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Background: Physical frailty is a pressing public health issue that significantly
increases the risk of disability, hospitalization, and mortality. Early and accurate
detection of frailty is essential for timely intervention, reducing its widespread
impact on healthcare systems, social support networks, and economic stability.

Objective: This study aimed to classify frailty status into binary (frail vs. non-frail)
and multi-class (frail vs. pre-frail vs. non-frail) categories. The goal was to detect
and classify frailty status at a specific point in time. Model development and
internal validation were conducted using data from wave 8 of the English
Longitudinal Study of Ageing (ELSA), with external validation using wave 6 data
to assess model generalizability.

Methods: Nine classification algorithms, including Logistic Regression, Random
Forest, K-nearest Neighbor, Gradient Boosting, AdaBoost, XGBoost, LightGBM,
CatBoost, and Multi-Layer Perceptron, were evaluated and their
performance compared.

Results: CatBoost demonstrated the best overall performance in binary
classification, achieving high recall (0.951), balanced accuracy (0.928), and the
lowest Brier score (0.049) on the internal validation set, and maintaining strong
performance externally with a recall of 0.950, balanced accuracy of 0.913, and
F1-score of 0.951. Multi-class classification was more challenging, with Gradient
Boosting emerging as the top model, achieving the highest recall (0.666) and
precision (0.663) on the external validation set, with a strong F1-score (0.664) and
reasonable calibration (Brier Score = 0.223).

Conclusion: Machine learning algorithms show promise for the detection of
current frailty status, particularly in binary classification. However, distinguishing
between frailty subcategories remains challenging, highlighting the need for
improved models and feature selection strategies to enhance multi-class
classification accuracy.
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1 Introduction

With advanced age comes an increasing prevalence of chronic
diseases (e.g., diabetes, hypertension, stroke, musculoskeletal
disease) and decline in physiological (including physical and
cognitive) functions. The concept of physical frailty is of
particular interest to the scientific and clinical communities and
is characterized by a decline in functioning across multiple
physiological systems and accompanied by an elevated
vulnerability to stressors (Hoogendijk et al., 2019). Frailty
prevalence varies widely based on classification criteria,
participant demographics, study settings (e.g., community-
dwelling, nursing homes, hospitals), and geographic location,
making cross-population comparisons challenging. For instance,
a study using data from the Survey of Health, Aging, and Retirement
in Europe (SHARE) across 18 countries estimated frailty prevalence
at 7.7% (range: 3.0%–15.6%) and pre-frailty at 42.9% (range: 34.0%–
52.8%) (Manfredi et al., 2019). Similarly, a recent meta-analysis of
community-dwelling older adults reported pooled estimates of
18.1% (95% CI: 13.0%–23.2%) for frailty and 48.9% (95% CI:
43.1%–54.6%) for pre-frailty (Cai et al., 2025). Frail individuals
(and to a lesser extent, those who are pre-frail) face an elevated risk
for several adverse health outcomes such as comorbidity, disability,
dependency, institutionalization, falls, fractures, hospitalization, and
mortality (Boyd et al., 2005). Unsurprisingly, frailty is a growing
public health concern with significant implications for labor
markets, social insurance, pension systems, and healthcare
infrastructures (Hooyman and Asuman Kiyak 2013; Makizako
et al., 2021).

Frailty is not a progressive condition, but rather a dynamic
process in which individuals can transition from a “robust” non-frail
state to either a pre-frail or frail state, or conversely transition from a
frail or pre-frail state back to a more robust condition (cf.
Hoogendijk and Dent, 2022). Indeed, there is evidence indicating
that frailty is a potentially modifiable dynamic process that can be
delayed or reversed with appropriate interventions and health
strategies (Fried et al., 2001; Gill et al., 2006; Travers et al.,
2019), but this requires accurately detecting the underlying
dysregulation of multiple physiological systems associated with
frailty before the deterioration of physical functioning has
progressed to a level that can be overtly detected.

The use of machine learning (ML) presents a promising solution
for enhancing the identification of frailty in older adults, but its
effectiveness relies on the availability of sufficient and high-quality
data to train accurate and reliable models. A recent systematic
review (Leghissa et al., 2023) indicated that more than half of
ML-based current frailty status detection studies have utilized
electronic health records (EHR) (Gomez-Cabrero et al., 2021;
Koo et al., 2022; Le Pogam et al., 2022) or longitudinal aging
studies (da Cunha Leme and de Oliveira, 2023) to train the
models, although some studies have utilized data from residential
care records (Sajeev et al., 2022), or sensor data (Garcia-Moreno
et al., 2020, Kim et al., 2020; Razjouyan et al., 2018).

The studies referenced have primarily focused on the predictive
performance of binary classification models that distinguish
between two levels of frailty, such as non-frail versus frail (da
Cunha Leme and de Oliveira, 2023; Koo et al., 2022; Le Pogam
et al., 2022; Sajeev et al., 2022) or by aggregating two frailty classes

together (e.g., grouping frail and pre-frail classes) (Leghissa et al.,
2024). ML approaches often simplify multi-class classification
problems by reducing them to binary models or by focusing on
selected classes. This simplification leverages the computational
efficiency and simplicity of algorithms like Support Vector
Machines and Logistic Regression and addresses challenges such
as class imbalance to enhance performance.

