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Introduction: Immunosenescence is a dynamic process, where both genetic and
environmental factors account for the substantial inter-individual variability. This
paper integrates all the data on immunosenescence markers generated in our
laboratory and describes the differences and/or similarities between individuals
based on their biological conditions (immunosenescence markers) and their
associations with chronological age and health status.

Materials and Methods: The dataset consisted of immunological data from
healthy donors, centenarians, patients diagnosed with chronic kidney disease,
COVID-19 and non-small cell lung cancer (NSCLC), treatment-naïve or treated
with platinum-based chemotherapy. To determine whether there are groups of
immunologically different individuals despite their age or clinical condition,
cluster analysis was performed. Canonical discriminant analysis was performed
to determine which variables characterize each cluster.

Results: There are differences in the expression of immunosenescence markers
between healthy subjects and patients diagnosed with different pathological
conditions, regardless of their age. Meanwhile, the distribution of the clusters
indicates the presence of two separate groups of healthy participants, one of
them characterized by a high frequency of naïve lymphocytes, and the other with
high expression of terminally differentiated lymphocyte subsets. Advanced
NSCLC treatment-naïve patients were in the same cluster as a group of
healthy subjects. Additionally, centenarians belong to a different cluster than
healthy subjects, suggesting they might have a unique immune signature.

Conclusion: The distribution of clusters appears to be more appropriate than
univariate associations of single markers for health and disease research. The
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present work reveals which immune markers are relevant in different physiological
and pathological contexts and indicates the need for deeper studies on the
biological age of the immune system.
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small cell lung cancer

1 Introduction

Aging is considered the most important risk factor for most
chronic diseases in adulthood, e.g., diabetes, cardiovascular diseases,
atherosclerosis, dementia, cancer, etc (Franceschi et al., 2018).
However, the aging process is non-linear, as some people remain
active and “healthy” while others experience a decline in health or
quality of life earlier (Saavedra et al., 2023). The process of aging is
highly dependent on the context. Everyone ages differently because
each person is unique based on genetics and living history. Even,
from an immunological point of view, the combination of the type,
intensity, and temporal sequence of antigens to which we are
exposed throughout our lives is extremely important in
determining the “immunobiography” of the individual (Caruso
et al., 2022; Franceschi et al., 2017).

Recent literature highlights the distinction between how old
someone is, known as chronological age, and the overall condition of
a person’s body, known as biological age. Chronological age is based
on a person’s birth, while biological age takes into account several
biological, physiological, and environmental factors, such as
genetics, diet, and lifestyle (Li et al., 2023). Because individuals of
the same age may have different biological ages (Zavala et al., 2024),
chronological age is considered an imperfect measure of the aging
process because it does not accurately capture an individual’s
biological age (Wu et al., 2021). Estimating biological age using a
variety of biomarkers, functional assessments, and different models
provides valuable insight into an individual’s health status and aging
process. By applying these concepts, healthcare providers and
researchers can better understand aging, develop more
personalized interventions, identify individuals at higher risk for
age-related diseases, evaluate the effectiveness of lifestyle
interventions or pharmacological treatments for slowing the
aging process, and improve health outcomes in different
populations and health conditions (Salih et al., 2023).

Aging is also associated with functional changes in immunity,
resulting from age-related changes in both the innate and adaptive
branches of the immune system. The phenomena that explain these
changes have been termed immunosenescence and inflammaging
(Saavedra et al., 2023; García Verdecia et al., 2013; Saavedra et al.,
2017), which develop over time according to the individual’s
immunobiography (Saavedra et al., 2023; Franceschi et al., 2017).
Immunosenescence describes the gradual changes in immune
function associated with aging, leading to increased susceptibility
to infections and age-related inflammatory diseases. This is a highly
dynamic andmultifactorial process in which some functions decline,
while others are maintained or increased due to subject
heterogeneity (Saavedra et al., 2023; Caruso et al., 2022; Aiello
et al., 2019). Individuals with a history of frequent infections may
exhibit a different immune profile compared to those with fewer

exposures, impacting their response to infections and vaccines later
in life. During the recent COVID-19 pandemic, it was demonstrated
that having a “richer” immunobiography (in addition to other
factors, including genetic, epigenetic, or metabolic) may adversely
affect reactivity to SARS-CoV-2 not only later in life, but also earlier,
in young and middle-aged individuals (Witkowski et al., 2022).

