single-age cohorts of 30 healthy controls was used to evaluate
classifiers at specific ages. To investigate epigenetic aging in
adolescents and young adults with Crohn’s disease (CD), we
compiled five whole-blood DNAm datasets (GSE112611,
GSE32148, GSE81961, GSE87640, and GSE87648) and selected
individuals between 14 and 24 years, resulting in 207 treatment-
naive CD patients (mean ± SD age = 17.1 ± 2.5 years and 38.2%
female) and 52 healthy controls (mean ± SD age = 18.6 ± 3.5 years
and 50.0% female). A detailed summary of all samples used is
available in Supplementary Material S1.

Design and training of neural network
models for age estimation

Artificial neural network models were trained using the Keras
2.4.3 library with TensorFlow 2.4.0 and TensorFlow-GPU
2.2.0 backend, implemented for Python 3.8.10. The deep
methylation network-coherent autoencoder (NCAE) used to
compress DNAm samples into embeddings was trained as
described in Martínez-Enguita et al. (2023). It consisted in a
three-hidden layer model with a width of 128 hidden nodes per
layer, with a leaky rectified linear unit (leaky ReLU, α = 0.3) as the
activation function and a sigmoid output layer function, and with
mean squared error (MSE) as the loss function. Embeddings were
retrieved from the 128-dimensional latent space of the third hidden
layer. Supervised deep neural network (DNN) models for age
estimation using NCAE embeddings (referred to as NCAE-Age
models) are feed-forward, fully connected, three-layered DNNs
with either an age regression (prediction of a sample’s age in
years) or a binary classification (probability for the age of a
sample to be equal or above a certain cutoff) training objective.
The target age values [0, 114] were min–max scaled to promote the
numerical stability and enhance model performance. An NCAE
leveraging CpG sites from the X and Y chromosomes as additional
input features (NCAE-XY) was used to obtain DNAm embeddings
to train NCAE-XY-Age DNN models, with the same architecture
and training strategy as described.

NCAE-Age regressors were trained using the Adam optimizer to
minimize the MSE (learning rate = 1e-4, β1 = 0.9, β2 = 0.999, ε = 1e-
7, decay = 1e-6), with leaky ReLU (α = 0.3) as the hidden layer
activation, to prevent the “dying ReLU” problem, and output layer
function, He uniform initializer, L1 kernel regularization (λ = 0.01)
on the third hidden layer, dropout (p = 0.1) and batch normalization
(momentum = 0.99, ε = 1e-3) on every hidden layer, and batch sizes
of 64 to 1,024. Binary classifiers were trained on the young-age set,
with cutoffs of 12–26 years, using the Adam optimizer to minimize
the binary cross-entropy (same parameters as previously
mentioned) with an exponential decay learning rate schedule
(rate = 0.95, 1e3 steps), leaky ReLU (α = 0.3) as hidden layer
activation function, sigmoid output layer, He uniform initializer,
L2 kernel regularization (λ = 1e-3), dropout (p = 0.1) and batch
normalization (momentum = 0.99, ε = 1e-3) on every hidden layer,
and batch size of 32. Sample weights were introduced during
training to compensate for class imbalances. DNNs were trained
until early stopping (patience = 1e3 epochs) using an 80:20 ratio of
training and validation, respectively.

Selection and benchmarking of DNA
methylation age clocks

Numerous DNAm age clocks have been developed, differing on
training data, methodology, assumptions, and selection of CpG sites.
We conducted a literature search to find epigenetic clocks that met
the following criteria: the clock should be (a) trained and evaluated
using DNAm data (b) from whole-blood samples, using publicly
available (c) methodology and (d) a set of CpG sites to (e) estimate
the chronological age and provide measurements of biological aging
(age acceleration). We benchmarked NCAE-Age models and other
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relevant DNAm age clocks: Horvath pan-tissue (Horvath, 2013),
Horvath skin and blood (Horvath et al., 2018), Hannum (Hannum
et al., 2013), PhenoAge (Levine et al., 2018), Zhang (elastic net)
(Zhang et al., 2019), Li (Li et al., 2018), and PAYA (Predictor for
Adolescents and Young Adults) (Aanes et al., 2023). The CpG sites
and reported coefficients of the selected DNAm age clocks are
available in Supplementary Material S2. In addition to them, we
included a consensus model (“top-five”) based on the median
prediction of the five best models from each evaluation;
CombClock, a novel age-regressor trained using elastic net (α =
0.5) on the combined 1,743 CpG sites of the selected clocks; and
NCAE-CombClock, a supervised DNN utilizing the 1,743 CpG sites
plus 128 NCAE embeddings, with the same architecture and
training strategy as described for NCAE-Age regressors.

The regression benchmark was conducted using 17,726 samples
from healthy individuals (0–112 years) divided into training and test
sets (80:20). Retraining of elastic net age clocks was performed as
described in the classification benchmark. The performance was
measured using the coefficient of determination (R2), mean absolute
error (MAE), median absolute error (MedAE), root-mean-square
error (RMSE), Pearson correlation coefficient (PCC, r), and
Spearman correlation coefficient (ρ). Performance metrics were
calculated using the MLmetrics R package (v1.1.1).

