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Artificial intelligence (AI) has emerged as a powerful tool, that has the potential to
impact society onmultiple levels. Increased adoption as well as employment of AI
in new product development and business processes have led to heightened
interest and optimism on one hand, whilst increasing fears of potential negative
societal consequences on the other. The ethics of AI has subsequently become a
topical issue for academics, industry players, health practitioners and regulators,
who have a goal and responsibility to protect the public and limit widening
inequality. Despite the publication of numerous AI ethical frameworks, guidelines
and regulations, none have specifically focused on nutrition and behaviour
change. Advances in technology, including AI and machine learning, have
opened up novel ways to deliver personalization to guide individuals towards
healthier behaviours or to manage their conditions. This perspective synthesizes
the key topics that intersect in nutrition and behaviour change where AI is
leveraged to provide personalized advice. We propose a 7-pillar framework to
guide the development of ethical and transparent AI solutions to build consumer
and practitioner trust.
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Introduction

Personalized nutrition is defined as a service or product that uses individual-specific
information, is based on evidence-based science, and aims to empower consumers to make
positive, sustainable dietary changes for health improvement, maintenance, or disease-
specific benefits (Clabbers et al., 2021). The personalized nutrition market is currently
valued at around $16 billion (MarketsandMarkets, 2020) and estimated to balloon into a
$61 billion industry by 2034 (Precedence Research, 2025). The market currently offers a
variety of solutions spanning from prevention to treatment to provide dietary
recommendations, advice, and (food) products based on an individual’s personal, life
stage, genetic, metabolic, and lifestyle data (Romero-Tapiador et al., 2023). The premise of
personalized nutrition is that individuals have different preferences to reach their health
goals (Dijksterhuis et al., 2021) and that individuals respond differently to the same food
(Zeevi et al., 2015) with the ultimate goal of improving lifespan and healthspan (Ordovas
and Berciano, 2020; Wickramasinghe et al., 2020). Nutritional care, whether for disease
prevention or treatment, is recognized as a human right (Cardenas et al., 2023) and should
be personalized to the individual. Artificial Intelligence (AI) has been increasingly employed
in a number of personalized nutrition solutions, with the aim of simulating human behavior
and intelligence through a collection of tools and algorithms, allowing the compiled system
to learn and think in ways previously impossible for humans (US GAO, 2022; Detopoulou
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et al., 2023; Meskó, 2023). The adoption of AI in clinical nutrition in
the form of enteral and parenteral nutrition is also gaining traction
(Park et al., 2024).

AI can collect, curate, analyze and identify hidden patterns and
trends at a speed unmatched by humans. This means that (if trained
well), AI can identify correlations between disparate data sets to
support healthier choices and increase engagement. In disease
prevention, combining bioinformatics and personal data with
AI’s learning power could provide experts with deep
understanding to create custom nutrition plans and advice,
leading to more effective changes in people’s dietary habits.
Examples of current market solutions that have integrated AI are
outlined in Table 1.

The opportunity of AI in nutrition and
behaviour change

The personalized nutrition industry faces many challenges new
and old, which include: a lack of adherence to recommendations
(Davies et al., 2023); limited scientific evidence on the benefit of a
personalized approach (Samad et al., 2022); a lack of available
practice guidelines (Davies et al., 2023); the high cost associated
with developing and training sophisticated AI algorithms; the
substantial computational resources required (Vanian and
Leswing, 2023); and the lack of trust and adoption of digital
health tools by healthcare professionals (US GAO, 2022). AI
opens the opportunity to combine disparate data sets, identify
barriers to behaviour change and deliver guidance, advice, and
support in real-time (Lee, 2023; Hillesheim and Brennan, 2023).
To achieve this end goal, the AI system needs to be trained with
accurate, representative, and trustworthy data sources. These
training datasets require the input of humans who decide what
training datasets are included, how they are combined, labelled and
how algorithms are developed (Beriain et al., 2022). Herein lies the
problem we will discuss next.

