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This study aimed to identify age-related genes and alternative splicing (AS) events
by comprehensive transcriptome analysis of 1,255 healthy blood samples from
individuals aged 8–87 years. We identified 1,029 up-regulated and 1,186 down-
regulated genes in older individuals, including 17 genes overlapped with known
aging-associated genes, such as TFAP2A and Klotho. Gene set enrichment
analysis revealed significant alterations in immunoregulatory and metabolic
pathways during aging. However, many senescence-associated secretory
phenotypes (SASP) involved genes did not exhibit changes in gene expression,
suggesting that AS events may reveal additional age-related mechanisms. Aging
also altered 6,320 AS events in 4,566 genes, impacting immune-related protein
domains. The RNA-binding protein RBMS3 emerged as a key regulator of aging-
specific AS events. In addition, neoantigen prediction analyses further identified
potential neoantigens generated by aging-related AS events, with the HLA-C14:
02 allele presenting the most neoantigenic peptides. Notably, 60 neoantigenic
peptides were confirmed using proteomic data from elderly individuals,
suggesting their potential as novel targets for anti-aging immunotherapy. Our
study provides new insights into the role of alternative splicing in aging, highlights
promising avenues for anti-aging immunotherapy.
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Introduction

Aging is a complex biological process marked by progressive dysfunction of tissues and
organs, increased susceptibility to mortality, and pervasive effects on nearly all physiological
systems. Key hallmarks of aging include genomic instability, telomere shortening,
epigenetic alterations, protein homeostasis imbalance, mitochondrial dysfunction, stem
cell depletion, and altered cellular communication (Rando and Wyss-Coray, 2021; Dodig
et al., 2019; López-Otín et al., 2013). These molecular changes ultimately lead to impaired
tissue function and a significantly higher risk of diseases such as cancer and cardiovascular
disease, particularly after age 60 (Khosla et al., 2020; Melzer et al., 2020; Lehallier et al., 2019;
Campisi et al., 2019; Oliynyk, 2019). Current treatments for aging-related diseases are often
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focused on individual conditions. However, this approach may not
address the connections between different diseases, limiting its
effectiveness in extending a healthy lifespan. A deeper
understanding of the overall mechanisms of aging is crucial for
developing better treatments (Ben-Hur et al., 2013).

Studies have shown that blood contains factors that both
promote aging and support rejuvenation (Bieri et al., 2023).
Using heterochronic xenobiotic experiments in which blood from
older animals was delivered to younger animals at different time
points, multiple phenotypes of accelerated aging were observed in
younger recipients (Villeda et al., 2011; Katsimpardi et al., 2014;
Rebo et al., 2016). Moreover, AS is a crucial aspect of eukaryotic gene
expression, and significant changes in splicing patterns have been
observed during aging and senescence (Deschênes and Chabot,
2017). For example, mutations affecting splicing in the LMNA
gene, which encodes lamin A/C, are known to cause Hutchinson-
Gilford progeria syndrome, a condition characterized by premature
aging in mice and human (Rodríguez et al., 2016). In
neurodegenerative diseases such as Alzheimer’s disease (AD),
aberrant splicing of susceptibility alleles in genes like PICALM,
CLU, and PTK2B has been implicated in disease progression, further
demonstrating the critical role of splicing regulation in age-related
disorders (Raj et al., 2018). RNA-binding proteins (RBPs), which
regulate splicing events, display dynamic expression changes in
senescent tissues, and many of them are closely linked to the
cellular senescence process. For example, SRSF1, QKI, and
RBFOX2 are known to be down-regulated in senescent human
fibroblasts, affecting global splicing fidelity and senescence-
associated phenotypes (Holly et al., 2013; Blanco et al., 2008).
However, large-scale transcriptomic investigations of aging-
specific splicing patterns in human blood remain limited, leaving
critical knowledge gaps regarding how AS contributes to
immunosenescence and age-related antigenic remodeling.

Aging is accompanied by chronic inflammation, cellular
senescence, and immune decline, creating a vicious cycle between
inflammation and aging. Therefore, controlling inflammation may
be a key strategy for anti-aging interventions (Li X. et al., 2023). As
early as 1969, Walford introduced the concept of “immunological
theory of aging,” suggesting that immune senescence reduces the
body’s ability to fight tumors and eliminate senescent cells (Walford,
1964). In oncology, abnormal AS has been found to produce new
antigens that are recognized by the immune system and trigger immune
responses (Cheng et al., 2021). For instance, mutations in genes
regulating RNA splicing are common in hematological malignancies,
and intron retention (IR) has been identified as a potential source of
tumor neoantigens in multiple myeloma (MM) patients (Dong et al.,
2021). Neoantigens generated from aberrant splicing events may be
presented on the cell surface via MHC molecules. These unique
peptides, being immunologically novel, can serve as specific targets
for engineered T cells in CAR-T therapy (Frankiw et al., 2019).
Similarly, by studying age-specific splicing patterns, we may discover
new antigenic epitopes that could serve as targets for anti-aging
immunotherapy. NKG2D-CAR T cells have demonstrated the ability
to effectively eliminate senescent cells in mouse and non-human
primate (NHP) models without inducing significant adverse effects
(Yang et al., 2023). Although CAR T-cell therapy has shown promise in
aging-related disease models (Amor et al., 2020), there is still limited
research on aging-specific antigenic epitopes, especially those derived