The classification benchmark was conducted using the young-age
(10–30 years, n = 1,404) and complete-age (1–101 years, n = 8,846) sets.
Both sets were used to retrain the DNAm age clocks to account for
differences in data and pre-processing between study settings. The
retraining was performed by reimplementing the elastic net regression
(α = 0.5) using the glmnet R package (v4.1-8). An intercept was
included if present originally. In the young-age setting, a five-fold
cross-validation approach was applied to train and evaluate the age
clocks. Each model was trained in four folds, while the left-out fold was
used as the test set, until every fold was circulated. In the complete-age
setting, models were trained in four folds of young-age samples plus all
complete-age samples. They were evaluated on the left-out young-age
fold, again until every fold was evaluated. DNAm age clocks were tested
on their capacity to predict whether a sample belonged to an individual
equal to or over or under the cutoffs of 15, 18, and 21 years. To obtain a
comparable metric between DNAm age clocks, estimated ages were
binarized based on the cutoffs. The performance was measured using
the F1-score, the false-positive rate (FPR) above and below cutoffs, and
the total for each fold. Since NCAE-Age classifiers generate probability
estimates, unlike other DNAm age clocks, their performance was also
evaluated using the area under the receiver operating characteristic
curve (AUROC). Accuracy and probability estimates are reported for
classifiers on single-age cohorts from the balanced test set.

Identification of DNAmethylation signatures
of aging

Light-up analyses were performed to retrieve importance
rankings of the input features (CpGs) from the trained NCAE-
Age model. The light-up technique (Dwivedi et al., 2020; Martínez-
Enguita et al., 2023) for the interpretation of supervised DNNs is
based on the recursive forward propagation of perturbations on the
input (in this case, CpG sites, either toward hypermethylation, β = 1,
or hypomethylation, β = 0) of pre-trained models (in this case, a

concatenated NCAE and NCAE-Age model). Input samples for
light-up may consist of DNAm profiles representative of a specific
cohort of interest, e.g., 21-year-old healthy controls. Perturbations
are added iteratively to input CpGs and propagated through the
concatenated model layers. The contribution of a CpG to the
training objective is measured by the observed changes (delta
values, δ) in the model outcome, i.e., changes in the predicted
epigenetic age of the sample. Then, δ-values are used to rank the
CpG input list by relevance to the model’s training objective. We
selected the top 1,000 CpGs in increasing order of negative light-up
δ-value, which we refer to as the NCAE-Age or NCAE-XY-Age
DNAm signature of aging for a particular age estimation DNN and a
particular condition and age, for further analysis.

CpG annotation and functional
enrichment analysis

Genome-wide mapping of CpG probes to genes was performed
using Infinium MethylationEPIC probe annotation files from
ChAMP (v2.30.0) and ChAMPdata (v2.32.0) R packages. Gene
symbols were annotated to Entrez or NCBI (National Center for
Biotechnology Information) gene IDs using AnnotationDbi
(v1.62.2) and org.Hs.eg.db (v3.17.0) R packages. Functional gene
enrichment analysis of CpG-associated DNAm signatures in Gene
Ontology (GO) terms from the “Biological Process” category was
performed using the clusterProfiler R package (v4.8.3) with default
parameters and FDR adjustment. GO terms with FDR-adj. p <
0.05 were considered significantly enriched and were grouped into
manually curated ancestor term categories using annotations from
QuickGO (https://www.ebi.ac.uk/QuickGO/ Accessed on 30 May
2024). GO terms displayed in heatmaps are clustered by the z-score
of their gene ratios across significant enrichments for each case,
including the mean and standard deviation of the gene ratios.

Statistical analyses and visualization

Statistical analyses and data processing were conducted in R
4.4.0, within RStudio 2023.12.1, and Python 3.8.10. Confidence
intervals are 95% CIs, unless otherwise specified. Wilson score
intervals were employed to calculate CIs for classifier accuracy to
account for moderate cohort sizes and accuracy values close to the
upper bound. Figures were created using ggplot2 (v3.4.4), gplots
(v3.1.3.1), corrplot (v0.92), and UpSetR (v1.4.0) R packages and
Seaborn (v0.11.1) and matplotlib (v3.4.2) Python libraries.
Subsequent figure editing for enhanced visualization was carried
out in Inkscape v0.92.

Results

A deep neural network leveraging DNA
methylation embeddings and CpG sites
yields highly accurate age estimates

Initially, we evaluated the performance and generalizability of
existing DNAm age clocks using large-scale datasets. We processed
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17,726 publicly available whole-blood DNAm samples from
individuals aged 0–112 years, with a mean ± SD age of 41.0 ±
22.9 years (Supplementary Material S1), and divided them into
training and test sets (80:20). We then conducted a literature search
for DNAm age clocks trained on whole-blood samples with a known
set of CpG sites. We selected the clocks Horvath pan-tissue
(Horvath, 2013), Horvath skin and blood (Horvath et al., 2018),
Hannum (Hannum et al., 2013), PhenoAge (Levine et al., 2018),
Zhang (elastic net) (Zhang et al., 2019), Li (Li et al., 2018), and
PAYA (Aanes et al., 2023). These are based on elastic net and include
71–514 CpGs (Supplementary Material S2). Additionally, we
included our NCAE-Age (Martínez-Enguita et al., 2023) model, a
supervised deep neural network (DNN) age predictor that uses a

compressed representation of the human methylome consisting of
128 variables (embeddings) from an autoencoder with a biologically
relevant latent space, named network-coherent autoencoder
(NCAE) (Martínez-Enguita et al., 2023). NCAE-Age clocks can
be developed for multiple tissues or cell types, including whole
blood, lymphocytes, buccal epithelial cells, and saliva
(Supplementary Table S1).