The ethics of AI and current frameworks
Algorithms are ultimately decisions made by the computer

system to provide an output. This can be done without using AI
(Zakeri et al., 2022; Wang et al., 2024). However, to handle complex
topics such as health and nutrition, AI can be employed to make
decisions at a fraction of a second (Sak and Suchodolska, 2021; US

GAO, 2022). However, to provide recommendations that are
relevant, accessible, and equitable to the individual and benefit
wide sections of society, the data used to train algorithms should
be free from bias, inclusive and representative (Calvaresi et al., 2022;
Detopoulou et al., 2023). Limiting or perpetuating existing
inequalities should be avoided at all costs if personalized
nutrition is going to benefit all (Renner et al., 2023). Health
inequality is already a reality owing to lack of broadband access;
limited access to healthcare services due to insurance coverage; and
high-cost burden of digital tools, exacerbating the digital divide
(Buolamwini, 2019; Zhang, et al., 2023). Therefore, the risk of using
biased datasets to train AI systems, will only perpetuate existing
biases and lead to widening inequality.

Ethical AI frameworks such as those published by the
European Commission (2019), UNESCO (2022), OECD
(2019) and AI4People (Floridi, et al., 2018), are useful to
ensure the employment of AI that is safe, fair, and beneficial
to society. They all emphasize human-centric values through
transparency, accountability, safety, and fairness, while
highlighting human rights (Fjeld et al., 2020; European
Commission, 2019; UNESCO, 2022; OECD, 2019; Floridi
et al., 2018). It should be noted that these frameworks apply
to AI systems across industries and, while important, lack
domain-specificity. Currently, none of the frameworks focuses
specifically on nutrition and behaviour change.

The EU framework is most applicable to healthcare (diagnostics,
decision support), public services, robotics, consumer tech, and
social media, whilst the UNESCO framework mostly applies to
education, health, culture, communication, and environment. The
AI4People framework focuses on areas such as labor, healthcare,
civic engagement, environment, and innovation. All frameworks
could be used and applied in nutrition as nutrition intersects both
health (accessibility, affordability, social determinants, digital
literacy) and food (e.g., production, transparency, accessibility,
agriculture).

In addition to the above-mentioned frameworks, adhering to
general standards and best practices in AI is also critical to ensure
quality and efficacy. Examples include the nearly 300 AI-related
standards formulated by various Standards Development
Organization, or the vast published and in-progress standards
from the International Organization for Standardization (ISO)
(AI Standards Hub, 2023; ISO, 2024). In short, in order to shield
society from harm, AI systems need to comply with established
frameworks and standards.

Origins of bias in nutrition AI
training datasets

Unrepresentative data sets
To train AI systems effectively and better predict real-world

contexts, solutions need to reflect varied dietary patterns and
nutritional needs for smarter personalized recommendations
(Renner et al., 2023; Romero-Tapiador et al., 2023; Shandilya
et al., 2022; Oh et al., 2021; Stefanidis et al., 2022). However, a
recent study found that digital health tools are unequally adopted
and distributed amongst society, especially when considering age
and ethnicity (Zhang et al., 2023).

TABLE 1 Examples of current applications of AI in Personalized Nutrition.

• Identifying individual biochemical and gut microbiome signatures

• Matching individual preferences and taste to food and ingredient databases

• Creation of 3D printed nutritional supplements

• Predicting blood sugar response to specific meals and interventions

• Predicting disease risk

• Identification of bioactive compounds in food

• Providing real-time feedback via chatbots

• Recognizing and analyzing composition and portion size of foods

• Segmenting users into groups based on dietary patterns or preferences
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AI systems should ensure that dietary recommendations include
large portions of the whole population, independent of gender, race,
income, education, and health conditions (Atwal, 2024). Despite
many new initiatives to limit discrimination and inequality, the risk
of using biased datasets is high. In the US, for example, AI
algorithms might not represent uninsured patients, older adults,
or include non-English languages, leading to skewed algorithm
learning (Detopoulou et al., 2023). Additionally, women have
historically been excluded from clinical trials until 1992
(Westervelt, 2015; Berlin and Ellenberg, 2009). There is generally
a lack of representation of non-Western dietary patterns and foods,
inadvertently leading to exclusion and perpetuation of existing bias
(Burt, 2021).