While these reasons certainly have their merit, this approach has
notable drawbacks. One significant issue is the loss of information,
as collapsing multiple classes into binary categories obscures
important distinctions between them. Additionally, binary models
may lack sensitivity by failing to capture the full complexity of the
data. For example, a model distinguishing only between frail and
non-frail individuals might miss critical details within the pre-frail
category, leading to less accurate predictions for specific sub-groups.
Binary models also often offer reduced interpretability compared to
multi-class models. While multi-class models provide detailed
insights into the risk or probability of each specific class, binary
models may not offer such granularity, making it more challenging
to understand and act upon predictions. This can also impact the
generalizability of the model, as binary classification models that
perform well in one context might not be as effective in other
settings that include a broader range of classes. Finally, binary
models may oversimplify decision boundaries, resulting in less
accurate or meaningful outcomes for complex datasets.

In light of these challenges, this study aimed to evaluate the
performance of various ML algorithms, including Logistic
Regression, Random Forest, Support Vector Machine, K-Nearest
Neighbors, XGBoost, AdaBoost, LightGBM, CatBoost, and Multi-
Layer Perceptron, for detecting current frailty status. This
assessment was conducted for both binary outcomes (frail vs.
non-frail) and multi-class outcomes (frail vs. pre-frail vs. non-
frail) using wave 8 of the English Longitudinal Study of Ageing
(ELSA) for model development and internal validation, with wave
6 data used for external validation.

2 Methods

2.1 Study population

This study utilized data from the English Longitudinal Study of
Ageing (ELSA), an ongoing prospective cohort survey designed to
investigate the health, socioeconomic status, and quality of life of
individuals aged 50 years and older residing in English communities
as they age. Health Survey for England (HSE) participants are
randomly selected to ensure a comprehensive and accurate
portrayal of individuals residing in private households across
England. Participants were originally recruited from the HSE
between 1998 and 2000 (Steptoe et al., 2013), with biannual
follow-ups conducted thereafter. To maintain representativeness,
refreshment samples (top-ups) were introduced at subsequent
waves, ensuring the cohort continued to reflect the aging
population of England. The most recent wave (wave 11)
commenced in 2023. The protocols for this cohort survey were
approved by the South Central–Berkshire Research Ethics
Committee (wave 8, approval number: 15/SC/0526, date
approved: 23 September 2015) and the NRES Committee South
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Central - Berkshire (wave 6, approval number: 11/SC/0374, date
approved: 28 November 2012). Written informed consent was
obtained from all participants at each wave.

2.2 Frailty case ascertainment

Frailty status was assessed using Fried’s Frailty Phenotype
criteria (Fried et al., 2001), with slight modifications to align with
the available data in the ELSA dataset. The five key components -
unintentional weight loss, exhaustion, low physical activity, slow
walking speed, and weak grip strength - were used to classify frailty.
Due to data limitations, information on weight loss in the last
12 months was unavailable in ELSA. Consistent with prior work
(Crow et al., 2019; Leghissa et al., 2024), this component was adapted
to being underweight, defined as having a body mass index (BMI) of
less than 18.5 kg/m2 in the current wave. Exhaustion was assessed
using two items from the eight-item Center for Epidemiological
Studies Depression (CES-D) scale, focusing on feelings of effort and
difficulty in initiating activities during the past week. Weakness was
determined as grip strength in the lowest 20% of dominant hand
values, adjusted for sex and BMI quartiles, or if the respondent had
no use of either hand for the grip strength tests or did not complete
any of the tests. Slow gait speed was defined as being in the lowest
20% of gait speed values (adjusted for sex and median height), or if

the respondent was not able to complete any of the walking tests.
Low physical activity was determined based on self-reported
frequency, with the lowest category (“hardly ever or never”)
indicating low physical activity. It is important to note that in
ELSA, key components such as grip strength and BMI (and the
variables used to calculate BMI, i.e., height, weight) are collected
only in even-numbered waves (i.e., waves 2, 4, 6, 8, and 10). Each
criterion was assigned a numerical score of 1 if met and 0 if not, and
the frailty score was derived by summing the scores of the five
criteria (range 0–5). Participants were classified as non-frail
(0 criteria), pre-frail (1–2 criteria), or frail (3–5 criteria).

2.3 Feature engineering

The data processing workflow is shown in Figure 1. A multi-step
procedure was used to select key variables associated with frailty
from the ELSA data set. First, the selection of potential explanatory
variables was narrowed down by removing participants younger
than 60 years of age (as only individuals 60 years and above
performed the gait task), variables related to the respondent’s
spouse, and then removing variables with missingness greater
than 30%. Second, since some variables in the ELSA dataset
change across waves, only variables/features that were present in
both wave 6 and wave 8 were included in the feature selection

FIGURE 1
Machine learning classification workflow.
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process, ensuring consistency in the data used for training and
validation. Third, multicollinearity was addressed in the wave
8 dataset by first removing highly correlated variables (r > 0.80),
then removing variables with a variance inflation factor
(VIF) above 5.

Following initial data cleaning, the wave 8 dataset was randomly
split into training and internal validation sets (80:20 ratio) using
stratified random splitting to preserve class distributions and
prevent data leakage. Missing data, identified as non-random by
Little’s MCAR test (p < 0.01; Li, 2013), were addressed via
Multivariate Imputation by Chained Equations (MICE). This
method generates imputed values by drawing from estimated
conditional distributions of the variable with missing data given
all other variables in the dataset (Van Buuren and Oudshoorn,
1999). The MICE imputation model was fitted exclusively on the
wave 8 training data. The trained imputer was then used to impute
missing values in both the internal test set and the external wave
6 validation data, ensuring consistency in the imputation process
without data leakage. To address class imbalance in the training
data, the Synthetic Minority Over-Sampling Technique for Nominal
and Continuous features (SMOTENC, Chawla et al., 2002) was
applied solely to the imputed training data, generating synthetic
samples of the minority class while preserving categorical data
structures. Following resampling, StandardScaler was fitted on
the training data (after resampling) to standardize input features
(mean = 0, standard deviation = 1). The learned mean and standard
deviation parameters were then applied to standardize both the
unmodified internal test and external validation sets. Feature
selection was performed after scaling using a Random Forest-
based embedded method (Breiman, 2001) to identify predictive
features from the standardized training data. Feature importance
scores were computed, and the smallest subset of features
contributing to 95% of cumulative importance was retained to
ensure selection reflected scaled feature contributions.