We observed that the selected DNAm age clocks were able to
deliver accurate estimates of chronological age (Figures 1A, B;
Supplementary Material S3) for the test set samples (n = 3,502).
Elastic net clocks achieved coefficient of determination (R2)
values between 0.897 for Li’s clock (mean absolute error,
MAE = 5.54 years; root-mean-squared error, RMSE = 7.34 years),

FIGURE 1
Regression performance benchmark of DNA methylation age clocks trained on whole-blood samples from healthy individuals. (A) Scatter plots
comparing observed vs predicted ages for eleven DNAm age clocks on regression test set samples (n = 3,502 controls; 0–112 years). The coefficient of
determination (R2) and mean absolute error (MAE) are indicated for each model. (B) Age estimation performancemetrics for DNAm age clocks evaluated
on the regression test set. (C) Correlation matrix of Pearson correlation coefficients (PCC) between the observed and predicted ages across DNAm
age clocks.
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optimized for age prediction in children and adolescents, to
0.969 for Zhang’s clock (MAE = 2.63 years; RMSE = 4.05 years),
designed as a “near-perfect” age estimator across the entire age
range. Horvath’s skin and blood clock performed better (R2 =
0.964, MAE = 2.97 years, and RMSE = 4.37 years) than its pan-
tissue counterpart (R2 = 0.948, MAE = 3.61 years, and RMSE =
5.21 years). The NCAE-Age clock produced an R2 of 0.958
(MAE = 3.13 years and RMSE = 4.68 years), akin to PAYA
(R2 = 0.957, MAE = 3.28 years, and RMSE = 4.74 years). Notably,
we found that a consensus estimate based on the median of the
predictions from the five top-performing clocks outperformed
every other DNAm age clock tested, with an R2 of 0.970 (MAE =
2.51 years and RMSE = 3.94 years). Building on this wisdom-of-
the-crowds approach, we combined the 1,743 unique CpG sites
used by the selected elastic net clocks to train a novel elastic net
regressor model, named CombClock. Reassuringly, CombClock
performed with a top test R2 of 0.974, an MAE of 2.36 years, and
RMSE of 3.70 years. We thus inquired whether additional
performance could be gained by leveraging both CpG markers
and NCAE embeddings. For this purpose, we developed a high-
precision hybrid model, which we refer to as NCAE-CombClock,
which was trained as a supervised DNN with CpG sites and
embeddings as input features. NCAE-CombClock achieved the
highest R2 = 0.978 of all benchmarked models, with an MAE of
1.96 years and RMSE of 3.37 years.

DNAm age clock estimations had pairwise Pearson correlation
coefficients (PCC) between 0.947 and 0.997 (Figure 1C).
CombClock and Zhang predictions were the most similar
(PCC = 0.997) due to Zhang being the largest contributor of
CpG sites to CombClock. Estimated ages from elastic net clocks
were less correlated to NCAE-CombClock predictions than to
CombClock ones. For example, NCAE-CombClock had a lower
correlation with Zhang’s clock (PCC = 0.992) than with
CombClock. Likewise, predictions from the DNN-based clocks
NCAE-Age and NCAE-CombClock were highly correlated (PCC =
0.987). Estimates from NCAE-CombClock were the closest to the
true ages (PCC = 0.989), followed by estimates from CombClock,
Zhang, and Horvath skin and blood (PCC = 0.987, 0.984, and
0.982, respectively). In summary, we showed that the use of large-
scale training sample sets coupled with the combination of
knowledge-driven CpG sites and data-driven embeddings of
DNAm data enables the development of highly precise neural
network age regressors, such as NCAE-CombClock, which is able
to outperform other whole-blood DNAm age clocks in terms of R2,
MAE, and PCC.

A consensus of DNAm age clocks optimizes
threshold-based age determination of
adolescents and young adults

Next, we investigated whether predicting chronological age
with accuracy can be translated into correctly determining if an
individual is below or above specific age thresholds. We
established a classification benchmark for our DNAm age
clocks, focusing on three critical points of adolescence and
young adulthood: 15, 18, and 21 years. These thresholds mark
key transitional stages of youth development with significant

implications in legal, health, and socioeconomic contexts.
Importantly, they allow assessment of the practical
applicability of DNAm age clocks in real-world scenarios
where precise age classification is crucial. We, thus, aimed to
identify the most reliable model for accurately categorizing
samples by these age thresholds.

Hence, we applied five-fold cross-validation to predict the age of
a subset of 1,404 whole-blood samples from healthy individuals
(10–30 years) with mean ± SD age of 21.8 ± 5.3 years
(Supplementary Material S1). To mitigate the impact of the
varied age ranges in the original training data, we retrained
DNAm age clocks, if applicable, in two different settings: young-
age (10–30 years) and complete-age (1–101 years) (Supplementary
Material S1). In both cases, we predicted the ages of the left-out
young-age fold until the entire set had been processed, binarizing the
outcomes based on whether they were lower (0) or equal to or higher
(1) than 15, 18, or 21 years. To address class imbalances, and since
this approach produces class predictions rather than probability
estimates, we evaluated the classification performance using the
fold-averaged F1-score.