Lack of contextual data that drives healthy
behaviours in a variety of populations

From a behavioural perspective, it is well known that dietary and
lifestyle behaviours are key factors to health and longevity (Li et al.,
2018; Fang et al., 2021; Santos, 2022). This means that individuals
have different preferences, levels of motivation, expectations, levels
of health and AI literacy and levels of self-efficacy (Dijksterhuis et al.,
2021). Therefore, AI systems need to be built on empathy, and a
deep understanding of dietary consumption to retain cultural and
social values when identifying patterns, assessing diets, and
recommending foods and meals without discriminating or
excluding or using persuasion systems (Calvaresi et al., 2022).

A black box approach
Developing AI systems in silos that are not transparent,

explainable and without expert scrutiny, have been a
longstanding criticisms of solutions leveraging AI, known as a
black box approach. This approach further contributes to and
perpetuates existing biases that risk widening inequality (US
GAO, 2022; European Commission, 2019; UNESCO, 2022; Fjeld

et al., 2020; Samad et al., 2022; US GAO, 2022). In order to tackle
these important issues, a concerted effort from all relevant
stakeholders is needed in order to reduce societal risks. We
propose a domain-specific framework with a lens on nutrition
and behaviour change, to guide the development of ethical and
trustworthy AI systems which will be outlined next.

The 7- pillar framework for the development
of ethical and trustworthy AI solutions

The goal of AI in personalized nutrition is to enhance individual
health and behavioural outcomes (Detopoulou et al., 2023). To reach
that goal, the core focus should be on the ethics of the
recommendations provided by AI systems to build trust.
Neglecting the ethical, societal, and organizational impact of AI,
will lead to social inequity and injustice.

To address the ethical challenges AI poses in nutrition and
behaviour change specifically, we propose a comprehensive ethical
framework that includes seven interrelated principles which are:
data, the AI system, human-centricity, people and planet, regulation,
organizational commitment, and education and training (Figure 1).

These principles consider the impact of the AI system on the
individual, societal and organizational level, whilst covering the
4 key dimensions of Personalized nutrition which are food,
health, technology, and society.

Data

Data used to train AI systems should be evidence-based, diverse,
in line with current nutritional guidelines and the most recent
research to provide scientifically sound, inclusive, and
personalized dietary recommendations that meet individual
health needs. This requires the use of diverse data sets to train
the AI system, to avoid irrelevant recommendations to be made for
specific individuals or groups (Fatumo et al., 2023). For example, if
an AI system uses genetic data from individuals of European or
North American ancestry, it may fail to provide appropriate dietary
advice for individuals originating from West African countries who
are genetically more salt-sensitive and at higher risk for
hypertension (Hilliard, 2021).

Behaviour change is an important discipline that largely
contributes to the success of health programs (Villinger et al.,
2019; Reinders et al., 2023; Barker and Swift, 2009; Calvaresi
et al., 2022). At present, the research is limited to the inclusion
of a limited range of behavior change techniques (Villinger et al.,
2019). It is also not clear what the ideal mix of behaviour change
techniques is, and this remains an under-researched area (Reinders
et al., 2023). The development of ethical AI systems that influence
behaviour, will require transparency in terms of the theoretical
model employed, as well as the use of standardized language for
behaviour change techniques used to accurately measure outcomes
(Calvaresi et al., 2022; Barker and Swift, 2009; Michie et al., 2013).

A Data nutrition label, such as that proposed by the Data
Nutrition Project (Data Nutrition Project, 2021) could aid in
increasing transparency and standardization of the data used to
train AI systems and for conducting research. A data nutrition label

FIGURE 1
AI ethics framework containing 7 principles: data, AI, human-
centricity, people and planet, regulation, organizational commitment,
and education and training.
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that looks like a nutrition facts panel would be included as part of
every digital solution that employs AI. This could help consumers in
making informed choices on whether the solution matches their
goals, beliefs, and demographics. Currently, no such label exists.

