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Introduction: Stroke is a significant global public health challenge, ranking as the
second leading cause of death after heart disease. One of the most debilitating
consequences for stroke survivors is the restriction ofmobility andwalking, which
greatly impacts their quality of life. The scientific literature extensively details the
characteristics of post-stroke gait, which differs markedly from physiological
walking in terms of speed, symmetry, balance control, and biomechanical
parameters. This study aims to analyze the gait parameters of stroke survivors,
considering the type of stroke and the affected cerebral regions, with the goal of
identifying specific gait biomarkers to facilitate the design of personalized and
effective rehabilitation programs.

Methods: The research focuses on 45 post-stroke patients who experienced
either hemorrhagic or ischemic strokes, categorizing them based on the location
of brain damage (cortical-subcortical, corona radiata, and basal ganglia). Gait
analysis was conducted using the GaitRite system, measuring 39 spatio-temporal
parameters.

Results: Statistical tests revealed no significant differences, but Principal
Component Analysis identified a dominant structure. Machine learning (ML)
algorithms—Random Forest (RF), Support Vector Machine (SVM), and
k-Nearest Neighbors (KNN)—were employed for classification, with RF
demonstrating superior performance in accuracy, precision, recall (all
exceeding 85%), and F1 score compared to SVM and KNN. Results indicated
ML models could identify stroke types based on gait variables when traditional
tests could not. Notably, RF outperformed others, suggesting its efficacy in
handling complex and nonlinear data relationships.

Discussion: The clinical implication emphasized a connection between gait
parameters and cerebral lesion location, notably linking basal ganglia lesions
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to prolonged double support time. This underscores the basal ganglia’s role in
motor control, sensory processing, and postural control, highlighting the
importance of sensory input in post-stroke rehabilitation.

KEYWORDS

artificial intelligence, gait parameters, machine learning, medical imaging, neurology,
older adults, stroke, rehabilitation

1 Introduction

Stroke is a global public health issue, representing the second
leading cause of death after heart attack (Khalid et al., 2023) and the
sixth highest cause of burden of disease worldwide in terms of
disability adjusted life years (Feigin et al., 2025; Johnson et al., 2016).
The burden of stroke is projected to increase, with deaths expected to
rise by 50% between 2020 and 2050, from 6.6 million to 9.7 million
annually (Feigin et al., 2023). Restriction of mobility and walking is a
major limitation that stroke survivors typically experience. About
80% of stroke patients are estimated to have ambulatory disability
3 months after the acute event (Govori et al., 2024; Teodoro et al.,
2024). Recent studies (Roelofs et al., 2023; Blennerhassett et al.,
2012) highlight that despite improvements in gait recovery, about
70% of community-dwelling stroke survivors experience falls within
a year, often due to balance loss while walking.

Scientific literature extensively describes the features of post-
stroke gait, which differs from physiological walking in terms of
speed, symmetry, balance control and biomechanical aspects.
Decreased walking speed is a typical sign of post-stroke gait and
recent assessments confirm that gait velocity for individuals with
post-stroke impairment ranges from approximately 0.18 to 1.03 m/s,
whereas healthy age-matched adults average 1.4 m/s (Mohan et al.,
2021; Darcy et al., 2024). This substantial difference in walking speed
alone accounts for a significant proportion of the variance between
post-stroke and physiological gait patterns. Current research
confirms that self-selected walking speeds for stroke survivors
remain below the 0.80 m/s threshold considered necessary for
effective community ambulation (Middleton et al., 2015).
Walking speed has been validated as a critical outcome measure
for motor recovery, with improvements typically observed from
3 months up to 12–18 months post-stroke, while other functional
measures may plateau earlier (Selves et al., 2020; Lee et al., 2015).
Temporal and spatial inter-limb asymmetries significantly
contribute to the variance in post-stroke gait compared to
physiological walking (Lee et al., 2025). Recent literature confirm
that spatiotemporal characteristics of post-stroke gait typically
include reduced step or stride length and increased step length
asymmetry between affected and unaffected sides (Patterson et al.,
2010; Wonsetler and Bowden, 2017). A significant negative
association is reported between the asymmetry ratios (affected
side/unaffected side) of stance time, swing time and stride length
with self-selected walking speed (Patterson et al., 2010; Hulleck et al.,
2022), as well as an association between greater reduction in stride
length and slower walking at patient’s highest-comfortable speed is
also described (Beaman et al., 2010). While general gait parameters
may improve over time, asymmetrical patterns often persist,
presenting a challenge for rehabilitation strategies. Inter-limb
spatio-temporal asymmetries of post-stroke gait also correlate