Model performance was evaluated using tenfold cross-validation
on the resampled training set. In each iteration, the training data was
split into 90% for model fitting and 10% for validation, ensuring that
preprocessing steps were independently refit on the 90% subset to
prevent leakage. For external validation, participants from wave 6
(who were not included in the training or internal validation) were
used to assess generalizability. These participants’ data underwent
preprocessing using parameters learned from the training set,
preserving real-world applicability while maintaining strict
separation from the model development process.

2.4 Statistical analysis

To analyze the differences between groups, traditional
statistics were employed separately for Wave 8 (training and
testing data) and Wave 6 (validation data) to assess the
distribution and group characteristics before applying ML
models. The normality of the data for each wave was first
evaluated using the Shapiro-Wilk test. Given that the data did
not follow a normal distribution (p < 0.05), separate non-
parametric Kruskal–Wallis H tests were performed to evaluate
whether statistically significant differences between the medians
of the frailty statuses exist. The Kruskal–Wallis test does not

assume normal distribution and is suitable for comparing more
than two independent groups. For the multi-class context, Dunn’s
test for pairwise comparisons was conducted to identify which
specific groups differed from each other following a significant
Kruskal–Wallis test result. Dunn’s test is a non-parametric post
hoc analysis suitable for multiple comparisons and provides
adjusted p-values to control for the Type I error rate. The
results of Dunn’s tests provided detailed insights into pairwise
group differences, offering a robust follow-up analysis to the
initial Kruskal–Wallis test. A p-value of less than 0.05 was
considered indicative of a statistically significant difference.

2.5 Machine learning models

After feature selection, 9 ML models were developed to detect
current frailty status in the ELSA dataset: Logistic Regression,
Random Forest, K-Nearest Neighbors, Gradient Boosting,
AdaBoost, XGBoost, LightGBM, CatBoost, and Multi-layer
Perceptron. The utilization of these models allowed for the
exploration of a wide range of techniques for frailty classification
and offer valuable insights into this critical health issue.

• Logistic Regression: A linear model for binary classification,
which predicts the probability of a class by modeling the log-
odds of the outcome using a logistic function. For multi-class
classification, it can be extended through approaches like one-
vs-rest or softmax regression (multinomial logistic
regression). It assumes linearity between the features and
log-odds and is particularly useful when interpretability is key.

• Random Forest: An ensemble learning method for
classification that builds a collection of decision trees using
randomly selected subsets of data and features. Each tree
makes a class prediction, and the final prediction is made
by majority voting across all trees. Random Forest reduces
variance and overfitting while being robust to noise, and it can
handle both binary and multi-class classification tasks.

• K-Nearest Neighbor: A non-parametric classification
algorithm that assigns a class label based on the majority
class of the k-nearest neighbors in the feature space. The
classification decision is based on a distance metric, such as
Euclidean or Manhattan distance. K-Nearest Neighbors is
sensitive to the choice of k and the scale of the features but
performs well when the decision boundary is non-linear.

• Gradient Boosting: A sequential ensemble method that iteratively
combines weak learners (shallow decision trees) to build a strong
predictive model. Each iteration fits a new learner to the residual
errors of the current ensemble, minimizing a loss function
through gradient descent. This approach reduces bias and
prevents overfitting through regularization techniques, making
it suitable for both regression and classification tasks, especially in
datasets with complex relationships.

• XGBoost: A gradient boosting algorithm designed for
classification tasks, building decision trees sequentially,
where each tree corrects the errors of the previous one. For
classification, it outputs a probability for each class and then
selects the class with the highest probability. XGBoost excels in
handling complex non-linear relationships and provides
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strong regularization (L1 and L2) to prevent overfitting,
making it highly effective for binary and multi-class
classification.

• AdaBoost: A boosting algorithm that combines weak learners
(usually shallow decision trees) by focusing more on
misclassified instances in each subsequent iteration. It
assigns higher weights to misclassified points, iteratively
adjusting the learners to reduce the overall error. The final
model is a weighted combination of all weak learners,
effectively improving model performance.

• LightGBM: A highly efficient gradient boosting algorithm that
excels in classification tasks by constructing decision trees
using a histogram-based method. LightGBM uses a leaf-wise
growth strategy, which reduces error faster but can lead to
overfitting if not controlled with regularization. It is optimized
for speed and scalability, making it suitable for both binary
and multi-class classification problems.

• CatBoost: A gradient boosting algorithm specifically designed
for handling categorical features effectively. In classification
tasks, CatBoost handles multi-class and binary classification
by creating a series of decision trees that correct the errors of
the previous models. It uses techniques like ordered boosting
and random permutations to avoid target leakage, improving
performance and reducing overfitting in classification tasks
with categorical variables.

• Multi-Layer Perceptron: A feedforward artificial neural
network used for both binary and multi-class classification.
In an MLP, multiple hidden layers with non-linear activation
functions (e.g., ReLU or tanh) enable the network to learn
complex patterns in data. The final output layer applies a
softmax function for multi-class classification or a sigmoid
function for binary classification. MLPs are highly flexible but
require extensive tuning to avoid overfitting, especially in
classification tasks.