Epigenetics, play a pivotal role in regulating aging, age-related
diseases, and biological age. These modifications significantly
influence both immunosenescence and inflammaging. Recent
research has demonstrated that these modifications can alter
immune responses and inflammatory pathways, thereby affecting
disease outcomes in older populations (Napoli et al., 2023). This
highlights the potential of targeting epigenetic factors as therapeutic
strategies to address aging-related health challenges and enhance
longevity (Costa et al., 2019; Pereira et al., 2024).

In this paper, all the data on immunosenescence markers
(lymphocyte immunophenotypes) generated in our laboratory are
combined for the first time. Here we describe the differences and/or
similarities between individuals based on their biological conditions
(immunosenescence markers) and their associations with
chronological age and health status.

2 Materials and methods

2.1 Subjects, data acquisition and processing

The dataset was composed of immunological data from healthy
donors, centenarians, patients with chronic kidney disease, COVID-
19 patients, treatment-naïve non-small cell lung cancer (NSCLC)
patients (who will be named “Before Chemotherapy”), and NSCLC
patients who underwent platinum-based chemotherapy (who will be
named “After Chemotherapy”).

The integration of these data resulted in a dataset of 397 subjects
and 165 variables. Subsequently, a variable and subject selection
process was performed, followed by imputation of missing data. In
this process, variables with more than 60% missing values were
eliminated and 55 subjects with a high degree of missing values were
discarded. In addition, the R package MissRanger was used for
imputation of missing data (Alpert et al., 2019). Imputation of
missing data was performed within each subgroup of patients
according to their clinical condition. A total of 342 patients and
26 variables were retained as a result (Figure 1).

The distribution of patients according to their clinical condition
and the mean of age in each group are indicated in Table 1. All
patients are in a similar age range except centenarians. In the case of
patients diagnosed with chronic kidney disease, the age of each
individual was not available, only the age range of the inclusion
criteria of said study.
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For the univariate analysis we aimed to compare the immune
parameters between healthy subjects and patients with different
pathological conditions. Thus, healthy subjects’ stratification was
made to achieve an age group similar to those of the patients
(between 40 and 80 years old). To determine the influence of age
over these changes in the immune system, we then selected only
subjects over 60 years old to perform the analysis.

2.1.1 White blood cells collection and staining for
flow cytometry

Peripheral blood samples were collected from participants by
venipuncture. Red cells were removed from whole blood with lysing
solution (NH4Cl, EDTA [tetrasodium], KHCO3). White blood cells
were washed twice with cytometry solution (PBS, BSA, azide 20%).
Specific antibodies against CD3 (RPE-Cy5, Bio-Rad), CD4 (FITC,
BD Pharmingen), CD8 (PE-Cy™7, BD Pharmingen), CCR7 (Alexa-

fluor 647, BD Pharmingen), CD45RA (PE-CF594, BD Horizon),
CD28 (PE, BD Pharmingen), CD19 (PerCP-Cy5.5, BD
Pharmingen), CD27 (PE, BD Pharmingen) and IgD (FITC, BD
Pharmingen) were used for staining. Antibodies were initially
titrated to determine the optimal conditions for flow cytometry
analysis before staining. For surface staining, white blood cells were
incubated with the antibody in the dark at 4°C for 20 min.
Subsequently, cells were washed twice. Data acquisition was
performed with a Gallios Flow Cytometer (Beckman Coulter, 3-
laser configuration). The data were processed with FlowJo software
(Tree Star Inc., v10[2]), and data exported as tabulated results for
statistical analyses. All the data generated were obtained from
fresh samples.