We found that the benchmarked DNAm age clocks can
accurately classify samples based on specific young-age thresholds
when adequately retrained (Figures 2A–C; Supplementary Material
S3). Elastic net clocks were the most sensitive to the age range of the
training set, underperforming on complete-age (F1-scores between
0.607 [95% CI: 0.568–0.646] and 0.903 [0.870–0.936]) compared to
young-age (F1-scores between 0.865 [0.813–0.917] and
0.970 [0.966–0.974]). CombClock was only marginally affected
when retrained on complete-age, decreasing in performance but
still above 0.9 in all thresholds (F1-score = 0.948 [0.937–0.960] at
15 years, 0.942 [0.934–0.949] at 18 years, and 0.904 [0.893–0.915] at
21 years). DNN-based clocks NCAE-Age and NCAE-CombClock
achieved better results in general on complete-age, with F1-scores
between 0.924 [0.899–0.948] and 0.929 [0.914–0.945] at 21 years and
0.973 [0.969–0.977] and 0.972 [0.964–0.979] at 15 years. Overall, the
classification performance expectedly decreased with a higher
threshold age. The best clock was the young-age top five
consensus, with the F1-score = 0.975 [0.964–0.986] for
15 years, 0.937 [0.908–0.966] for 21 years, and a tie with
CombClock (0.960 [0.952–0.968] vs 0.960 [0.951–0.970] for
CombClock) at 18 years. High performance in the regression
benchmark was generally associated with strong performance in
the classification benchmark, with significant correlations
between R2 and F1-scores at the 18-year (PCC = 0.753, P =
7.43e-3) and 21-year (PCC = 0.793, P = 3.61e-3) thresholds, but
not at 15 years (PCC = 0.229, P = 0.499). NCAE-Age clocks
working as binary classifiers performed with area under the
receiver-operating curve (AUROC) values of 0.953 for 15-year,
0.972 for 18-year, and 0.927 for 21-year thresholds (Figure 2D)
under young-age settings. Regarding misclassification ratios
measured at best-performing settings (Figure 2E), the top five
consensus had the lowest total false-positive rate (FPR) at the 15-
year (FPRtotal = 4.56%) and 21-year (FPRtotal = 7.41%) categories,
while CombClock was marginally better at the 18-year category
(FPRtotal = 6.13% versus 6.20%). Most misclassified samples were
due to underestimations of age, leading to high FPRs below the
thresholds: 16.13%–38.46% (15-year), 11.61%–23.15% (18-year),
and 6.88%–20.37% (21-year).
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An array of single-year NCAE-Age classifiers
provides high-resolution young-age
probability estimation

Our findings up to this point showed that DNAm age clocks
can be optimized to serve as quasi-perfect predictors of
chronological age, enabling accurate classifications of individuals
based on thresholds of interest. However, even the top regressor

(NCAE-CombClock) and the top age-classifier (top five consensus)
exhibited non-negligible misclassification rates. Given the critical
importance of precise age identifications in various real-world
contexts, a more refined approach is required. We argued that an
array of classifiers, each trained at a single-year cutoff, could
collectively provide an ensemble of age probability estimates that
might improve the robustness and reliability of age assessments at
single-year categories.

FIGURE 2
Classification performance benchmark of DNAmethylation age clocks. (A–C) Bar plots of classification performance (F1-score) of DNAm age clocks
based on their capacity to accurately determine if an individual’s chronological age is equal to or above the target age cutoffs of 15, 18, and 21 years.
DNAm age clocks were evaluated on classification test set samples (n = 1,404 controls; 10–30 years) divided into five folds. Models were retrained, if
applicable, in complete-age (1–101 years) or young-age (10–30 years) training settings. The best average F1-score per target age is indicated and
marked as a gray dotted line. Error bars represent the 95% confidence interval. (D)Receiver operating characteristic (ROC) curves for NCAE-Age classifiers
at 15, 18, and 21 years, evaluated on the classification test set. (E) Heatmaps of false positive rates (FPRs) for DNAm age clock estimations above or below
the target age cutoffs of 15, 18, and 21 years and in total, considering the best-performing training setting in each case.
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FIGURE 3
Workflow summary and performance evaluation of NCAE-Age classifiers by model cutoff and target age. (A) Training, evaluation, and biological
interpretation of an array of NCAE-Age neural network classifiers from 128-dimensional network-coherent autoencoder (NCAE) embeddings of DNAm
data. (B–D) Bar plots of binary classification accuracy of NCAE-Age classifiers for 15, 18, and 21 years. The overlaying lines indicate the probabilities
estimated by each model for the cohort samples to be equal to or above the model cutoff (95% confidence interval). (E) Heatmap of cumulative
predicted probabilities (%) for the balanced test set cohorts (n = 330; 14–24 years) to be equal to or above each NCAE-Age classifier cutoff, which were
calculated until or after the cutoff. (F) Heatmap of positive predictions (%; estimated probability >0.5) per NCAE-Age classifier and balanced test set
cohort. Outlined cells indicate that the true age of the test cohort is equal to the model cutoff. Age cohorts are sex-balanced groups of 30 controls of the
same age, from left-out data.
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Thus, we trained fifteen NCAE-Age classifiers with single-year
cutoffs spanning through adolescence and young adulthood
(12–26 years) using the young-age set (Figure 3A). We evaluated
their classification performance using an age- and sex-balanced test
set composed by eleven single-age cohorts of 30 controls (total n =
330, mean age ±SD = 19.1 ± 3.1 years, and 48.7% female) between
14 and 24 years. First, we applied the NCAE-Age array to generate
probability estimates for DNAm samples from cohorts of the same
age as the previous thresholds (15, 18, and 21 years) (Figures 3B–D;
Supplementary Material S4). We determined a prediction to be
positive if the classifier estimated a probability over 0.5 for a sample’s
age to be equal to or above its target cutoff, and we calculated the
accuracy per cutoff and cohort. For example, an accurate classifier
with a cutoff of 14 years evaluating an 18-year-old sample should
estimate a probability of at least over 0.5, indicating that it predicts
that the sample’s age is above its cutoff. We found that all single
classifiers achieved highly accurate classifications for the 15-year
cohort (from 0.74, 95% CI [0.69–0.79] at the 16-year cutoff to
0.99 [0.97–0.99] at the 23- and 26-year cutoffs) and the 18-year
cohort (from 0.90 [0.87–0.93] at the 18-year cutoff to 0.99 [0.97–1]
at the 12-year cutoff), as well as for the 21-year cohort until the 21-
year cutoff (from 0.77 [0.72–0.81] at the 21-year cutoff to 1 [0.99–1]
at the 12-year cutoff). The accuracy decreased to between
0.40 [0.35–0.46] and 0.59 [0.53–0.64] when classifying 21-year-
olds at cutoffs within the 22-to-26-year range. Expectedly,
predicted probabilities sharply decreased when the age of cohort
members became larger than the NCAE-Age cutoff. We also
observed this decrease when considering the accumulated
probabilities until or after each cutoff (Figure 3E), showcasing
that the use of the complete classifier array leads to optimal
classifications. By percentage of positive predictions (Figure 3F),
18-year-cutoff classifiers predicted 86.7% of 18-year samples to be
equal to or above 18, down to 23.3% for 17-year samples, 6.7% for
16-year samples, and 3.3% for 15- and 14-year cohorts. Other
NCAE-Age classifiers showing an above-average performance
were the 15-year (83.3% for 15-year), 19-year (80.0% for 19-year
cohort, only 6.7% for 18-year cohort), and the 22-year (80.0% for 22-
year cohort) cutoffs. Cohorts between 20 and 24 years were harder to
classify at the same granularity. Altogether, NCAE-Age classifiers
enabled the precise categorization of individuals at single-year
resolution, particularly accurately for cohorts from 14 to 19 years.