2.6 Hyperparameter tuning

To optimize the performance of the ML models, hyperparameter
tuning was conducted using GridSearchCV. GridSearchCV is an
exhaustive search method that evaluates a predefined set of
hyperparameters to identify the optimal combination that maximizes
model performance. For each model, we specified a range of
hyperparameters based on common practice and prior research
(Supplementary Table S7). During the tuning process,
GridSearchCV iteratively trained each model on a training set using
each possible combination of hyperparameters. A tenfold cross-
validation technique was employed to evaluate the performance of
each configuration. The performance of each model configuration was
assessed using the same metrics outlined in Section 2.8. The
hyperparameter set yielding the highest cross-validation score was
selected as the optimal configuration for each model.

2.7 External validation

External validation is a critical phase in model development,
as it evaluates the model’s generalizability and estimates its

performance on an independent population. In this study,
models were developed and internally validated using wave
8 of the ELSA dataset, while external validation was
conducted on wave 6, collected 4 years earlier. To ensure the
independence of the external validation set, participants who
appeared in both waves were excluded. Additionally, variables
were restricted to those available in both waves, ensuring
consistency across datasets. External validation was
performed on the hyperparameter-tuned models developed
from wave 8 data.

2.8 Model evaluation

The primary performance metrics of interest included
balanced accuracy, recall/sensitivity, precision, the F1 score,
and the Brier score (Hossin and Sulaiman, 2015). Balanced
accuracy is defined as the mean of sensitivity and specificity,
providing a robust performance metric for imbalanced datasets
by equally weighting classification performance across all classes.
Recall relates to the proportion of actual positive cases that the
classifier correctly identifies as data and reflects the number of
positive predictions that the classifier correctly identifies.
Precision relates to the percentage of predicted positives that
are actually correct and reflects the classifier’s ability to minimize
false positive predictions. The F1 score is the harmonic mean of
precision and recall, with higher F1 scores indicating a better
prediction performance. Lastly, the Brier score measures the
mean squared difference between predicted probabilities and
the actual outcomes. It is used to assess the accuracy of
probabilistic predictions, with lower Brier scores indicating
better-calibrated predictions.

In addition, each model was quantitatively evaluated using
the Area Under the Receiver Operating Characteristic Curve
(ROC-AUC) score. The ROC curve demonstrates a model’s
ability to discriminate between a specific class and all others
in multi-class settings, and between positive and negative classes
in binary classification, across different decision thresholds. A
high-performing model will have an ROC curve that covers a
larger area under the curve (AUC), ideally approaching the top-
left corner (0, 1), indicating near-perfect discrimination. The
evaluation performance of the AUC value was defined by
Hosmer et al. (2013): AUC ≥0.9, outstanding discrimination;
0.8 ≤ AUC <0.9, good discrimination; 0.7 ≤ AUC <0.8,
acceptable/fair discrimination; 0.6 ≤ AUC <0.7, poor
discrimination; and AUC <0.6, no discrimination.

2.9 Implementation details

The models were executed on a Windows 11 Pro machine
containing an AMD Ryzen 9 7940HS processor with 64 GB of
RAM. All codes were written in Python version 3.11.5. Models
were implemented using scikit-learn (Pedregosa et al., 2011),
XGBoost 2.1.0 (Chen and Guestrin, 2016), and/or CatBoost 1.2.7
(Yandex, 2024). Statistical analyses were computed using SciPy
(Virtanen et al., 2020) and scikit_posthoc (Terpilowski,
2019) packages.
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3 Results

3.1 Baseline differences between included
and excluded participants

To assess potential baseline differences between included and
excluded participants, chi-square tests were conducted for
categorical variables (gender, race, education level, marital status,

and place of birth), and t-tests were used for continuous variables
(i.e., age). Full details are provided in the Supplementary Material
(Tables 1, 2).

In wave 8, included participants had a mean age of 71.5 years
versus 70.9 years for excluded participants (t = −2.729, p = 0.006),
but the effect size was negligible (Cohen’s d = −0.076). Males
comprised 44.17% of included participants and 46.93% of
excluded participants (χ2 = 3.67, p = 0.055, Cramér’s V = 0.023).

TABLE 1 Comparison of model performance with two classes (non-frail, frail).

Balanced accuracy Recall Precision F1-score Brier score ROC AUC

Internal validation

Logistic Regression 0.930 0.940 0.943 0.941 0.060 0.981

Random Forest 0.921 0.950 0.949 0.949 0.050 0.977

K-Nearest Neighbor 0.872 0.920 0.918 0.918 0.080 0.920

Gradient Boosting 0.923 0.947 0.947 0.947 0.053 0.980

AdaBoost 0.932 0.949 0.950 0.949 0.051 0.980

XGBoost 0.926 0.948 0.948 0.948 0.052 0.980

LightGBM 0.915 0.945 0.944 0.944 0.055 0.981

CatBoost 0.928 0.951 0.951 0.951 0.049 0.980

Multi-layer Perceptron 0.910 0.934 0.935 0.934 0.066 0.971

External Validation

Logistic Regression 0.932 0.942 0.950 0.944 0.058 0.971

Random Forest 0.897 0.947 0.947 0.946 0.053 0.960

K-Nearest Neighbor 0.947 0.947 0.946 0.946 0.053 0.921

Gradient Boosting 0.884 0.940 0.941 0.941 0.060 0.960

AdaBoost 0.915 0.945 0.949 0.946 0.055 0.965

XGBoost 0.904 0.950 0.951 0.950 0.050 0.962

LightGBM 0.914 0.952 0.953 0.952 0.048 0.966

CatBoost 0.913 0.950 0.952 0.951 0.050 0.970

Multi-layer Perceptron 0.916 0.947 0.950 0.948 0.053 0.966

TABLE 2 Comparison of model performance with three classes (non-frail, pre-frail, frail).

