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Estimation of chronological age is particularly informative in forensic contexts.
Assessment of DNAmethylation status allows for the prediction of age, though the
accuracymay vary acrossmodels. In this study, we startedwith a carefully designed
discovery cohort with more elderly subjects than other age categories, to diminish
the effect of epigenetic drifting. We applied multiplexing and massive parallel
sequencing of targeted DNA methylation, which let us to construct a model
comprising 25 CpG sites with substantially improved accuracy (MAE = 2.279,
R = 0.920). This model is further validated by an independent cohort (MAE =
2.204, 82.7% success (±5 years)). Remarkably, in a multi-center test using trace
blood samples from forensic caseworks, the correct predictions (±5 years) are
91.7%. The nature of our analytical pipeline can easily be scaled up with low cost.
Taken together, we propose a new age-prediction model featuring accuracy,
sensitivity, high-throughput, and low cost. This model can be readily applied in
both classic and newly emergent forensic contexts that require age estimation.
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Introduction

Forensic DNA phenotyping exploits not just genetic polymorphisms but also epigenetic
modifications, i.e., DNA methylation, to draw a bio sketch of an unknown subject (Kayser,
2015). DNAmethylation is a methyl group on the cytosine (C) followed by guanine (G) that
is commonly referred to as CpG site, where the p stands for the phosphodiester bond
between the two nucleotides. Studies have reported models that estimated chronological age
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fromDNAmethylation status, i.e., the ratio between methylated and
non-methylated CpG forms (Bekaert et al., 2015a; 2015b; Jung et al.,
2019). These models profiled DNA methylation by low-throughput
assays, i.e., pyrosequencing or PCR-based SNaPshot, thus limiting
their ability to handle a large quantity of samples (Lee et al., 2015;
Zbieć-Piekarska et al., 2015). Although models that used massive
parallel sequencing have been developed, their prediction accuracy
varied, usually deviating above 3 years from the actual age (Naue
et al., 2017; Vidaki et al., 2017; Aliferi et al., 2018).

Mounting evidence has associated aging and diseases with loss of
fidelity due to epigenetic drift, which involves the accumulation of
changes in an individual’s epigenome over time (Salameh et al., 2020;
Wu et al., 2021; Alimohammadi et al., 2022). The currently available
age-prediction models involved the use of five to eight selected CpG
sites, and consequentially their actual performance could be perturbed
by aging and pathophysiological conditions (Zbieć-Piekarska et al.,
2015; Freire-Aradas et al., 2016; Jung et al., 2019). Indeed, a substantial
decline of prediction accuracy in the elder population has been
documented in previous models (Zbieć-Piekarska et al., 2015).
Notably, regardless of human ethical groups and applicable body
fluids, these models are converged on CpG islands of ELOVL2, FHL2,
KLF14, miR29B2C, and TRIM59 genes (Zbieć-Piekarska et al., 2015;
Cho et al., 2017; Freire-Aradas et al., 2018; Jung et al., 2019; Han et al.,
2022), suggesting that these regions may harbor DNA methylation
with changes being mostly consistent with the progression of age, and
that additional age-related CpG sites within the regions might be used
to improve the accuracy of age prediction.

In the present study, we aim to increase the prediction accuracy
by diminishing the effect of epigenetic drift. Hence, we devised a
discovery cohort by deliberately recruiting more aged human
subjects than other age categories. Our rationale lies at the fact
that older individuals tend to have stochastic and sometimes
conflicting changes of methylation status, such that only the
most age-related markers throughout life course and neighboring
CpG sites could be used for the age-prediction tool. It’s important to
highlight that we assessed the performance of the model with an
independent validation cohort and a multi-center test using trace

blood samples taken directly from the forensic casework. We
demonstrate that multiplexing of target regions, when combined
with massive parallel DNA sequencing, enables the prediction of
chronological age from blood samples with substantially improved
precision, sensitivity, ease of bulk processing, and low cost.