Interpretable NCAE-Age clocks predict age
by capturing developmental, immune, and
metabolic mechanisms

We then analyzed the potential of the NCAE-Age classifier array
as a data-driven tool capable of extracting meaningful epigenetic
signatures of aging. We proposed that, for the estimates of a DNAm
age clock to be a reliable reflection of the true epigenetic aging status
of an individual, the model must effectively capture DNAmmarkers
linked to age-associated biological mechanisms. By using
interpretable models with specific age cutoffs that leverage a
larger portion of the methylome, rather than fixed sets of CpGs,
we could feasibly identify DNAm signatures describing aging
processes throughout key development stages, such as
adolescence and young adulthood, on a year-to-year basis.

Thus, we first inspected the functional associations of the CpG
sites used by DNAm age clocks and the epigenetic signatures from
NCAE-Age models. We retrieved and annotated the CpG sets from
age clocks (Supplementary Material S2). For NCAE-Age models, we
applied the light-up technique (methods) to retrieve the
contribution of CpG sites to the training objective of estimating
age, selecting the top 1,000 as the DNAm signature of aging
(Supplementary Material S5). We examined the biological context
of the signature CpGs using Gene Ontology (GO) terms from the
Biological Process category, finding significant enrichments (FDR-
adj. P < 0.05) for CpGs from only Horvath skin and blood (eight GO
terms) and Zhang (two GO terms) clocks (Figure 4A;
Supplementary Material S7), with the combined 1,743 CpGs
being enriched in 32 GO terms (Supplementary Material S7). By
contrast, the DNAm signature of the NCAE-Age regressor was
significantly enriched in 63 GO terms. Out of them, 31 (49.2%) were
related with the morphogenesis and development of anatomical
structures, such as the sensory, hepatic, and urinary systems, and 26
(41.3%) described the stages of neural system development,
including the regulation of neurogenesis, synapse organization
and maturation, and forebrain and telencephalon development.
Other age-associated enriched GO terms were cell fate
commitment and specification, locomotory behavior, response to
reactive oxygen species, and regulation of signal transduction via
small GTPases (Supplementary Material S7).

To increase the resolution of the analysis, we examined the
DNAm signatures of aging from every NCAE-Age classifier from
12 to 26 years (Figure 4B; Supplementary Material S5), resulting in
426 significantly enriched GO terms across signatures
(Supplementary Material S7). These included biological
mechanisms associated with the development of anatomical
structures (75/426; 17.6%) such as organ morphogenesis and
growth regulation; immune response processes (69/426; 16.2%)
such as leukocyte activation and cytokine production;
developmental processes at the cellular level (68/426; 16.0%) such
as regulation of cell fate specification, commitment, differentiation,
and proliferation; neural development mechanisms (53/426; 12.4%)
such as axonogenesis and synapse maturation; signal transduction
pathways (39/426; 9.2%); and terms linked with the cardiovascular
system (33/426; 7.7%), metabolic regulation (30/426; 7.0%),
response to stimuli (25/426; 5.9%), musculoskeletal system (15/
426; 3.5%), cognitive and behavioral processes (8/426; 1.9%), and
sex differentiation (7/426; 1.6%) (Figure 4C). These signatures had a
high overlap, but only 18 CpG-associated genes were shared among
all of them (Figure 4D; Supplementary Material S5). Remarkably, we
observed that, while enrichments in GO terms linked with
development at both organismal and cellular levels were spread
throughout the entire range, others were concentrated at specific
ages. For example, DNAm signatures between 16 and 20 years were
highly enriched in cognitive processes. Similarly, neural
development signals were mainly detected at 16 years and above,
sex differentiation between 12 and 14 years, immunoregulatory
mechanisms between 19 and 20 years, and musculoskeletal
development in the range from 12 to 19 years.

To account for sex-specific differences that could affect
developmental changes during youth, we next trained a
variant of NCAE-Age clocks including an additional
10,619 CpG sites from the X and Y chromosomes, named
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NCAE-XY-Age models (Supplementary Material S2). These
clocks achieved similar benchmark results as NCAE-Age
models in whole blood (R2 = 0.958, MAE = 3.12 years, and
RMSE = 4.67 years) (Supplementary Material S3) and in other
tissues (Supplementary Table S2). Interestingly, their DNAm
signature of aging was significantly enriched in 113 GO terms,

which is higher than any other signature (Supplementary Figure
S1; Supplementary Material S7). We proceeded by training
fifteen young-age NCAE-XY-Age classifiers with cutoffs from
12 to 26 years and retrieving their single-age aging signatures
(Figures 5A, B; Supplementary Material S6). We found
521 significantly enriched GO terms across signatures, out of