Balanced accuracy Recall Precision F1-score Brier score ROC AUC

Internal validation

Logistic Regression 0.669 0.642 0.661 0.664 0.239 0.841

Random Forest 0.684 0.688 0.695 0.691 0.208 0.853

K-Nearest Neighbor 0.621 0.590 0.598 0.580 0.273 0.780

Gradient Boosting 0.654 0.670 0.674 0.671 0.220 0.841

AdaBoost 0.680 0.668 0.675 0.670 0.221 0.799

XGBoost 0.660 0.664 0.670 0.666 0.224 0.844

LightGBM 0.661 0.667 0.673 0.670 0.221 0.847

CatBoost 0.673 0.668 0.674 0.670 0.221 0.847

Multi-layer Perceptron 0.669 0.642 0.661 0.645 0.239 0.838

External Validation

Logistic Regression 0.641 0.637 0.648 0.637 0.242 0.820

Random Forest 0.613 0.656 0.656 0.656 0.229 0.823

K-Nearest Neighbor 0.575 0.552 0.551 0.538 0.298 0.747

Gradient Boosting 0.619 0.666 0.663 0.664 0.223 0.812

AdaBoost 0.616 0.630 0.638 0.633 0.246 0.779

XGBoost 0.613 0.663 0.660 0.661 0.225 0.817

LightGBM 0.612 0.654 0.650 0.652 0.231 0.815

CatBoost 0.591 0.650 0.649 0.649 0.233 0.804

Multi-layer Perceptron 0.647 0.632 0.645 0.632 0.245 0.826
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A significant difference in racial identity was observed (χ2 = 8.64, p =
0.003, Cramér’s V = 0.036), though the effect size was small, with
similar proportions of participants identifying as white (included:
97.43%, excluded: 95.98%). Education levels also differed
significantly (χ2 = 25.00, p < 0.001, Cramér’s V = 0.061), but the
small effect size suggests only modest differences in proportions.
Marital status varied significantly (χ2 = 12.07, p = 0.007), but the
small effect size indicates limited practical significance (Cramér’s
V = 0.048, e.g., 67.41% vs. 71.21% married/partnered). UK-born
participants were more common among included (92.21%) than
excluded (89.04%) individuals (χ2 = 15.36, p < 0.0001), but the small
effect size (Cramér’s V = 0.048) suggests minimal practical impact.

In wave 6, excluded participants were significantly older
(included: 71.8 years, excluded: 73.49 years, t = −5.622, p <
0.001), though the small effect size (Cohen’s d = −0.190) suggests
only a modest difference. Gender distribution was similar (47.99%
vs. 48.90% male, χ2 = 0.259, p = 0.611, Cramér’s V = 0.009), as was
racial composition (97.20% vs. 96.25% white, χ2 = 2.184, p = 0.139,
Cramér’s V = 0.025). Education levels differed significantly (χ2 =
17.632, p < 0.001, Cramér’s V = 0.074), though the small effect size
suggests only modest differences (e.g., more excluded participants
had below upper secondary education: 47.10% vs. 39.76%). Marital
status also differed significantly (χ2 = 17.582, p = 0.001, Cramér’s V =
0.071), but the small effect size suggests limited practical impact
(e.g., 19.98% vs. 24.23% widowed). The proportion of UK-born
individuals was similar (91.54% vs. 90.52%, χ2 = 0.995, p = 0.319,
Cramér’s V = 0.017).

3.2 Dataset characteristics and class
distribution for multi-class and binary
classifications

A full description of the candidate predictors for both
classification approaches is provided in Supplementary Tables S3,
S4. For binary classification (frail vs. non-frail), a set of 34 variables
was used. These included demographic variables such as age
(rwagey) and education level (raeducl). Health-related variables
included self-reported general health status (rwshlt), changes in
self-reported health (rwshltc), the number of falls in the past 2 years
(rwfallnum), difficulties with activities of daily living (rwadlwaa),
change in activities of daily living score from the previous to the
current interview (rwadlc), gross motor index score (rwgrossa),
change in gross motor index score from the previous to the
current interview (rwgrossc), the sum of difficulties with
instrumental activities of daily living (rwiadlza), difficulties in
mobility (rwlowermoba, rwuppermoba), arthritis presence
(rwarthre), self-rated vision (rwsight, rwdsight, rwnsight), usual
pain level (rwpainlv), and frequency of light physical activity
(rwltactx_e). Cognitive function was represented by the total
word recall score (rwtr20). Income-related variables such as
disability pension income (rwissdi) and public old-age pension
(rwisret). Retirement expectations included the respondent’s
retirement age (rwretage), the probability of living to older ages
(rwliv10), the probability of receiving an inheritance in the next
10 years (rwinher), the probability of moving to a nursing home in
the next 5 years (rwpnhm5y). Family structure was captured
through membership in organizations or clubs (rwsocyr),

assistance and caregiving was captured by whether the
respondent provided informal care to grandchildren in the last
week (rwgkware1w), and stress was captured by lack of child,
other family members, and friends support (rwksupport6,
rwosupport6, rwfsupport6). Psychosocial factors were assessed
with scales such as life satisfaction (rwlsatsc3), societal position
(rwcantril), quality of life (rwcasp19), and depression (rwcesd).