AI system

To ensure high-quality AI-driven personalized nutrition
solutions, adherence to evolving AI standards and legislation is
crucial to promote technical excellence, data security, and user safety
(AI Standards Hub, 2023; ISO, 2024; OECD, 2019). Privacy, safety,
and security form the foundation of trust in AI systems (US GAO,
2022), requiring robust measures to safeguard sensitive data, prevent
misuse and unauthorized access (UNESCO, 2022; Lekadir et al.,
2022; Floridi et al., 2018). Additionally, flexibility is key for tailoring
recommendations, incorporating user feedback, adapting to
evolving needs and to technological advancements and scientific
updates (Oh et al., 2021; Lekadir et al., 2022; Fisher and Rosella,
2022). Adaptability is essential to ensure relevance and accuracy,
while also accommodating user growth, safety, and data handling
complexity without compromising on performance over time (US
GAO, 2022; Stefanidis et al., 2022; Fisher and Rosella, 2022;
Manyika, 2022; Renner et al., 2023; Villinger et al., 2019; Zhang
et al., 2020).

Therefore, solutions should be user-friendly and enable users to
navigate and control their dietary choices with ease and confidence,
free from undue pressure and aligned with their personal values,
preferences, and goals while guaranteeing safety. The same
considerations apply to AI systems when used in the clinical
nutrition setting, such as critical care (Kittrell et al., 2024).

Human-centric

Access to clinical nutrition, healthy food, and relevant
information remains a significant challenge for many across the
globe (Perrigo, 2023; Lake 2018; Caraballo et al., 2022; Brown et al.,
2022). At present, at-risk communities are disproportionately
affected by chronic diseases with reasons cited as living in food
deserts (Lake, 2018). In fact, 17 million Americans live in food
deserts and find it challenging to find healthy food options (Deloitte,
2022). Difficulty in accessing medical care is also commonly cited
(Caraballo et al., 2022). Health outcomes are influenced by factors
beyond individual choice, such as socioeconomic status and the
availability of nutritious food. This widening health inequality is
perpetuating the notion that healthy eating is for the wealthy (World
Health Organization, 2022). AI solutions, therefore, need to ensure
accessibility and equitable treatment to guarantee outcomes that
benefit all (Rankin et al., 2018).

This means that integrating social determinants of health
(SDOH) into AI solutions is essential for equitable healthcare
(Campanera et al., 2023; Minga et al., 2023). For example, by
collecting geospatial data from users, AI algorithms can adapt
recommendations to better support healthier eating behaviors,
and healthier options that are more relevant to prevent risk
factors associated with the user’s location (VoPham et al., 2018;
Lake, 2018; Rigg, 2022).

Personalization remains at the core of user-friendly AI in
nutrition, aiming to tailor nutrition recommendations to an
individual’s unique dietary needs and lifestyle choices, improving
adherence, experience, and satisfaction (Oh et al., 2021). Users need
to have the autonomy to choose freely whether to adopt the
nutritional advice or not, considering their unique preferences
and needs, along with personal values and goals (Floridi et al.,
2018; Zhang et al., 2020; Calvaresi et al., 2022). Continuous feedback
should be based on user interactions and biological responses to
check on retention and satisfaction, but also adapt to physiological
changes, essential for long-term results beyond initial outcomes such
as weight loss (Feng et al., 2023). This approach is certainly not new
and has been highlighted by previous researchers (Barrocas et al.,
2023). While not specifically related to AI, we refer the reader to a
comprehensive article on the ethical dimensions nutrition care
teams need to consider when dealing with disease-related
malnutrition and access to care using the Troubling Trichotomy
as the foundation (Barrocas et al., 2023).

People and planet

Sustainability needs to be built into AI systems to align
individual health benefits to environmental sustainability (Davies
et al., 2023; Fadnes et al., 2022). This could ultimately extend life
expectancy (e.g., Food4HealthyLife calculator) and meet cultural
acceptability and affordability. AI can assist in recommending more
sustainable diet options and tailor recommendations that support
both practitioners and consumers in making sustainable, health-
aligned dietary choices, while aligning with personal health goals
and individual values (Pettinger et al., 2023). These newly published
guidelines could serve as a starting point for developers and data
scientists to include sustainability in AI recommendations,
ultimately aiding practitioners to provide more actionable advice.