FIGURE 4
Functional enrichment analysis of CpG sites from DNAm age clocks and NCAE-Age DNAm signature genes. (A, B) Heatmaps of gene ratio z-scores
of the top significantly enriched GO terms for CpGs from (A) DNAm age clocks and NCAE-Age DNAm aging signatures or (B) age-specific DNAm
signatures of aging fromNCAE-Age classifiers with cutoffs between 12 and 26 years. Significantly enriched (FDR-adj. p < 0.05) GO terms aremarked with
an asterisk (*). (C) Bar plot of the proportion (%) of significantly enriched GO terms (n = 426) across NCAE-Age DNAm signatures of aging and
classifier cutoffs, grouped into commonGO ancestor categories. (D)Upset plot of non-exclusive pairwise overlaps between CpG-associated genes from
NCAE-Age classifier signatures of aging (12–26 years).
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which 172 overlapped with the 426 enriched terms from NCAE-
Age (Fisher’s exact test P = 1.61e-82) (Supplementary Material
S7). Compared with NCAE-Age results (Figure 5C), XY
signatures showed a higher proportion of biological processes
associated with the general development of anatomical
structures (128/521; 24.6% vs 17.6%), the musculoskeletal
system (36/521; 6.9% vs 3.5%), and sex differentiation
processes (16/521; 3.1% vs 1.6%). Notably, enriched GO
terms for organismal and cellular development and sex
differentiation were found mainly between 12 and 14 years.
Immune-related terms were less common (49/521; 9.4%), and
their enrichment levels, as well as those for neural (75/521;
14.4%) and musculoskeletal development, decreased with age
(Supplementary Material S7). Other categories were
approximately equally distributed across the age range.

NCAE-Age clocks identify epigenetic
signatures of delayed aging in pediatric
Crohn’s disease

Lastly, we hypothesized that the effects of disease on normal
development could be characterized by estimating age probabilities
and identifying candidate underlying mechanisms using the DNAm
signatures of aging. For that purpose, we chose to study the
developmental consequences of Crohn’s disease (CD) in children
and young adults. CD is a form of inflammatory bowel disease (IBD)
that presents as an immunologically mediated, chronic remittent
and relapsing inflammation of the gastrointestinal tract. Pediatric
CD has an earlier onset of immunological disruptions and is
associated with irregular disease progression (Van Limbergen
et al., 2008; Ruemmele et al., 2014). Pertinent to our aim,

FIGURE 5
Functional enrichment analysis of CpG sites fromNCAE-XY-Age DNAm signature genes. (A)Heatmap of gene ratio z-scores of the top enriched GO
terms for age-specificDNAm signatures of aging fromNCAE-XY-Age classifiers with cutoffs between 12 and 26 years. Significantly enriched (FDR-adj. p <
0.05) GO terms are marked with an asterisk (*). (B) Upset plot of non-exclusive pairwise overlaps between CpG-associated genes from NCAE-XY-Age
classifier signatures of aging (12–26 years). (C) Bar plot of the proportion (%) of significantly enriched GO terms (n = 521) across NCAE-XY-Age
DNAm signatures of aging and classifier cutoffs grouped into common GO ancestor categories compared with NCAE-Age signatures.
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FIGURE 6
Epigenetic age and functional enrichment analysis of signatures of aging in Crohn’s disease (CD) in treatment-naive adolescents and young adults.
(A, B) Heatmaps of positive predictions (%; estimated probability >0.5) per NCAE-Age classifier for single-year cohorts (14–24 years) of age-matched
individuals with CD and healthy controls to be equal to or above the NCAE-Age classifier cutoffs (12–26 years). Outlined cells indicate that the true age of
the single-age cohort individuals is equal to the NCAE-Age classifier cutoff. Cohorts include all available persons with CD and study-matched
controls of the same age. Age-matched controls, who are 18 and 19 years old, from the classifier test set replace non-available controls fromCDdatasets.
(C) Heatmaps of the gene ratio z-scores of the top enriched GO terms for DNAm signatures of aging from NCAE-Age classifiers with cutoffs between
12 and 26 years for CD patients (left) or controls (right). Significantly enriched (FDR-adj. p < 0.05) GO terms are marked with an asterisk (*). (D) Pearson
correlation coefficients for GO term enrichment levels of CD and control DNAm signatures of aging across NCAE-Age classifier cutoffs. Delayed aging
and compensatory (accelerated) aging phases are highlighted.
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between 65% and 85% of children and adolescents diagnosed with
CD suffer from growth deficiency or delay (Gasparetto and Guariso,
2014; Wong et al., 2021; Rosen et al., 2015).

We gathered publicly available whole-blood DNAm datasets
comprising CD patients and healthy controls aged between 14 and
24 years. The final cohort consisted of 207 CD patients (mean ± SD
age = 17.1 ± 2.5 years) and 52 healthy controls (mean ± SD age =
18.6 ± 3.5 years) (Supplementary Material S1). All CD samples were
reportedly collected at the time of disease detection from treatment-
naive individuals, thereby eliminating potential confounding effects
of medical treatments. To assess biological aging, we generated age
probability estimates for each sample using the NCAE-Age classifier
array, applying age cutoffs ranging from 12 to 26 years. We
compared the proportion of positive predictions (i.e., predictions
above the true age) below and above each cutoff between CD
patients and controls (Figures 6A, B; Supplementary Material
S4). Interestingly, we observed that CD patients with ages from
14 to 19 years had their true age consistently underestimated by
NCAE-Age classifiers (Figure 6A). For instance, only 7.9% of the 15-
year-old and 20.0% of the 18-year-old CD patients were predicted to
be 15 years or older. In contrast, 42.9% of 15-year-old and 96.7% of
18-year-old healthy controls were accurately predicted to be 15 years
or older. Similarly, only 15.0% of 18-year-old CD patients were
predicted to be 18 years or older, compared to 86.7% of 18-year-old
controls. Yet, between 66.7% and 100% of CD patients from 20 to
24 years were estimated to be above 26 years, compared to between
33.3% and 60.0% of controls in the same age range. These findings
suggest that CD patients experience a delayed pace of biological
aging in their teenage years, which reverses after the age of 20,
leading to accelerated aging in early adulthood. Healthy controls did
not exhibit accelerated or decelerated aging patterns at any age
(Figure 6B), aligning with previous results observed in control test
sets (Figure 3F). No significant differences in the epigenetic aging of
CD patients due to sex were observed (Supplementary Figure S2).