For multi-class classification (frail, pre-frail, non-frail),
57 variables were used. These included demographic variables
such as age (rwagey), education level (raeducl), and reported
religion (rarelig_e). Health-related variables included the number
of falls in the past 2 years (rwfallnum), self-reported health status
(rwshlt), changes in self-reported health status from the previous to
the current interview (rwshltc), limitations in daily activities
(rwadlwaa), changes in self-reported health status from the
previous to the current interview (rwadlc), difficulties with
instrumented activities of daily living (rwiadlza), gross motor
index score (rwgrossa), change in gross motor index score from
the previous to the current interview (rwgrossc), difficulties in
mobility (rwlowermoba, rwuppermoba), arthritis presence
(rwarthre), sensory impairments (rwsight, rwdsight, rwnsight,
rwcataracte, rwhearing), urinary incontinence (rwurinai), ever
having psychological problems, asthma, high cholesterol, or high
blood pressure (rwpsyche, rwasthmae, rwhchole, rwhibpe), sleep
issues (rwwakent_e, rwwakeup_e), usual level of pain (rwpainlv),
frequency of light physical activity (rwltactx_e), and smoking status
(rwsmokev, rwsmokef). Cognitive function was represented by the
word recall score (rwtr20) and orientation score (rworient), while
income-related variables included employment earnings (rwitern),
disability income (rwissdi), and public pension income (rwisret).
Employment history variables included labor force status (rwlbrf_e)
and whether the respondent is currently working for pay (rwwork).
Retirement-related variables such as expected retirement age
(rwretage), probability of nursing home place within 5 years
(rwpnhm5y), main reason for retiring (rwrets), early retirement
status (rwearlyret), and probability of living to an older age (rwliv10)
were also included. The number of occupational pensions
(rwpeninm) was included from the pension module. Family
structure was represented by weekly contact with children and
friends (rwkcnt, rwcntpm, rwfcnt, rwfcntpm), and participation
in social clubs (rwsocyr). Life insurance coverage (rwlifein) was
included from the end-of-life module. Caregiving was represented
by the number of grandchildren cared for in the past week
(r8gkcare1w). Stress-related variables included family and friend
support scores (rwksupport6, rwosupport6, rwfsupport6). Lastly,
psychosocial factors included life satisfaction (rwlsatsc3), subjective
socioeconomic position (rwcantril), quality of life (rwcasp19), and
depression scores (rwcesd).

The characteristics of the datasets and associated statistical
significance can be found in the Supplementary Tables S5, S6.
There were 34 input features in the binary classification task. In
wave 8, non-frail individuals accounted for 85.35% of total cases, and
frail individuals accounted for 14.65% of total cases (total n = 2997).
In wave 6, non-frail individuals accounted for 77.42% of total cases,
and frail individuals accounted for 22.58% of total cases (total n =
2002). The multi-class classification case consisted of 57 input
features. In wave 8, there were 50.55% non-frail individuals,
40.77% pre-frail individuals, and 8.68% frail individuals (total
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n = 5060). In wave 6, 43.73% were considered non-frail, 41.75% pre-
frail, and 14.52% frail (total n = 2218).

3.3 Classification results

Tables 1, 2 show the behavior of the classifiers across multiple
performance metrics for the internal and external validation sets for
the binary and multi-classification tasks.

3.3.1 Binary classification
For binary classification (frail vs. non-frail), all nine models

demonstrated strong classification performance, with ROC-AUC
scores above 0.920 across both validation sets. Among the nine
binary classification models evaluated, CatBoost demonstrated the
most robust overall performance, achieving high recall (0.951),
balanced accuracy (0.928), and ROC-AUC values (0.980,
Figure 2, left) on the internal validation set. Externally, it
maintained strong classification capability with a recall of 0.950,
balanced accuracy of 0.913, an F1-score of 0.951, and an ROC-AUC
of 0.970 (Figure 2, right). LightGBM and XGBoost also performed
well, with LightGBM achieving the highest precision (0.953) and F1-
score (0.952) in external validation. While K-Nearest Neighbor had
the highest balanced accuracy externally (0.947), its overall
discrimination was weaker compared to other ensemble models.
Given its superior external validation performance in terms of recall,
calibration, and discrimination, CatBoost emerged as the more
robust model for multi-class classification. This performance was
attained with a fine-tuned configuration of 200 iterations, a learning
rate of 0.1, a maximum tree depth of 6, and an L2 regularization
value of 1.

Analysis of the confusion matrix for CatBoost reveals its
strengths and weaknesses. In the internal validation set,
CatBoost model correctly classified 77 individuals (88.5%) as

frail, but misclassified 10 (11.5%) as non-frail. The model
demonstrated strong performance in identifying non-frail
individuals with 498 (97.1%) correctly classified cases and 15
(2.9%) misclassified as frail. In the external validation set, the
model correctly predicted 390 frail cases (86.3%) but
misclassified 62 (13.7%) as non-frail. CatBoost performed well
in identifying non-frail individuals, achieving high accuracy
(1496 correct predictions, 96.5%) with only a small number
of misclassifications (54 instances, 3.5%).