with impaired standing balance control (Teodoro et al., 2024;
Lewek et al., 2014), which is a further feature of gait in stroke
outcomes. Traditional clinical assessments remain valuable but have
limitations in capturing subtle gait abnormalities (Kokkotis et al.,
2023). For this reason, instrumented gait analysis has become the
gold standard for research settings, providing accurate and reliable
biomechanical evaluation of key parameters including
spatiotemporal, kinematic, and kinetic measures (Hulleck et al.,
2022). These laboratory-based assessments typically employ motion
capture systems, force platforms and sensor-embedded walkways.

A significant emerging trend is the application of artificial
intelligence in predicting functional outcomes and personalizing
rehabilitation programs. Machine learning techniques are being
developed to identify relationships between stroke characteristics
and gait parameters, supporting more tailored and effective
rehabilitation strategies (Kokkotis et al., 2023; Jeon et al., 2024;
Harari et al., 2020).

The main objective of this paper is to analyze the gait
parameters that characterized the stroke survivors, on the basis
of type of stroke and interested cerebral area, with the aim of
identifying peculiar gait biomarkers for the implementation of
personalized and effective rehabilitation programmes. In addition,
the secondary aim is to build, tune and test specific machine
learning techniques to identify an accurate stratification of the
area of stroke damage based on spatio-temporal gait parameters. In
this clinical scenario, Artificial Intelligence (AI) could play a
crucial role for underpinning the relationship between stroke
and gait parameters and thus support a better management of
the post-stroke patients by predicting functional outcomes
(Kokkotis et al., 2023; Jeon et al., 2024).

2 Materials and methods

2.1 Sample description

The study population consisted of patients with stroke, admitted
to the Physical Rehabilitation Unit, IRCCS INRCA, in the Ancona
hospitals between 2011 and 2018. Study participants met the
following inclusion criteria: 1) a history of stroke (whether
ischemic or hemorrhagic) in the previous one-2 weeks; 2)
age ≥65 years; 3) the ability to give informant consent; 4) a
stable clinical condition; 5) the ability to walk without support or
at most with only one support. The study was approved by the Ethic
Committee of the IRCCS INRCA and was conducted in accordance
with Helsinki Declaration. All included participants provided
written informed consent to participate in the study. The trial
has been registered on ClinicalTrials.gov with the number
NCT01397682).
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2.2 Procedure

Each stroke patient was assessed at admission and at discharge
with the following rating scales: Motricity Index (MI) for motor
functions (Cameron and Bohannon, 2000), Functional
Independence Measure (FIM) for activities of daily living (Ward
et al., 2011), Standing (Bohannon, 1989), Trunk Control Test
(Monticone et al., 2019), Functional Ambulation Category (FAC)
(Mehrholz et al., 2007). In addition, instrumental gait analysis was
done with the GaitRite system. GaitRite is a pressure-sensitive
sensorized mat, approximately 8.2 m long, that measures the
spatio-temporal parameters of walking. The evaluation with
GaitRite system (Menz et al., 2004) was carried out when
patients were able to walk with one support and at discharge.
The subjects performed the test wearing comfortable shoes. For
each subject, height, weight and leg length (from the greater
trochanter to the floor, passing through the lateral malleolus)
were measured. Each subject was then asked to walk at a self-
selected comfortable speed. The subjects performed three trials and
the parameters were averaged over the three trials performed. Each
trial began and ended approximately 2 m from the walkway, so that
acceleration and deceleration occurred before and after the walkway.
Parameters obtained by the GaitRite are described in Supplementary
Appendix A. Before admission to the Physical Rehabilitation Unit,
each patient had undergone a brain computerized tomography (CT)
scan to identify location, extension and nature of the stroke lesion,

whether ischemic or hemorrhagic, by acquiring axial scans. CT used
were GE Bright Speed 16-slice MDCT and GE Revolution GSI 64-
slice MDCT. Some of the patients with negative CT at the onset of
symptoms were evaluated by magnetic resonance imaging (MRI) on
Philips Ingenia 1.5 T. Patients with a brain lesion highlighted on CT
or MRI were divided into three groups based on the area of brain
damage involved, thus classifying the lesions according to their
depth into cortical-subcortical (class 1), white matter. i.e., centrum
semiovale and corona radiata (class 2), and basal ganglia
lesions (class 3).