The main lymphocyte subpopulations analyzed in the T cell
compartment included the stages of differentiation of T (CD3+)
lymphocytes: (CD45RA+CCR7+) naive, (CD45RA−CCR7+) central
memory, (CD45RA−CCR7−) effector memory, and
(CD45RA+CCR7−) effector memory re-expressing CD45RA
(EMRA) CD4+ and CD8+ T cells. Additionally, the terminally
differentiated subsets CD45RA+CD28−, CD28−, within CD4+
and CD8+ T lymphocytes were evaluated.

As for B cells, the stages of differentiation based on the
expression of CD27 and IgD were evaluated: (IgD+CD27−)
naïve, (IgD+CD27+) unswitched memory B cells, (IgD−CD27+)
switchedmemory B cells, and (IgD−CD27−) double-negative B cells.

2.2 Statistical analysis

We conducted ANOVA to test differences of the frequency of
lymphocyte subpopulations among clinical conditions groups of
patients and results was showed in an error bar plot. We performed
Tukey’s Honestly Significant Difference (HSD) to adjust for multiple

FIGURE 1
Flow diagram of subject selection, data processing and statistical analysis.

TABLE 1 Distribution of subjects according to their clinical condition and
the mean of age.

Clinical condition n = 342 Age
Mean; SD

Healthy subjects 175 62.3 (20.8)

0–39 years old 40

40–80 years old 135

Centenarians 43 102.7 (1.86)

Treatment-naive cancer patients 44 60.6 (9.5)

Chemotherapy treated cancer patients 30 65.0 (7.0)

COVID-19 patients 30 58.3 (14.3)

Chronic kidney disease patients 20 NA*

*The age was not available in chronic kidney disease patient’s data.
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comparisons. Indicating a statistically significant difference was a p
value less than 0.05. Package “rstatix” de R was used.

To determine whether there are groups of immunologically
different individuals despite their clinical condition, K-means
clustering was performed using R (version 4.2.2) with the base

‘kmeans’ function, and the resulting clusters were visualized with 2-
dimensional cluster plots using the “factoextra” R package. To
determine the optimal number of clusters, we utilized the R
package NbClust (version 3.0.1), which offers 30 different indexes
based on the methodology proposed by Charrad et al. (2014). The

FIGURE 2
Frequency of naïve lymphocytes. (a) CD4 T cells (CD4+CD45RA+CCR7+), (b) CD8 T cells (CD4+CD45RA+CCR7+) (c) B cells (CD19+CD27−IgD+).
The asterisks indicate statistically significant differences among the groups (*p < 0.05) using ANOVA test.
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selection of the best number of clusters was conducted according to
the majority rule (Charrad et al., 2014).

Neither age nor clinical condition were considered for the cluster
analysis, only variables related to their immune status were taken
into account.

We used a canonical discriminant analysis (“candisc” package in
R) with group centroids, 95% confidence interval, and vectors
representing immune related variables, to identify the
characteristics of each obtained cluster. It was decided to set
statistical significances for only terms with false discovery rate

FIGURE 3
Frequency of late-stage differentiated lymphocytes. (a) EMRA CD4 T cells, (b) EMRA CD8 T cells (c) CD8+CD28− T cells. The asterisks indicate
statistically significant differences among the groups (*p < 0.05) using ANOVA test.
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(FDR) < 0.05. The R package ggplot2 was used to display the
enrichment findings.

3 Results

3.1 Immunosenescence markers differ
between health and disease

Many differences were observed comparing the frequency of
lymphocyte subpopulations among groups. As expected, Figure 2
shows that healthy subjects under 40 years old had the highest
frequency of naïve lymphocytes.

Additionally, COVID-19 and cancer patients who underwent
chemotherapy displayed significantly lower frequencies of CD4+
naïve T cells compared to healthy donors of the same age range
(between the ages of 40–80). Moreover, COVID-19 and cancer
patients had significantly lower frequencies of naïve B cells
compared to healthy donors in the same age range (Figure 3).