3.3.2 Multi-class classification
Among the nine multi-class classification models evaluated,

Random Forest achieved the best performance on the internal
validation set, with the highest balanced accuracy (0.684), recall
(0.688), F1-score (0.691), and the lowest Brier score (0.208),
outperforming models like Logistic Regression, XGBoost, and
Gradient Boosting. Gradient Boosting also performed well, with a
recall of 0.670, balanced accuracy of 0.654, F1-score of 0.671, and an
ROC-AUC of 0.841 (Figure 3, left), showing strong classification
capability and better calibration than XGBoost and Logistic
Regression. On the external validation set, Random Forest’s
performance dropped significantly, with a decrease in balanced
accuracy (0.071), recall (0.032), and F1-score (0.035). In contrast,
Gradient Boosting achieved the highest recall (0.666) and precision
(0.663) on the external validation set, surpassing Random Forest,
XGBoost, and LightGBM. While its balanced accuracy (0.619) was
lower than some models, its F1-score (0.664) remained strong, and
its Brier Score (0.223) and ROC-AUC value (0.812, Figure 3, right)
indicated reasonable calibration.

Seven of the nine models demonstrated good discrimination,
while KNN and AdaBoost showed only acceptable performance.
Random Forest exhibited the strongest and most consistent
discrimination (internal = 0.853, external = 0.823), followed by
LightGBM (0.847, 0.815) and XGBoost (0.844, 0.817). Gradient

FIGURE 2
Receiver operating characteristic (ROC) curves for the best performing binary classification model on the internal (left panel) and external validation
sets (right panel). The ROC curve illustrates the trade-off between true positive and false positive rates, providing insight into the models’ discrimination
ability across different thresholds.
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Boosting (0.841, 0.812) and Logistic Regression (0.841, 0.820)
performed comparably, while CatBoost (0.847, 0.804) showed a
notable decline externally. KNN (0.780, 0.747) had the lowest
discrimination, and AdaBoost (0.799, 0.779) was the weakest
ensemble model. Multi-layer Perceptron performed well
internally (0.838) but declined externally (0.826).

Considering both internal and external validation results,
Gradient Boosting emerged as the most reliable model, as it
maintained strong recall across both datasets. While Random
Forest performed well on internal validation, its decline on
external data suggests potential overfitting. Thus, Gradient
Boosting is the preferred model for frailty classification due to its
more stable generalization and ability to identify frail cases
consistently. Gradient Boosting’s performance was attained with
a fine-tuned configuration of 200 trees, a learning rate of 0.2, a
maximum depth of 7, and 0.9 subsamples.

An analysis of the confusion matrix for Gradient Boosting
reveals its strengths and weaknesses. For the internal validation
set, the model correctly classified 50 individuals (60.2%) as frail, but
misclassified 32 (38.6%) as non-frail, and 1 case (1.2%) as pre-frail.
The model performed well in identifying pre-frail individuals
(381 correct predictions, 72.0%), but with some misclassifications
as frail (6 instances, 1.1%) and non-frail (142 instances, 26.8%).
Prediction of the non-frail class was also reasonable, with 256 correct
predictions (64.0%), 89 instances (22.3%) misclassified as pre-frail,
and 55 (13.8%) misclassified as frail. In the external validation set,
the Gradient Boosting model correctly predicted 171 (53.0%) frail
cases, but misclassified 4 (1.2%) cases as pre-frail, and 147 (45.8%)
cases as non-frail. Gradient Boosting excelled at identifying pre-frail
individuals, achieving high accuracy (748 correct predictions,
77.1%) but misclassified some as non-frail (218 instances, 22.5%)
and frail (4 instances, 0.4%). The model also performs reasonably
well for non-frail individuals, correctly predicting 514 cases (55.5%),
but with some misclassifications as pre-frail (319 instances, 34.5%)
and frail (93 instances, 10.0%).

4 Discussion

Physical frailty, with its profound implications for increased
disability, hospitalization, and mortality risks, underscores the
urgent need for accurate early detection to facilitate timely
interventions and mitigate its extensive impacts on healthcare
systems and social support networks. To address this need, this
study evaluated the performance of various ML algorithms
(i.e., Logistic Regression, Random Forest, K-Nearest Neighbors,
Gradient Boosting, AdaBoost, XGBoost, LightGBM, CatBoost,
and Multi-Layer Perceptron) in detecting current frailty status.
Using data from wave 8 of ELSA for model development and
internal validation, and wave 6 for external validation, we
assessed these algorithms for both binary (frail vs. non-frail) and
multi-class classification tasks (frail vs. pre-frail vs. non-frail),
aiming to gain a deeper understanding of their effectiveness in
accurately detecting frailty status.

The comparison between binary and multi-class classification
revealed substantial performance differences. CatBoost excelled in
binary classification, achieving strong performance and consistent
performance across both internal (balanced accuracy of 92.8%,
ROC-AUC of 0.980) and external validation sets (balanced
accuracy of 91.3%, ROC-AUC of 0.970). Conversely, multi-class
classification presented greater challenges, with the top-performing
model, Gradient Boosting, achieving an external validation set
balanced accuracy of only 61.9% and a macro-average ROC-AUC
of 0.812. This disparity highlights the inherent complexity of
distinguishing between multiple classes simultaneously. It is not
surprising that different algorithms excelled in binary versus multi-
class classification tasks, as the decreased performance in the multi-
class classification highlights the added complexity of
simultaneously distinguishing between multiple categories. The
higher performance in binary classification is largely due to the
simpler decision boundaries, as models only need to distinguish
between frail and non-frail categories. This allows algorithms to

FIGURE 3
Receiver operating characteristic (ROC) curves for the best performing multi-class classification model on the internal (left panel) and external
validation sets (right panel). The multi-class ROC curves include one-vs-all curves for each class along with the macro-average. These curves illustrate
the trade-off between true positive and false positive rates, providing insight into the models’ discrimination ability across different thresholds.
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focus on a more straightforward optimization problem, leading to
higher precision, recall, and calibration. In contrast, multi-class
classification requires differentiating among three categories (frail,
pre-frail, and non-frail), introducing overlapping class boundaries, a
higher likelihood of misclassification, and increased difficulty in
optimizing decision thresholds across all classes. Additionally, class
imbalance can exacerbate this challenge, as certain frailty categories
may be underrepresented, making it harder for models to learn
generalizable patterns.