2.3 Statistical analysis

Descriptive data (age, side of the lesion, Motricity Index, Holden
scale Functional Independence Measure, Standing, Motricity Index
for the upper and the lower limb) were presented as mean and
standard deviation (SD) for continuous variables or numbers
(percentage) for categorical ones. Moreover, thirty-nine gait
characteristics were statistically analyzed. All the methodology
steps are depicted in the flowchart in Figure 1. Since we had a
small sample size, determining the distribution of the variables was
important for choosing a most appropriate statistical method. In line
with this, Shapiro-Wilk test was performed and, for demographic
data and clinical scales, it did not show evidence of non-normality.
Based on this, we decided to use a parametric test. For features whose

FIGURE 1
Flowchart of the adopted methodology.
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test gives significance values greater than 0.05, a visual inspection
was performed to understand the distribution of the data. The
ANOVA test was used to calculate the differences between the
means of each normally distributed variable while the Kruskal-
Wallis test was performed on the not normally distributed variables.
The result of the tests was compared with an analysis of correlation
coefficients calculated pairwise among the features. This provides
insight into the redundancy of the information content contributed
by the totality of features and an understanding of which of the
features can be neglected as the analysis continues.

2.4 Data pre-processing and feature
engineering

Data are standardized by transforming numerical variables to
have zero mean and unit variance.

Principal component analysis (PCA) was used to select the most
significant features among the set of parameters that characterize the
gait task. The contribution of each feature to these principal
components is expressed by the magnitude of its corresponding
coefficient. For each PC, the features that were given a
coefficient >0.3 were reported. The results of PCA were
compared with those obtained from pairwise correlation analysis
so as to ensure the correct feature selection and consequently, the
right number of components to be used for training machine
learning algorithms.

Further, PCA was exploited to reduce dimensionality by
selecting a subset of principal components that explain a
significant portion of the data variance. By retaining the most
informative components exclusively, we can reduce the
dimensionality of the dataset while minimizing the loss of
information.

2.5 Data augmentation

The Synthetic Minority Over-Sampling TEchnique (SMOTE)
(Chawla et al., 2002) was employed as a data augmentation strategy
to tackle the issue of imbalanced target variables. The use of SMOTE
as a data augmentation technique provides a robust solution to the
problem of imbalanced target variables, contributing to the
generation of more reliable and accurate predictive models.
Majority class–class 1- is composed of 27 subjects, while the
minority classes consist of 7 (class 2) and 12 (class 3) samples.
The generation of synthetic samples, conducted with meticulous
care to uphold the fundamental patterns and distinguishing
attributes inherent in the minority class, consisted in generating
19 new samples to balance class 2 and 15 samples for class 3. After
augmentation, the dataset thus went from an instance size of 46 to
81. To ensure the quality of the oversampling process, we compared
the statistical properties of the original dataset with those of the
synthetic samples generated by SMOTE. In particular, we analyzed
the feature distributions, the consistency of principal components
and feature correlation. In detail, the mean and standard deviation of
key gait parameters were compared before and after SMOTE
application to confirm that the synthetic data did not introduce
significant bias. Principal components were compared before and

after SMOTE checking if the synthetic data followed the distribution
of the original data without introducing artificial distortions. Finally,
the correlation structure between gait parameters was preserved
after oversampling, ensuring that the relationships between features
remained consistent.