Centenarians, COVID-19 patients, and cancer patients after
treatment with platinum-based chemotherapy showed
significantly elevated frequencies of CD8+CD28− T cells in
comparison to healthy individuals between the ages of 40 and 80.
However, the frequencies of EMRA CD8+ T cells were lower in
treatment-naïve cancer patients (Figure 3).

3.2 Subjects with same age and similar
clinical conditions were
immunologically different

Based solely on the immune phenotype, four clusters were
identified as shown in Figure 3. After the cluster analysis, we
examined the composition of the clusters according to the
clinical condition of the patients.

The first cluster was mainly composed of healthy individuals
(median age 69.7 years). The second cluster comprised healthy
subjects (median age 57 years) and treatment-naïve NSCLC
patients. The third cluster consisted of centenarians and patients
with chronic kidney disease. The fourth cluster resulted in a
combination of cancer patients (both before and after
chemotherapy treatment), COVID-19 patients, and some
centenarians (Table 2).

Notably, the distribution of the clusters showed in Figure 4 and
Table 2 indicates the presence of two separate groups of healthy

participants, with 86 individuals belonging to cluster 1 and
85 to cluster 2.

Likewise, the centenarians and NSCLC patients prior to
undergoing chemotherapy were also segregated into two distinct
clusters each.

Then, a discriminant analysis was conducted to identify
variables characterizing each cluster. As shown in Figure 5,
healthy donors in cluster 1 were characterized by a high
expression of the terminally differentiated subpopulations CD4+
CD45RA+CD28− and CD8+ CD45RACD28− T cells. In contrast,
cluster 2, which encompassed the other subgroup of healthy
subjects, showed a high frequency of CD4+, CD8+ and CD19+
naïve lymphocytes.

Furthermore, centenarians and chronic kidney disease
patients assigned to cluster 3, showed a high frequency of
CD8+CD28− T cells as well as memory switched CD19+ cells.
Interestingly, cluster 4 shows only discrete expression of
CD8 T cells (Figure 5).

Once again, for subjects over 60 years old, four clusters with a
similar distribution were identified (Figure 6a; Table 3) and the same
variables were responsible for the separation of the clusters
(Figure 6b). The main difference in this case was that naïve cells
were no longer represented in the discriminant analysis.

4 Discussion

Aging is associated with changes in the immune system. We
(García Verdecia et al., 2013; Saavedra et al., 2017) and others
(Lazuardi et al., 2005; Lioulios et al., 2021; Soto-Heredero et al.,
2023) have demonstrated an increase in memory cells and a
decrease in naive cells. This gradual change of the immune system
with aging has been termed “immunosenescence” (Saavedra et al.,
2023). Aging and immunosenescence have been considered as
highly relevant risk factors for the development of health-
threatening diseases and conditions such as cardiovascular
disease, metabolic syndrome, and cancer, among others
(Franceschi et al., 2018). However, their relationship is
probably much more complex because everyone ages
differently, and each individual is unique in terms of genetics
and immunobiography (Saavedra et al., 2023; Caruso et al., 2022).
Another important reason is that these processes share basic
mechanisms (Franceschi et al., 2018).

This work combines for the first time all the data on
immunosenescence markers obtained in our laboratory.

TABLE 2 Distribution of subjects in each cluster according to their clinical condition.

Clinical condition Cluster 1 Cluster 2 Cluster 3 Cluster 4

Centenarians 0 5 18 20

Covid-19 0 4 0 26

After Ch 1 5 8 16

Before Ch 3 18 6 17

CKD 0 1 19 0

Healthy 86 85 0 4
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Presented in an effort to understand the differences and/or
similarities among individuals because of their chronological and
biological age, and based on their health condition.

We demonstrate here that there are differences in the expression
of immunosenescence markers between healthy subjects and
patients diagnosed with different pathological conditions,
regardless of their age.