Given these challenges, it is not surprising that different algorithms
excelled in binary versus multi-class classification tasks. CatBoost
emerged as the most robust model, demonstrating strong
performance across both internal and external validation sets. Its
efficiency in handling categorical data and its use of ordered
boosting to reduce data leakage and enhance generalization
contributed to its success. Additionally, CatBoost’s regularization
techniques and fine-tuned hyperparameters enabled it to model
complex decision boundaries while maintaining high calibration and
discrimination. These factors made it particularly well-suited for binary
classification tasks, where it consistently outperformed other models in
recall, balanced accuracy, and ROC-AUC scores.

In the context of multi-class classification, Gradient Boosting
emerged as the top model for frailty classification, surpassing
Random Forest despite the latter’s strong performance on the
internal validation set. While Random Forest demonstrated high
accuracy, recall, and F1-score internally, its performance significantly
dropped on the external validation set, suggesting potential overfitting
to the training data. In contrast, Gradient Boosting’s performance
remained more stable across both internal and external sets,
indicating better generalization. This robustness is due to Gradient
Boosting’s ability to focus on hard-to-classify instances through
gradient descent-based optimization, which is particularly important
inmulti-class tasks where distinguishing between the frail, pre-frail, and
non-frail categories requires nuanced decision boundaries.
Additionally, the ensemble approach of Gradient Boosting,
combining multiple weak learners, allows it to effectively handle the
class imbalance and adapt to the complexities of frailty classification.
These factors contributed to its superior ability to consistently identify
frail individuals, making it the best choice for multi-class frailty
classification compared to Random Forest.

To build on the previous discussion of model performance, it is
important to recognize the broader context in which these models
were applied. Our key strength is the use of external validation,
which mitigates overfitting and enhances the generalizability of our
models. Additionally, we systematically compared multiple ML
models and their performance across both binary and multi-class
classification tasks. While our findings offer valuable insights into
frailty detection, there are certain limitations inherent in the dataset
and the study design that should be acknowledged. One such
limitation is that our study focused on detecting current frailty
status rather than the prospective prediction of frailty, which could
have broader implications for preventive interventions. This
approach was necessitated by limitations inherent in the
structure of the ELSA dataset. Firstly, the data are collected in
waves that are spaced 2 years apart, with key frailty measures like
grip strength and BMI captured only in even-numbered waves
(i.e., waves 2, 4, 6, 8, and 10). As a result, grip strength and
other critical components of frailty are only measured every

4 years, limiting the frequency at which frailty can be assessed
and thus making it challenging to track more frequent changes in
frailty status. Moreover, the dataset does not include data on weight
loss in the past 12 months, which is a core component of frailty as
defined by Fried’s Frailty Phenotype. While modifications were
made to address these issues, they may not fully reflect dynamic
changes in frailty over time, which complicates the task of
prospective prediction. Therefore, while the ELSA dataset
provides valuable insights into the current state of frailty, it does
not offer the continuous, high-resolution data necessary to predict
future frailty status with the same accuracy.

To improve frailty classification and potentially overcome these
challenges for prospective prediction, leveraging sensor data
(Apsega et al., 2020; Akbari et al., 2021; Razjouyan et al., 2018),
or digital biomarkers (Gomez-Cabrero et al., 2021; Sargent et al.,
2024), alongside the health, social, wellbeing and economic data
already collected, offers several promising avenues. Prior research
has demonstrated that sensor-based metrics, such as gait speed,
balance, and physical activity levels, can provide critical insights
into frailty status (Apsega et al., 2020; Razjouyan et al., 2018).
Similarly, analyzing time-series data and employing signal
processing techniques, such as Fast Fourier Transform or
wavelet decomposition, can reveal temporal patterns and extract
meaningful features from raw sensor data, thus enhancing model
accuracy. Incorporating data from multiple sensor
modalities—such as accelerometers, gyroscopes, and heart rate
monitors—into ML models can provide a more holistic
understanding of an individual’s condition. Additionally,
genomics data could reveal biomarkers associated with aging,
inflammation, and muscle degeneration, which may signal early
frailty before physical symptoms become evident (Gomez-Cabrero
et al., 2021; Sargent et al., 2024). By combining biological,
physiological, and sensor data, ML models could uncover subtle
changes that precede overt behavioral symptoms, allowing for
more accurate differentiation between frail, pre-frail, and non-
frail individuals. Furthermore, integrating sociodemographic
data—such as age, gender, socioeconomic status, and lifestyle
factors—collected by the ELSA study could further refine model
performance. These factors are closely linked to frailty risk and
progression, and their inclusion could enable more precise
stratification of participants and facilitate earlier interventions.

5 Conclusion

In conclusion, this study highlights the potential of ML
algorithms to enhance early detection of physical frailty, a
condition associated with increased risks of disability,
hospitalization, and mortality. The performance gap between
binary and multi-class classification underscores the added
complexity of distinguishing multiple frailty states, which involve
more intricate decision boundaries and higher misclassification
rates. While current models perform well in binary classification,
future research should explore multi-modal approaches that
incorporate sensor, genomic, and sociodemographic data to
enhance predictive accuracy. Such advancements could improve
frailty detection and enable earlier, more targeted interventions to
mitigate its adverse outcomes.
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