2.6 Machine learning

New PC features are used as input for machine learning algorithms
in order to predict over three classes. In this study, RandomForest (RF),
Support Vector Machine (SVM), and k-Nearest Neighbors (kNN)
algorithms were adopted. In the RF algorithm, it was chosen 5 as
minimum number of samples required in a tree node for considering a
split and further dividing the node into smaller subsets and 250 as
optimal number of tree population, above which no improvement in
classification performance is noticeable. No restriction is imposed about
the maximum number of hierarchical splits in the tree structure. SVM
was chosen because of its versatility and efficient handling of moderate-
sized datasets and its ability to control model complexity. In this regard,
the hyperparameters that were chosen as optimal by grid search
optimization are C = 2.5 and γ = 0.8. kNN architecture is built with
a specific focus on parameter selection. The key parameters chosen are
the number of neighbors (5) and the number of subspaces (3). For each
subspace, specific parameters are defined. In order to evaluate the
performance of classification models, we employed a 10-fold cross-
validation procedure. In this way, the dataset is divided into distinct
segments or folds, where one-fold is set aside as the test dataset and the
remaining folds are used for training the classification model. This
approach allows us to gain reliable insights into the model’s
performance and its ability to handle new and unseen data,
enhancing the overall validity of our findings. The performance of
each model is then calculated for each fold and averaged to provide a
comprehensive assessment of its effectiveness This process is repeated
multiple times, with each fold serving as the test dataset exactly once.
The performance of each model is then calculated for each fold and
averaged to provide a comprehensive assessment of its effectiveness.
Four metrics were calculated to interpret classification performance.
Formulas of Accuracy (Equation 1), Recall (Equation 2), Precision
(Equation 3) and F1 score (Equation 4) are reported below, where TP,
TN, FP and FN are true positive, true negative, false positive and false
negative respectively.

Accuracy � TP + TN

TP + TN + FP + FN
(1)

Recall � TP

TP + FN
(2)

Precision � TP

TP + FN
(3)

F1 score � 2 *precision * recall
precision + recall

(4)

3 Results

For this study, 45 subjects with a hemorrhagic and ischemic
stroke were considered. Clinical data were reported in Table 1. Data
are reported according to stroke damage area classes.
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Statistical analysis shows no statistically significant differences in the
clinical scales among three groups considered. One-way ANOVA test
and non-parametric Kruskal-Wallis test returns p-values>0.05 for all
variables (except for Heeloffontimer and Normvelocity) as reported in

Tables 2, 3. No statistically significant differences were found among
normally and not-normally distributed features.

This confirms that classical statistical methods are not suitable
enough to identify a priori complex data patterns, hence it is

TABLE 1 Sample description and clinical profile.

Total (n = 45) Class 1 (n = 27) Class 2 (n = 8) Class 3 (n = 10) p

Gender 0.395

Female (n) 25 16 5 4

Male (n) 20 12 3 6

Age (mean ± sd) 82.2 ± 7.4 83.7 ± 8.1 81.0 ± 5.5 80.2 ± 6.6 0.460

MI (T0/T1)

Upper Limb 79 ± 18.6/87.1 ± 14.2 77.4 ± 18.5/86.0 ± 11.2 72.3 ± 21.1/80.1 ± 21.9 89.1 ± 13.6/95.8 ± 9.3 0.146

Lower Limb 74.1 ± 19.7/86.5 ± 14.6 74.5 ± 21.6/86.4 ± 13.9 67.1 ± 17.0/84.5 ± 13.3 78.5 ± 16.2/88.4 ± 18.5 0.487

Holden (T0/T1) 1.6 ± 1.3/3.4 ± 1.1 1.7 ± 1.3/3.6 ± 1.1 1.6 ± 1.6/3.5 ± 0.9 1.7 ± 0.9/3.7 ± 1.1 0.993

Holden 0 12/0 8/0 3/0 1/0

Holden 1 11/1 7/1 1/0 3/0

Holden 2 10/13 4/9 2/2 4/2

Holden 3 9/7 7/4 0/1 2/2

Holden 4 4/16 2/10 2/3 0/3

Holden 5 0/9 0/4 0/2 0/3

FIM (T0/T1) 63.9 ± 19.2/91.7 ± 18.8 63.4 ± 18.2/89.0 ± 19.2 61.3 ± 25.2/94.6 ± 16.8 67.5 ± 18.2/96.5 ± 19.8 0.748

Standing (T0/T1) 2.3 ± 1.4/3.7 ± 0.6 2.3 ± 1.5/3.7 ± 0.5 2.1 ± 1.4/3.7 ± 0.7 2.4 ± 1.2/3.6 ± 0.9 0.921