Material and methods

The study population

This study was conducted in the Chinese Han ethnic group. We
collected 318 blood samples, including 254 samples aged 30–70 years
from the community of Shanghai Baoshan District, 55 samples aged
20–70 years from Shanghai Chang Zheng Hospital, 9 samples aged
50–70 years from Shanghai Pu Nan Hospital. These samples
comprised 180 females and 138 males. Healthy individuals were
recruited according to standardized procedures, such as physical
health, mental wellbeing, and social adaptation, at baseline and
follow-up visits from past 5 years. All blood samples were
collected in Blood Nucleic Acids Tubes (Thermo Fisher, catalog:
4342792) and stored at −80°C until use, avoiding repeated freezing
and thawing of plasma to prevent DNA degradation and
contamination. Blood samples were used within 30 days from the
time of collection. In addition, dried bloodstains from forensic
casework were provided by the public security from Beijing (n =
5), Yangzhou (n = 59), and Shanghai (n = 8). For these samples,
clinical records were not available. Dried bloodstains were used within
half a year from the time of collection. Written informed consent was
obtained prior to sample collection from every participant after
explaining the objectives and procedures of the study.

DNA extraction

For isolation of total DNA, 300 μL of whole blood was mixed
with 3 μL RNase A (200 ng/μL, ABclonal, Catalog: RM29870) and

FIGURE 1
A new age-prediction model based on DNA methylation (A) We constructed an age-prediction model with a discovery cohort, which was
consolidated by an independent validation cohort and a single-blind test using trace blood samples relevant to forensic casework (left panel). Our
analytical pipeline was built on multiplexing of targeted DNA methylation from ELOVL2, FHL2, KLF14, miR29B2C, and TRIM59 gene, followed by high-
throughput DNA methylation (right panel). (B) A new age-prediction model based on 25 CpG features was established using a discovery cohort
consisting of 191 human subjects (MAE = 2.279, R = 0.920, p < 2e-16). (C) The accuracy of prediction shown as MAE in each age categories of the
discovery cohort.
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20 μL Proteinase K Solution (Magen, catalog: D6310-03B) and
incubated for 15 min at 37°C with shaking. Bloodstains were cut
and mixed with 20 μL Proteinase K Solution and 400 μL Digestive
Solution ATL (Magen, catalog: D6310-03B) and then processed
according to the manufacturer’s instructions (Magen, catalog:
D6310-03B). DNA concentration was measured using NanoDrop
(Thermo Fisher).

Methylation analysis

Unmethylated cytosine was converted to uracil using the
Bisulfite Conversion Kit (Singlera, catalog: EP110192). 200 ng-
1 μg of DNA was added with ddH2O to make up to 60 μL and
then processed according to the manufacturer’s instructions
(Singlera, catalog: EP110192).

Primers were designed by the website https://amplicondesign.
dkfz.de/, with degenerate sequence as followings (R = A/G; Y=C/T):

ELOVL2-F:5′- TACACGACGCTCTTCCGATCTYGGTYGGGYG
GYGATTTGTA-3’; ELOVL2-R: 5′- GACGTGTGCTCTTCCGATC
TACCCACCRAAACCCAACTAT-3’; miR29B2C-F: 5′- TACACG
ACGCTCTTCCGATCTGTAAATATATAYGTGGGGGAAGAAG
GG-3’; miR29B2C-R: 5′- GACGTGTGCTCTTCCGATCTTAAT
AAAACCAAATTCTAAAACATTC-3’; TRIM59-F:5′- TACACGA
CGCTCTTCCGATCTTATYGGTGGTTTGGGGGAGAG-3’; TRI
M59-R:5′- GACGTGTGCTCTTCCGATCTAACRACTTCCCRA
AACAACRAATCTA-3’; KLF14-F:5′- TACACGACGCTCTTCC
GATCTYGGTTTTYGGTTAAGTTATGTTTAATAGT-3’; KLF1
4-R:5′-GACGTGTGCTCTTCCGATCTCTACTACAACCCAAA
AATTCC-3’; FHL2-F:5′- TACACGACGCTCTTCCGATCTTGT
TTTTYGGGTTTTGGGAGTATAG-3’; FHL2-R:5′- GACGTGTGC
TCTTCCGATCTCACRTCCTAAAACTTCTCCAATCTCC-3’.

The concentration of each primer was 100 μM. 4 μL each of
ELOVL2-F/R, 3 μL each of miR29B2C-F/R, 2.9 μL each of TRIM59-
F/R, 13.5 μL each of TRIM59-F/R, 8.5 μL each of FHL2-F/R and
ddH2O 36.2 μL o were mixed with ddH2O to make up to 100 μL of

TABLE 1 A new age-prediction model based on 25 CpG sites A list of CpG sites used in the age-prediction model, including 2 frommiR29B2C, 8 from FHL2,
5 from TRIM59, 9 from ELOVL2, and 1 from KLF14, respectively. CpG sites used by previous models were highlighted in bold blue.