As expected, the frequency of naïve T cells was higher in
healthy younger subjects and decreased with age and in
pathological conditions. As mentioned before, the decline in

naïve lymphocytes is a main feature of immunosenescence
(Zhang et al., 2021; Bektas et al., 2017). Moreover, the lower
frequencies of naïve CD4+ T cells and B cells in advanced NSCLC
patients and COVID-19 patients compared with age-matched
healthy volunteers is consistent with previous findings (Saavedra
et al., 2017). Our group has previously reported low naïve as well
as total lymphocyte counts in moderately and severely ill
COVID-19 patients and in advanced NSCLC patients treated
with platinum-based chemotherapy (Saavedra et al., 2022; Añé-
Kourí et al., 2023).

FIGURE 4
K-means clustering performed for the 397 subjects represented as a 2-dimensional cluster plot based on a principal component analysis.

FIGURE 5
Canonical discriminant analysis biplot with Can1 and Can2 (the 2 firsts canonical dimensions) shows the correspondence of immunological profiles
with each four clusters (showed in different colors). Points represent individuals. Vectors represent the correlations of immunological variables with the
canonical dimensions.
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On the other hand, we found that centenarians, COVID-19
patients, and cancer patients after treatment with platinum-based
chemotherapy showed elevated frequencies of the terminally
differentiated CD28− subpopulation within CD8+ T cells, compared

to healthy individuals of similar age range. Strikingly, treatment-naïve
NSCLC patients had low frequencies of late-differentiated T cells, which
could suggest that the neoplastic disease by itself did not induce
pronounced changes in the immune system in this series of data.

FIGURE 6
(a) K-means clustering performed for the 239 subjects over 60 years old. (b)Canonical discriminant analysis biplot for the immunological profiles of
the four clusters in patients over 60 years old.

TABLE 3 Distribution of subjects over 60 years old in each cluster according to their clinical condition.

Clinical condition Cluster 1 Cluster 2 Cluster 3 Cluster 4

Centenarians 0 6 16 21

Covid-19 0 1 0 13

After Chemotherapy 0 4 5 13

Before Chemotherapy 0 11 2 9

CKD 0 1 19 0

Healthy 71 45 0 2
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Althoughmany differences are observed by univariate analysis, a
more comprehensive approach is needed to gain novel insights and
understand such a complex system. In this sense, multivariate
analysis could be a useful tool to assess the changes in immune
profiles with age and disease (Saavedra et al., 2023; Alpert et al.,
2019). The main aim of the present work was to explore if there were
immunologically different subjects, despite their age or clinical
condition. By removing these variables when performing the
cluster analysis, we could achieve an unbiased classification of
subjects based only on their immune profile.

In this sense, four distinct clusters of subjects were identified.
Interestingly, the distribution of the clusters indicates the
presence of two separate groups of healthy participants.
Furthermore, discriminant analysis shows that the immune
profiles of the two groups of healthy subjects differ in the
pattern of lymphocyte differentiation; while one of them is
characterized by a high frequency of naïve lymphocytes, the
other shows high expression of terminally differentiated
lymphocyte subsets, classically regarded as immunosenescence
markers. We hypothesize that the fact that our model was able to
classify healthy subjects into two groups without considering
their chronological age, based solely on their expression patterns
of immune markers, may be explained by the concept of
biological age. While chronological age is based on the date of
birth, biological age is a functional measure, and therefore
accounts for inter-individual variability. Biological age is able
to capture physiological deterioration better than chronological
age and is actionable to interventions. As a result, two individuals
with the same chronological age could have different biological
ages (Chen et al., 2023).

Notably, advanced NSCLC treatment-naïve patients, were in
the same cluster as the healthy subjects. This is in line with the
previously discussed idea that platinum-based chemotherapy
(and not cancer) is a main driving factor of
immunosenescence in NSCLC patients (Saavedra et al., 2017;
Suárez et al., 2021). Centenarians, on the other hand, were
assigned to clusters 3 and 4. Interestingly, they belong to
different cluster than the healthy subjects, which suggests that
centenarian’s immune signature differs from the rest of healthy
subjects. Centenarians were assigned to a cluster where the
prevailing marker was a terminally differentiated population
(CD8+CD28−), Our previous work on centenarians showed
that terminally differentiated populations were predominant in
this group of subjects with extreme longevity (Añé-Kourí
et al., 2023).