Standing 0 9/0 8/1 1/0 0/0

Standing 1 7/0 2/0 2/0 3/0

Standing 2 11/6 6/3 2/1 3/2

Standing 3 4/5 2/4 1/0 1/1

Standing 4 14/33 9/19 2/7 3/7

Class 1 = lesions into cortical-subcortical; Class 2 = lesions into white matter; Class 3 = lesions into basal ganglia lesions; MI, motricity index; Holden 0 = Non-ambulatory; Holden 1 = Total

assistance; Holden 2 = Partial assistance; Holden 3 = Minimal assistance; Holden 4 = Independently with device; Holden 5 = Independently without device; Standing 0 = Unable to maintain

upright position; Standing 1 = Maintains upright position, with widened base, but less than 30 s; Standing 2 = Maintains upright position, with widened base, more than 30 s; Standing 3 =

Maintains upright position, narrow base, but less than 30 s; Standing 4 = Maintains upright position, narrow base, more than 30 s.

TABLE 2 ANOVA test. F value and p-value are reported for each normally distributed variable.

Feature F p-value Feature F p-value

Distance 0.981 0.382 Single support time R 0.042 0.959

Ambulation time 1.123 0.334 % double support L 1.288 0.285

Velocity 2.344 0.107 % double support R 0.608 0.548

Step count 1.744 0.186 Double support time L 0.416 0.548

Step time L 0.044 0.957 Double support time R 0.254 0.662

Step time R 1.126 0.333 Hell off time L 1.042 0.777

Cycle time L 0.334 0.718 Double support load time L 0.313 0.733

Cycle time R 0.264 0.769 Double support load time R 0.767 0.470

Support base L 1.552 0.223 Double support unload time L 0.386 0.682

Support base R 1.491 0.236 Double support unload time R 0.053 0.948

Swing time L 0.042 0.959 Stride velocity L 2.493 0.094

Stance time L 0.752 0.477 Stride velocity R 2.471 0.095

Stance time R 0.117 0.890 FAP 1.517 0.230

R = right; L = left; FAP, functional ambulation profile.
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necessary to explore the data with more specific methods in order to
identify underlying patterns.

Applying PCA to the standardized data, it can be seen that six
principal components (PCs) were sufficient to explain more than
90% of the variance of the data. Table 4 shows the combination of
features that had the greatest influence on each PC. The features that
have the most influence in determining the PC1 are time for the
double support at right and left site while swing time for the left site
and time of single support for the right site have the most effort in
calculating the PC2. The remaining PCs have a smaller percentage of
explained variance, meaning that their contribution in representing
the original feature space is significantly less than the first two.
Consequently, the features that characterize these PCs will also have
a different weight in the information effort, contributing in a minor
way to representing the original feature space.

The metrics obtained from cross-validation describing the
predictive performance on the three classes of all 3 ML models
are shown in Table 5.

Optimized RF model demonstrated superior performance
compared with optimized SVM in multiclass classification. Using
a dataset of 80 instances and a three-class target, RF achieved greater
than 85% accuracy, precision, recall. The F1 score obtained by the
model was similarly high. On the other hand, SVM showed slightly
lower performance than RF, with a slightly lower F1 score (78.33%).

Finally, the KNN model showed slightly lower performance than
SVM and RF, with accuracy, recall and F1 score just below 80%. RF
shows best discriminating performance in classifying three classes in
terms of accuracy, precision, recall and F1 score with respect to
SVM and KNN.

4 Discussion

This paper focuses on analyzing gait parameters in stroke
survivors, considering stroke type and affected cerebral area. The
goal is to identify specific gait biomarkers for personalized
rehabilitation.