There is also a social responsibility to share learnings and data
amongst stakeholders to improve future solutions to meet broader
public health goals, effectively addressing global health challenges
(Fisher and Rosella, 2022). For instance, AI’s ability to monitor and
predict malnutrition across diverse populations paves the way for
precise, targeted interventions (Larburu et al., 2022). AI technologies
could therefore guide public health policies, aiding in the fight
against nutritional deficiencies and promoting sustainable food
systems at local, national, and international levels.

Regulation

Compliance with legal and regulatory standards is vital to ensure
that personalized nutrition AI solutions operate within the
boundaries of what is legally and ethically recognized (Lekadir
et al., 2022; Calvaresi et al., 2022). For example, The AI Act in
the EU and the AI Bill of Rights in the US, both recently approved,
aim to ensure that AI systems are safe, transparent, traceable, non-
discriminatory, and environmentally friendly (European
Commission, 2022; The White House, 2022). Other regulations
that could apply in Personalized nutrition, could span beyond
GDPR (May 2018) and include medical nutrition, EFSA, HIPAA,
Medical devices regulation (MDR), and GINA. Therefore,
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companies operating or developing solutions should seek legal
counsel to ensure they comply.

Organizational commitment

The lack of diversity within the technology industry, both in skill
sets and backgrounds, impacts the quality and diversity of the AI
solutions developed. The introduction of unconscious biases in the
development of AI systems poses a societal risk (World Economic
Forum, 2021; Buolamwini, 2019; Zinzuwadia and Singh, 2022; US
GAO, 2022). This problem is exacerbated by the
underrepresentation of women and in particular, people of color
in technology (World Economic Forum, 2021; Buolamwini, 2019;
BCS - The Chartered Institute for IT, 2022). To illustrate, women
account for less than 25% of AI specialists globally (World Economic
Forum, 2021). Furthermore, recent studies have spotlighted AI’s
failures in correctly identifying the gender of darker-skinned women
compared to their lighter-skinned counterparts (Wetsman, 2022;
Zinzuwadia and Singh, 2022), a technology increasingly used in
consumer nutrition and health solutions. This racial and gender bias
is partly attributed to the lack of diversity in the data science
community and health technology sector in general, which if not
repaired, could worsen existing inequities (Buolamwini, 2019).

For consumers and healthcare practitioners to trust both the
industry solutions, and the skills of the employees developing AI
systems, organizations will need to be more transparent on who is
behind any AI solution. For example, companies can make sure that
their team is visible (on the website) and adequately trained in areas
other than their domain expertise (Poínhos et al., 2017).
Organizations can also be more transparent about their policies
and training systems in place to address bias, social impact, and
potential harmful concerns. Transparency is key for building trust.

Education

In the current healthcare landscape, there is a readiness gap among
professionals regarding the adoption of AI technologies (Abrahams
et al., 2019). This derives mainly from a lack of understanding of the
tangible benefits that AI can offer, and the perceived threat it poses to
traditional roles within the healthcare system (Sak and Suchodolska,
2021; Abrahams et al., 2019). Concerns about the “dehumanization” of
care have been raised despite the recognition of AI’s potential to
augment healthcare services (Detopoulou et al., 2023). There is a
need to invest in training internally and externally, to ensure that
employers, partners, and users (both healthcare professionals and
patients/consumers) have the skills to leverage AI ethically and
confidently. For AI in personalized nutrition to realize its full
potential, education, and training to healthcare professionals must
evolve to include: behavioural design thinking, creative problem-
solving, data handling, entrepreneurship, behaviour change theories,
ethics in AI, and culinary medicine.

Conclusion

As we stand at the crossroads of technological innovation and
ethical responsibility, the personalized nutrition sector is
uniquely positioned to leverage AI to impact individual health
and wellness on a large scale. The 7 principles of ethical and
trustworthy AI at the intersection of nutrition and behavior
change presented here provide a compass to navigate the rapidly
unfolding AI landscape, ensuring that advancements are not only
scientifically and technologically sound but also morally
grounded. To date, the personalized nutrition sector has made
significant strides in developing solutions that cater to an
individual’s personal and biological data, yet a lot more work
and research is needed to ensure the benefits are reaped equitably
through multidisciplinary and inter-industry collaborations in
order to improve health.
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