Patients with end-stage renal disease undergoing
hemodialysis were a homogeneous group, with the majority of
patients assigned to cluster 3. This cluster was mainly associated
with the presence of the terminally differentiated population
CD8+CD28−. In line with our findings, Crèpin and colleagues
described a decrease in naïve CD4+ and CD8+ T cells and an
increase in CD28−CD57− terminally differentiated CD4+ and
CD8+ T cells when comparing patients with chronic kidney
disease (stage IV and dialyzed) and patients without uremia
(Crépin et al., 2020).

To the best of our knowledge, there are few studies covering a
wide range of immunological parameters in multiple pathological
conditions. However, several studies use the advantages of

multivariate analysis. In a similar study in a different context,
Shapiro and colleagues applied hierarchical clustering analysis
after measuring several immune subpopulations in type
1 diabetes (T1D) patients, unaffected controls, and unaffected
first-degree relatives of individuals with T1D. They constructed
an immune age prediction model in unaffected participants and
observed accelerated immune aging in T1D (Shapiro et al., 2023). A
study by Granic et al. aimed to explore the associations between
immunosenescence profiles and multimorbidity in older adults.
Based on clinical information, three different multimorbidity
patterns were identified by clustering. However, in this cohort,
having a more immunosenescent phenotype, characterized by
higher frequency of CD4 and CD8 senescence-like effector
memory cells and lower CD4/CD8 ratio, was not associated with
multimorbidity (Granic et al., 2022).

Although further longitudinal studies are needed to confirm
the results of the present work, there are some elements that
emerge as interesting findings. We confirm that (1) univariate
analysis, while very important, is not powerful enough to go
beyond chronological age measurement to estimate biological age
with certainty (2), we need multivariate analysis of data, and
cluster identification. A variety of methods for biological age
estimation have been developed recently, such as biomarker-
based (e.g., epigenetic clocks, telomere length, transcriptomic,
proteomic and metabolomics-based predictors) or clinical-based
indicators (e.g., frailty phenotype, frailty index, and functional
aging). Nevertheless, currently, there is no gold standard for
measuring biological age (Chen et al., 2023; Ashiqur et al., 2021;
Diebel and Rockwood, 2021).

In the recent scientific literature, many cellular and molecular
markers have been associated with age (López-Otín et al., 2023).
However, immunosenescence is a complex process, which means
that its dynamics cannot be described neither understood by
studying their relationship with healthy aging and disease one by
one, because their biological impact is rooted in the network of
interactions of diverse cells and molecules among themselves. A
complex system approach is needed, and a first step in that
approach could be the identification of multivariate clusters of
data, and the study of the association of each cluster with age and
disease (Cohen et al., 2022). Such an approach could, on the one
hand, identify different paths towards immunosenescence, and
help building a kind of “immunological clock” probably more
informative than chronological age itself. On the other hand, the
fact that we are able to detect natural groupings of subjects with
similar immune profiles, could help discovering predictive
biomarkers of healthy versus pathological aging. Additionally,
this could be valuable in identifying subjects at risk and provide
personalized intervention strategies tailored to the specific needs
of each group.

Multivariate analysis and distribution of clusters promises to be
more appropriate for health and disease research than univariate
associations of single markers because it considers multiple variables
simultaneously and is able to capture complex relationships and
interactions that univariate methods might overlook (Liu et al.,
2023). This is particularly useful when analyzing real-word data,
where variables often influence each other. The present work reveals
which immune markers are of relevance in different physiological
and pathological contexts and indicates the need for deeper studies
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on the biological age of the immune system. Such studies in Cuban
population are currently ongoing.
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