From a clinical point of view, the present study suggests that
there is a possible connection between some gait parameters and
location of cerebral lesions in patients with stroke. Specifically, PC1,
accounting for about 54% of total variance, resulted to associated
with double support L/R. Looking at the median values of this
parameter in the three groups, we can observe that it is highest in the
group 3, composed of patients suffered from lesions at basal ganglia
level. Therefore, even if classical statistical approaches did not find
any significant difference among the three groups making up our
cohort with respect to double support L/R, we can hypothesize that
patients with stroke lesions involving basal ganglia tend to keep

TABLE 3 Kruskal-Wallis test. H value and p-value are reported for each not-normally distributed variable.

Feature H p-value Feature H p-value

Cadence 4.075 0.130 Swing time R 2.985 0.225

Step length L 4.560 0.334 Single support time L 3.730 0.155

Step length R 1.673 0.107 Toe in-out L 0.882 0.643

Step extremity L 4.635 0.186 Toe in-out R 0.161 0.923

Step extremity R 1.688 0.957 Hell off time R 7.432 0.024

Stride length L 3.620 0.333 Velocity normalized 6.723 0.035*

Stride length R 4.003 0.718

R = right; L = left; FAP, functional ambulation profile; *p < 0.05.

TABLE 4 Principal components.

PC1 PC2 PC3 PC4 PC5 PC6

Explained variance 54.22% 18.62% 8.52% 5.22% 3.24% 2.49%

Original features
indexes

Double support
time L/R

Swing time L, Single
support time R

Step time R, Swing time R, Single
support time L

Double support
unload time R

Toe in-out
L/R

Step extremity R, Hell
off time L

R = right; L = left.

TABLE 5 Performance metrics in cross-validation for all 3 ML models.

Accuracy (%) Precision (%) Recall (%) F1 score (%)

RF 85.56 89.44 85.56 84.49

SVM 80.56 80.58 80.56 78.33

KNN 78.16 73.85 78.06 78.80

RF , random forest; SVM, support vector machine; kNN = k-Nearest Neighbors.
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double support L/R for more time than subjects affected by ischemic
or haemorrhagic infarcts in other brain regions. In general, the link
between basal ganglia lesions and gait impairment was reported by
several studies. For instance, a recent investigation found an
association of basal ganglia micro-bleeds with both stride length
and step length in patients with cerebral small vessel disease (Mao
et al., 2023) It is important to underline that basal ganglia are
significantly involved in motor programming (Takakusaki, 2017):
this can justify a relevant difficult in the activation of gait with a
consequent generally higher time of double support L/R.

During walking, the foot plays two distinct functional roles: in
the double support phase, it primarily acts as a “sensory organ,”
acquiring postural inputs to prepare for the subsequent swing phase.
Our study identified bilateral double support time (R/L) as the most
influential parameter in the variance of gait patterns, with Principal
Component 1 (PC1) explaining 54.22% of the total variance.
Specifically, our results showed that patients with basal ganglia
lesions exhibited the highest median double support time,
suggesting a compensatory mechanism for impaired postural
control (Mao et al., 2023; Takakusaki, 2017; Perry, 1992).

This finding aligns with previous research highlighting the role
of the basal ganglia in motor programming and postural stability.
While these structures do not have direct sensory projections, they
process sensory information indirectly, integrating it into motor
output. The prolonged double support time observed in our study
suggests that patients with basal ganglia damage may rely more on
increased stance duration to stabilize their gait, compensating for
deficits in dynamic balance. This is consistent with existing evidence
linking basal ganglia microbleeds to altered stride and step length in
cerebrovascular disease patients (Takakusaki, 2017; Bhatia and
Marsden, 1994; Brown et al., 1997; Hemami and Moussavi, 2014;
Wilson et al., 2019). Furthermore, our machine learning
classification results reinforce this association: the Random Forest
model achieved over 85% accuracy, precision, and recall in
distinguishing between stroke lesion locations based on gait
parameters. Given that double support time was among the
primary discriminative features, our findings suggest that this
metric serves as a key biomarker for identifying stroke-related
gait impairments. From a clinical perspective, these insights
highlight the potential role of sensory-based rehabilitation
strategies for stroke survivors with basal ganglia damage.
Previous studies have demonstrated that sensory input training
significantly improves motor function and balance control in
post-stroke patients (Takakusaki, 2017; Jo et al., 2023). Our
results suggest that rehabilitation programs should incorporate
proprioceptive and postural control exercises, targeting the
specific gait compensations observed in patients with basal
ganglia lesions.