Locus Gene function CpG site Chromosome location (GRCh38) Regression coefficient

miR29B2C non-coding RNA C1 chr1:207823681 −0.031

C2 chr1:207823705 −0.0242

FHL2 Transcription factor C1 chr2:105399282 0.0354

C2 chr2:105399288 0.1146

C3 chr2:105399297 0.0561

C4 chr2:105399300 0.039

C5 chr2:105399327 −0.0837

C6 chr2:105399360 −0.6492

C7 chr2:105399363 −0.2134

C8 chr2:105399388 0.057

TRIM59 Regulator of immune signaling pathways C1 chr3:160450179 0.1184

C2 chr3:160450184 0.0528

C3 chr3:160450189 0.138

C4 chr3:160450192 0.0748

C5 chr3:160450199 0.0824

ELOVL2 Synthesis of very long chain polyunsaturated fatty acids C1 chr6:11044628 0.1533

C2 chr6:11044634 0.2957

C3 chr6:11044640 0.0894

C4 chr6:11044644 0.0852

C5 chr6:11044647 0.1189

C6 chr6:11044655 0.0631

C7 chr6:11044661 0.2512

C8 chr6:11044683 −0.0028

C9 chr6:11044702 −0.0712

KLF14 Transcription factor C1 chr7:130734398 0.2441
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primer mix. Library pre-construction was performed using
KAPA2G Fast Multiplex Mix (Roche, catalog: 2GFMPXKB). PCR
reactions were carried out in a total volume of 25 μL, containing
10 ng of converted DNA, 1 μL of primer mix and 12.5 μL of 2X
KAPA2G Fast Multiplex Mix and ddH2O. The PCR program
operated with an initial denaturation step of 5 min at 95°C,
amplification for 25cycles (denaturation for 15 s at 95°C,
annealing for 15 s at 58°C and extension for 30 s at 72°C), and a
final extension for 5 min at 72°C. The amplified pre-hybridized
libraries were then purified using VAHTS DNA Clean Beads
(Vazyme, catalog: N411-02) with a volume ratio of 0.9 for the
first round of sorting (DNA Clean Beads: DNA) and 0.3 for the
second round of sorting. The purified products were subjected to
secondary amplification using TaKaRa Ex Taq (TaKaRa, catalog:
RR53A) and adaptor-specific primer (F: AATGATACGGCGACC
ACCGAGATCTACACAGCGCTAGACACTCTTTCCCTACAC
GACGCTCTTCCGATCT; R: CAAGCAGAAGACGGCATACGA
GATAACCGCGGGTGACTGGAGTTCAGACGTGTGCTCTTC
CGATCT). PCR reactions were carried out in a total volume of

25 μL, containing10 μl of purified products, 2.5 μL of 10×Ex Taq
Buffer, 2 μL of dNTP, 1 μL of TaKaRa Ex Taq, 1 µL each of
adaptor-specific primer F/R and 8.4 µL of ddH2O. The PCR
program operated with an initial denaturation step of 5 min at
95°C, amplification for 13cycles (denaturation for 15 s at 95°C,
annealing for 15 s at 58°C and extension for 30 s at 72°C), and a
final extension for 5 min at 72°C. VAHTS DNA Clean Beads was
used for purification with a volume ratio of 0.7 for the first round
of sorting (DNA Clean Beads: DNA) and 0.3 for the second round
of sorting. The concentration of the final library was determined
using Qubit 2.0 (Invitrogen) Libraries were sequenced on the
Illumina NovaSeq 6000 system (paired end; 150 bp).

High-throughput sequencing data analysis

All sequencing reads were processed with Trim Galore (v0.6.6)
(Krueger, 2015) with the parameters “--nextseq 30 --paired” to
remove the adapter sequences (AGATCGGAAGAGC) from

FIGURE 2
Validation by an independent cohort (A) The validation cohort consisting of 127 human subjects confirmed the accuracy of themodel (MAE = 2.204,
R = 0.963, p < 2e-16). (B) The accuracy of prediction in each age category of the validation cohort. Successful prediction could reach 82.7%, when the
deviation between predicted versus actual age was set as 5 years (dashed lines). MAE was shown for each age categories.