To characterize this diverging pace of aging in CD, we retrieved
age-specific DNAm signatures and explored their enrichment in
biological processes represented by GO terms (Figure 6C;
Supplementary Material S7). We found 271 significantly enriched
unique GO biological processes (FDR-adj. P < 0.05) in the signatures
of aging from NCAE-Age classifiers (12- to 26-year cutoffs) from
CD patients and controls, including every GO term with at least one
significant hit in at least one signature. The most represented term
categories were the development of anatomical structures (27.3%;
74/271), developmental processes at the cellular level (17.3%; 47/
271), neural system development (13.7%; 37/271), and
musculoskeletal system development (11.1%; 30/271)
(Supplementary Material S7). Enrichment levels from CD patient
and control signatures across the measured age range were
moderately correlated (PCC = 0.67). However, restricting the
analysis to the interval when delayed aging in CD was observed
(14–19 years) resulted in a gradual decrease in the correlation
between enrichments of CD patients and control signatures, with
the largest discrepancy being observed at 17 years (PCC = 0.39)
(Figure 6D). For this interval, control signatures had a total of
139 significant hits for enriched GO terms, while CD signatures had
only 19 hits. Significant terms for controls included the following:
multicellular organism growth, muscle tissue development,
peripheral nervous system development, renal system

development, ossification, bone mineralization, stem cell
proliferation, and positive regulation of peptidase and
endopeptidase activity, among others. None of these terms were
significantly enriched in CD signatures until 19 years. The
development of anatomical structures remained the largest
category in both cases (37.2% for controls; 52.6% for CD).
However, the proportion of enriched GO terms associated with
the immune response was twice as high for CD signatures compared
to controls (10.5% vs 5.0%). Other categories, such as the
development of the musculoskeletal system (14.0% vs 15.8%) or
the development of the neural system (7.4% vs 5.3%), were similarly
represented. From 20 to 26 years, the GO enrichment levels of
signatures from both sample groups gradually converged until
reaching PCC = 0.70 at the 26-year classifier. CD signatures had
a total of 354 significant hits for GO term enrichments, whereas
control signatures had 264 hits. These results align with those of the
previously observed delayed aging phase from 14 to 19 years and
posterior compensatory accelerated aging for CD patients after the
age of 20 years (Figure 6D; Supplementary Material S7).

Discussion

In this study, we present NCAE-CombClock, a high-precision
neural network model for age estimation trained on a combination
of autoencoder embeddings from whole-blood DNAm data and
established age clock CpG sites. NCAE-CombClock demonstrated
exceptional accuracy in predicting chronological age across a large
dataset (n > 17,000) encompassing the entire human lifespan
(0–112 years), achieving an MAE of less than 2 years. While
existing DNAm age clocks can accurately determine whether
individuals fall below or above crucial young-age milestones (15,
18, and 21 years), their susceptibility to misclassification limits their
practical utility. To address this, we also developed a suite of neural
network classifiers (the NCAE-Age array) trained on DNAm
embeddings to generate probability estimates of age at various
cutoffs, facilitating the reliable classification of DNAm samples at
the single-year level. Furthermore, these models are interpretable
and can thus serve as exploratory tools for identifying data-driven
DNAm signatures associated with aging. Functional enrichment
analyses revealed that the NCAE-Age signatures retrieved from
healthy adolescent and young adult cohorts between 14 and
24 years were significantly enriched in GO terms associated with
developmental mechanisms, such as the development of anatomical
structures, neural system maturation, immunoregulation, and
metabolism.

The results of the regression benchmark demonstrated that
limited sets of specific CpG sites from DNAm age clocks could
predict chronological age with near-perfect precision, achieving test
set R2 values between 0.897 and 0.969. Additional predictive
performance was gained by an elastic net DNAm age clock
utilizing the combined clock CpG sites (CombClock; R2 = 0.974).
However, the fraction of non-stochastic CpG sites selected by clocks
built via penalized regression could be as low as 10% of their total
number of sites (Tong et al., 2024) and likely reflects genes involved
in or affected by different age-related mechanisms spread
throughout the interactome, rather than part of a localized
biological process (Levine et al., 2022; Liu et al., 2020). This
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implies that a large portion of useful epigenetic markers, regardless
of whether stochastic or not, are inevitably excluded. To leverage all
available DNAm information efficiently and allow for downstream
interpretability, we compressed the data into non-linear
autoencoder embeddings, enhancing the capture of complex
patterns that provide a data-rich environment for explainable
models. This strategy resulted in optimized age estimation via the
NCAE-CombClock, with a top R2 of 0.978, and interpretable single-
year DNAm signatures of aging, as demonstrated with the NCAE-
Age classifier array.