Therefore, intercepting the brain areas mostly involved in both
motor control and sensory processing, including primarily basal
ganglia, by means of the artificial intelligence algorithm used in the
present study, might guide rehabilitation treatment to tailor-made
programs, according to principles of precision medicine. This could
be useful in the setting of post-stroke rehabilitation in the view of
both predictions of recovery and programming interventional
treatment strategies, which could be differentiated depending on
the location of stroke lesions.

Our study differed in methodology and result with respect to
current existing scientific research in this field. While different
studies, reported in the review by Kokkotis et al. (2023), (Jo
et al., 2023), use clinical and imaging data to predict medium-to
long-term functional outcomes, our work focuses on the use of
spatiotemporal gait parameters to identify biomarkers related to
brain injury, with the goal of personalizing rehabilitation, especially
explaining possible hidden relationships between gait parameters
and cerebral area involved in stroke. In addition, although the review
reports extensive use of deep learning models, our study highlights
the robustness of more interpretable models such as Random Forest
and SVM, supported by PCA analysis for the selection of the most
relevant features. This approach provides a solid basis for the
development of rehabilitation strategies based on gait parameters,
an aspect less explored in the studies cited in the review.

However, the present study has some limitations. First, the
cohort size (45 patients) is relatively small and the patients are
not equally distributed among the three classes considered in the
study, i.e., class 1 cortical-subcortical lesions, class 2 white matter
lesions and class 3 basal ganglia lesions. However, the use of data
augmentation strategy is a validated method to reduce risks of bias
linked to class imbalance. The relatively small number of patients
with basal ganglia lesions in the original dataset (n = 12) represent a
point of weakness. While SMOTE was applied to balance the class
distribution, we acknowledge that the inclusion of synthetic samples
(n = 15) may have influenced the observed association between
double support time and basal ganglia damage. Future studies with
larger and more balanced datasets are needed to confirm these
findings without the need for oversampling techniques. A second
limitation is linked to a not precise sub-classification of cortical
lesions. To this regard, it is important to underline that different
cortical areas play different roles in motor control (Chen et al.,
2018). Therefore, a classification of cortical lesions could be of great
interest in order to measure the specific impact of each cortical area
in motor impairment. Unfortunately, in our cohort, due to the
relatively small sample size, it was not possible to sub-classify
cortical lesions in the view of using a machine learning approach,
because each subgroup would have been too small to test AI
algorithms.

In summary, our study suggests that, using a ML approach, it is
possible to correctly recognize the location of a stroke lesion based
on Gait Rite parameters. Further larger prospective studies
incorporating GaitRite data at the end of the rehabilitation
program will be needed to confirm these results and to verify
their potential impact on routine clinical practice.

5 Conclusion

Our study demonstrates that principal component analysis
(PCA) can effectively reduce the dimensionality of gait data
while preserving key variance, which can then be used as input
features for machine learning models. The Random Forest (RF)
algorithm showed superior performance in multiclass classification
of stroke patients based on gait parameters, with accuracy, precision,
recall, and F1 scores all exceeding 85%. This suggests that RF is
highly effective for this type of biomedical informatics application.
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For developers and users of biomedical informatics methods,
incorporating dimensionality reduction techniques like PCA can
enhance the performance of machine learning models by focusing
on the most informative features. Selecting robust algorithms is
crucial, and in our study, the Random Forest algorithm
outperformed Support Vector Machine (SVM) and k-Nearest
Neighbors (kNN), indicating its robustness in handling complex
biomedical data. It should be considered a strong candidate for
similar classification tasks.

Understanding the clinical implications of data features, such as
the association of basal ganglia lesions with prolonged double
support time, can provide valuable insights that enhance model
interpretability and clinical relevance. Ensuring comprehensive and
high-quality data collection, including detailed clinical profiles and
precise gait analysis, is critical for developing accurate
predictive models.

By integrating these recommendations, developers and users can
improve the effectiveness and applicability of biomedical
informatics methods in clinical settings, particularly for
personalized rehabilitation strategies for stroke survivors.
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