FIGURE 3
Validation by trace blood samples from forensic casework (A) The validation cohort consisting of 72 dried bloodstains subjects confirmed the
accuracy of the model (MAE = 1.965, R = 0.949, p < 2.2e-16). (B) Successful prediction could reach 91.6% from bloodstains and trace blood fluids, when
the deviation between predicted versus actual age was set as 5 years (dashed lines). MAE was shown for each age categories.
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NovaSeq-platforms and reads longer than 20 bp were kept. Reads
that passed the quality control procedure were kept and mapped to
the Homo sapiens genome (GRCh38) using bismark (v0.24.1)
(Krueger and Andrews, 2011) with default parameters. Uniquely
mapped read pairs were extracted using samtools (v1.17) (Li et al.,
2009) Methylation level was extracted by bismark.

Age prediction model

To develop an age prediction model, we employed elastic net
regression. Age prediction was trained by regressing
chronological age on methylation level using the discovery
cohort (N = 191). To begin, we randomly split the discovery
cohort into training (70%) and test (30%) sets with balanced ages.
Model optimization including hyperparameter tuning was done
by a grid search with leave-one-out cross-validation (LOOCV)
based on training sets. Model performance was assessed on the
test set, using several statistics including median absolute error
(MAE), Pearson’s correlation coefficient and its associated p
value. Furthermore, we performed a cross-validation scheme
for arriving the least biased estimates of the accuracy of the
aging clocks, consisting of leaving out a single sample from the
regression, predicting age for that sample, and iterating over all
samples on the discovery cohort. The best-tuned hyperparameter
α was 0.01, and λ was 1.2. Above model training and
hyperparameter tuning were performed with R packages caret
(v6.0–93) and glmnet (v4.1–4).

Results

The rational design of discovery aging
cohort and multiplexing assay

To establish a discovery cohort, we collected 191 peripheral
blood samples from volunteers of Chinese Han ethnicity at the
Baoshan District community of Shanghai. We deliberately recruited
more aged subjects equal to or older than 60 years compared to other
age categories (Figure 1A; Supplementary Figure S1A). Our
rationale lies at the fact that elderly individuals, due to medical
history and age, may couple with epigenetic drifting that confounds
DNA methylation status, such that only CpG sites that are mostly
correlated with age could be selected. Different from previous
reports that relied on low-throughput assay, we introduced
multiplexing PCR reaction followed by massive parallel DNA
sequencing, thereby allowing the assessment of all CpG sites
from the select regions of ELOVL2, FHL2, KLF14, miR29B2C,
and TRIM59 genes (Figure 1A). We consolidated the feasibility
of the analytical pipeline. First, we performed PCR reaction to
confirm the specificity of primer sets, as evidenced by single PCR
products for each target region (Supplementary Figure S1B). Second,
we subjected the product of multiplexed PCR reaction for high-
throughput DNA sequencing. Sequence analysis demonstrated
sufficient read counts, with minimally more than 1,000 for each
region involved (Supplementary Figure S1C). Third, we assessed
DNA methylation status for all target regions, revealing CpG sites
that displayed discordant changes with age. Taken together, this data

establishes that age-related CpG sites from target regions could be
used to develop an aging prediction model.

A new age-prediction model

We constructed a new age-prediction model using the discovery
cohort and a pipeline based on multiplexing of target regions and
massive parallel DNA sequencing (Figure 1A). First, we assessed the
ability of age-prediction by using reported CpG sites by Zbieć-
Piekarska et al. (2015); Jung et al. (2019), respectively, and found
that the use of limited CpG sites led to models with median absolute
error (MAE) higher than 3 years and variance accountant for age (R)
lower than 0.89 (Supplementary Figure S2). Second, we applied
elastic net regression and cross-validation to construct a new age-
prediction model that involved 25 CpG sites, including 2 from
miR29B2C, 8 from FHL2, 5 from TRIM59, 9 from ELOVL2, and
1 from KLF14, respectively, with 18 new CpG features not being
used by previous models (Table 1). This model demonstrated
significantly improved accuracy with MAE as low as 2.279 (R =
0.920, p < 2e-16) (Figures 1B, C).

Validation by an independent cohort

We validated the new model in an independent validation
cohort comprising 127 subjects. This experiment showed that our
model could reach 2.204 forMAE (R = 0.963, p < 2e-16) (Figure 2A).
When the maximum difference between predicted and actual age
was set as 5 years, we observed 82.7% successful predictions for the
entire cohort (Figure 2B), and notably 89.6% success for the age
category between 50 and 60 (Figure 2B).