Adolescence and early adulthood are periods of rapid epigenetic
change, influenced by both intrinsic developmental processes and
extrinsic environmental factors (Simpkin et al., 2017; Jones et al.,
2015). Some of the DNAm age clocks benchmarked in this study
were developed specifically for age prediction in children and
adolescents. For example, Li’s clock (Li et al., 2018), trained
using DNAm samples from individuals between 6 and 17 years,
expectedly performed best at the 15-year threshold. Likewise,
training data for PAYA (Aanes et al., 2023) spanned 12–25 years,
resulting in accurate classifications of 18-year-olds with relatively
low FPR. NCAE-Age performed at the same or higher level than Li
and PAYA clocks across every age cutoff, while CombClock (in
young-age training setting) and NCAE-CombClock (complete-age
training) were tied in F1-score at the 15-, 18-, and 21-year
thresholds. Finally, the consensus of the top five clocks produced
the highest F1-score and lowest FPRs across categories,
underscoring the potential of ensemble-based approaches.
Nevertheless, utilizing an array of clocks such as our introduced
NCAE-Age classifiers offers several advantages over a single or a
consensus of clocks for ensuring robust predictions in legal, clinical,
and other real-life contexts. Probability estimates provide a clearer
understanding of uncertainty and confidence levels for decision-
makers, enabling a degree of redundancy that decreases the impact
of outliers or errors from any one model. In the context of health,
they may also help guide tailored preventive or therapeutic
interventions and allow for risk stratification.

DNAm age clocks have been shown to be associated with aging
factors and outcomes such as mortality, smoking, male sex, body
mass index, cardiovascular disease, and cancer (Oblak et al., 2021).
Our goal was to advance beyond merely investigating associations of
predicted epigenetic age. Instead, we aimed to implement
interpretable clocks that identify data-dependent DNAm
signatures relevant to aging, thereby validating their reliability.
The analysis of signatures retrieved from the NCAE-Age classifier
array found multiple significantly enriched age-related biological
processes. For example, regulation of organ growth, stem cell
division and differentiation (Brunet et al., 2023), regulation of the
Wnt signaling pathway (Nusse and Clevers, 2017), and Ras signal
transduction with positive regulation of the ERK1 and ERK2 cascade
(Slack et al., 2015). Several of these processes, especially those found
in the NCAE-XY-Age signatures, were markedly linked to
developmental events occurring during adolescence and young
adulthood, such as the development of primary male sexual
characteristics, forebrain development, and mammary gland
epithelium development. This highlights the specificity of NCAE-
Age DNAm signatures in reflecting youth-specific mechanisms.

Currently, clinical and lifestyle interventions aimed at mitigating
senescence are usually carried out in older individuals from 50 to

70 years (Fahy et al., 2019; Fitzgerald et al., 2021; Fitzgerald et al.,
2023; Cano-Ibáñez and Bueno-Cavanillas, 2024). However,
emerging evidence suggests that interventions during earlier life
stages can significantly influence epigenetic aging trajectories
(Mareckova et al., 2023; Harris et al., 2024). NCAE-Age
signatures of epigenetic aging could be used alongside
personalized long-term healthcare strategies starting at a younger
age, enabling researchers to measure the longitudinal impact of
lifestyle factors such as diet, physical activity, stress management, or
exposure to environmental toxins on DNAm patterns over time.
Individuals affected by age-related diseases could also benefit from
specifically tailored interventions to modulate DNAm aging
signatures and mitigate disease progression, thus improving
health outcomes. For instance, anti-inflammatory diets or
targeted pharmacological treatments could influence DNAm at
CpG sites associated with disease mechanisms, as suggested by
our NCAE-Age signatures.

In our analysis of pediatric CD, we demonstrated how the
NCAE-Age classifier array can be effectively implemented in
clinical settings to gain valuable insights into epigenetic aging
processes, disease progression, and potential personalized
therapeutic strategies. We identified a delayed pace of aging in
CD patients between 14 and 19 years, which is consistent with
existing literature (Gasparetto and Guariso, 2014; Wong et al., 2021;
Rosen et al., 2015) reporting similar trends in epigenetic aging
dynamics in CD. DNAm signatures from CD patients within this
age range, obtained from the NCAE classifiers, exhibited enrichment
for a small number of GO terms related to developmental processes.
However, the extent of this enrichment was significantly lower
compared to that observed in the control cohorts, suggesting that
the epigenetic aging mechanisms in CD patients may diverge from
typical developmental pathways, potentially reflecting disease-
specific regulatory alterations. The aging pace in CD then
accelerated until the last measured cutoff of 26 years,
compensating for the prior delay through an overactivation of
developmental processes, as evidenced by the functional
enrichment of their DNAm signatures of aging after 20 years of age.

While our approach advances DNAm age estimation and
explainability, it has certain limitations. The use of deep neural
networks introduces a degree of complexity, requiring extensive
training and hyperparameter optimization. Although the NCAE-
Age classifiers provide high-resolution insights at young ages, a
more robust interpretation of DNAm signatures of aging could be
achieved by expanding the studied age range to below 12 and above
26 years. Employing shorter time scales, such as semesters or months,
with appropriate training data could also increase result granularity.
Most DNAm age clocks included are trained on whole-blood data,
potentiallymissing epigenetic variations associated with aging in other
tissues. Notably, NCAE-Age clocks perform accurately in whole
blood, PBMCs, PBLs, saliva, and buccal epithelium. Therefore,
conducting functional analyses of models trained on these tissues
could further validate our findings. Finally, the cohorts available in
public repositories predominantly consist of samples of Caucasian
origin, which may hinder generalizability. Future work could focus on
validating our findings with the collection of a more demographically
and ethnically diverse body of data and explore the influence of
clinical, lifestyle, and environmental factors on DNAm signatures of
aging over longer time periods.
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In conclusion, our study underscores that for age estimation
models to be reliable, they must effectively capture age-related
mechanisms within their DNAm signatures. We developed
NCAE-CombClock, a novel and highly precise age prediction
model leveraging DNAm embeddings and CpG sites.
Additionally, we introduced a neural network classifier ensemble
to enhance the precision of age classification in young individuals.
By examining the DNAm signatures from these interpretable
models, we identified key biological processes associated with age
and development during youth. These findings provide valuable
insights into the mechanisms of aging in adolescence and young
adulthood and have important implications for improving health
outcomes through earlier and more personalized interventions.
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