Efficacy to predict age from trace
blood samples

We attested the model with trace blood samples that were
practically relevant to the crime scenes in the real world. We
initiated a multi-center test using dried bloodstains from forensic
casework provided by public security from Beijing (n = 5), Yangzhou
(n = 59), and Shanghai (n = 8) (Figure 3A). Without prior
knowledge of age, our model could reach 1.965 for MAE (R =
0.949, p < 2.2e-16) (Figure 3A). Notably, when the maximum
difference between the predicted and actual age was set as
5 years, our data demonstrated 91.7% success (Figure 3B).
Comparatively, our new model has improved accuracy than
previous age-prediction tools also based on massive parallel
sequencing technique (Supplementary Table S1). Significantly,
this result illustrates the ability of our model, together with the
streamlined analytical pipeline, to handle trace blood samples,
strongly supporting its readiness in forensic application.

Discussion

Estimation of age is informative in many forensic contexts, e.g.,
classically used in investigative leads for crime scenes (Phillips,
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2015). The demand of this application is now rapidly growing in age
categorization of illegal immigrants as well as asylum seekers in
which context valid identification documents are usually missing
(Schmeling et al., 2016). Thus far, forensically practical age-
prediction models have been established by the assessment of
DNA methylation status, known as epigenetic clock (Hannum
et al., 2013; Horvath, 2013; Florath et al., 2014). The currently
available models involve the use of 5-8 CpG sites and low-
throughput analytical platforms, e.g., pyrosequencing (Weidner
et al., 2014; Bekaert et al., 2015b; 2015a; Huang et al., 2015). In
the present study, we apply multiplexing of target regions followed
by high-throughput DNA sequencing. Trained by a carefully
designed aging cohort, we propose a new epigenetic clock model
that includes 25 age-related CpG sites.

Epigenetic DNA methylation is one of the hallmarks of aging,
laying critical foundation for its application to estimate the
chronological age of human subjects. However, it is well-known
that stochastic changes in DNA methylation occur with age,
smoking habit, alcoholic consumption, and disease situations
(Johansson et al., 2013; Hagerty et al., 2016; Spólnicka et al.,
2018b; 2018a; Yang et al., 2019). Consequently, an age-related
increase in interindividual variability and reciprocally a decline in
accuracy have been reported in many age-prediction models based
on biomarkers of DNA methylation (Bekaert et al., 2015a; 2015b;
Zbieć-Piekarska et al., 2015; Park et al., 2016). Hence, we designed a
training cohort by deliberately recruiting more elderly subjects than
other age categories, such that our model could be built with CpG
sites that are mostly consistent with the progression of age.
Presumably, the accuracy of age prediction could be substantially
improved by increasing the number of DNA methylation loci. As
such, we focus on 5 genomic regions with CpG sites therein
repeatedly used by various early models (Zbieć-Piekarska et al.,
2015; Freire-Aradas et al., 2018; Jung et al., 2019; Woźniak et al.,
2021; Aliferi et al., 2022; Han et al., 2022). By high-throughput DNA
sequencing, we can obtain profiles of all DNAmethylation loci from
which we construct a new model comprising 25 CpG sites. Despite
increased number of DNA methylation loci, our pipeline has been
simplified by multiplexing of these 5 target regions. Moreover, the
nature of our analytical pipeline, by measuring the ratios between
methylated and non-methylated CpG from high-throughput
sequencing, with minimally 1000 read counts for each region,
supports the consistency and robustness of the result.
Empowered by this new model, we could predict age with a
success rate of 82.7% (±5 years) in an independent validation
cohort and a success rate of 91.7% (±5 years) in a multi-center
test using dried bloodstains taken from real world
forensic casework.

Compared to the early models based on low-throughput assay,
we apply high-throughput sequencing, together with multiplexing of
target regions, thus allowing bulk processing of large volume of
samples. This ability is of paramount urgency, given the
exponentially increasing casework of illegal immigrants and
asylum seekers resulted from geographic conflict. Moreover,
another issue to consider is cost. It is important to note that the
cost for massive parallel DNA sequencing has been significantly
reduced, especially feasible for batch testing. Taken together, we
propose a new age-prediction model featuring substantially
improved accuracy, sensitivity, ease of bulk processing, and low cost.

Conclusion

In this study, we propose a new age-prediction model, when
combined with multiplexing of targeted DNA methylation and
massive parallel sequencing, that has substantially improved
accuracy, ability to handle trace blood samples, ease of large-scale
application, and low cost. To conclude, this model can be readily
applied in both classic and newly emergent forensic contexts that
require the estimation of chronological age.
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