from alternative splicing events. Importantly, clinical application of AS-
derived neoantigens inCAR-Tor other immunotherapiesmust proceed
with caution, as they may trigger autoimmune responses if not properly
filtered for specificity. A key challenge lies in identifying antigens that
are uniquely expressed on deleterious senescent cells (Wu et al., 2024),
minimizing the risk of off-target effects. Therefore, the discovery of
reliable, selective neoantigens is a critical first step. In this study, we
systematically analyzed transcriptomic data from 1,255 healthy human
blood samples to reveal aging-specific splicing patterns. Aging was
found to alter 6,320 AS events in 4,566 genes, significantly affecting
immune-related protein domains. Neoantigen prediction analyses
further identified potential neoantigens derived from aging-related
AS events, with the HLA-C14:02 allele presenting the most
neoantigenic peptides. Furthermore, the splicing factor
RBMS3 emerged as a potential key regulator of aging-related
splicing mechanisms. Importantly, a total of 60 predicted
neoantigenic peptides were validated using proteomic data from
elderly individuals, highlighting their therapeutic potential. These
results not only deepen our understanding of age-associated
transcriptomic changes but also provide a strong foundation for
advancing anti-aging immunotherapy strategies.

Methods

Data acquisition

In this study, we aimed to identify age-related transcriptomic changes
by applying stringent sample selection criteria: all included samples
required detailed age records, confirmation of healthy donor status,
and access to raw, unprocessed sequencing data. We programmatically
compiled sample metadata for all human blood transcriptome datasets
available in the GEO database and then applied these criteria to identify
eligible datasets. Ultimately, 21 datasets comprising 1,255 human blood
samples were selected for downstream analysis. RNA sequencing data
were downloaded using wget or axel tools. Detailed information on the
samples is provided in Supplementary Table S1. Additionally, we
collected 307 aging-related genes from the GenAge database
(Supplementary Table S2), a core component of the Human Aging
Genomic Resources (HAGR), which contains extensive data on genes
closely associated with aging processes. To further investigate immune-
related changes during aging, we also gathered senescence-associated
secretory phenotype (SASP) (Zhang et al., 2021), immune gene sets
(Yoshihara et al., 2013), and inflammatory factor gene sets (Subramanian
et al., 2005) from published literature (Supplementary Table S2). To
validate the presence of predicted neoantigens in old individuals, we
retrieved proteomic data from three blood sample datasets (PXD034030,
PXD033493, PXD050061; detailed in Supplementary Table S3) from the
ProteomeXchange database, a global repository for proteomics data
(Vizcaíno et al., 2014).

RNA-seq data processing

First, quality control and filtering of the downloaded fastq data
was performed using fastp (v0.22.0) (Chen et al., 2018). Sequencing
reads with junctions, excessive undetermined bases (N), or low quality
scores were removed. The following parameters were applied to
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optimize the process: window size was set to 16 (-w 16), minimum
quality threshold was set to 25 (-q 25), minimum read length was set
to 45 (-length_required 45), and amaximum of five unidentified bases
were allowed (-n_base_limit 5). After filtering, the data were aligned
to the reference human genome (GRCh38) downloaded from the
GENCODE project. The genome index was generated using HISAT2
(v2.1.0) (Kim et al., 2019), and each sample was individually aligned to
generate BAM files. The BAM files were then converted to SAM files
using SAMtools (v1.5) (Li et al., 2009). Transcript assembly and
quantification of gene and transcript expression levels were performed
using StringTie (v2.1.2) (Pertea et al., 2015). Finally, to quantify gene
expression across all samples, featureCounts (v2.0.3) (Liao et al., 2014)
was used for gene-level quantification.

Principal component analysis, gene
expression analysis, enrichment analysis

To account for potential batch effects arising from the use of
multiple GEO datasets, we first applied the removeBatchEffect
function (Ritchie et al., 2015) in the limma package, incorporating
both dataset source and sex as covariates. Differentially expressed
genes were then identified using the limma package (Smyth, 2004),
with significance thresholds set at p-value < 0.05 and |log2FC| > 1. To
further explore the biological significance of these differentially
expressed genes, we employed Gene Set Enrichment Analysis
(GSEA) to identify significantly upregulated and down-regulated
biological processes (upregulation: p-value < 0.05, |NES| > 1;
down-regulation: p-value < 0.05, NES < −1). All results were
visualized using ggplot2. Additionally, we used the gene set scoring
function in GSEA to score samples from juvenile and elderly groups
based on senescence-associated secretory phenotype (SASP), immune
response, and inflammation-related gene sets. Violin plots were
generated using the ggpubr package to illustrate these scores. Venn
diagrams were used to illustrate the overlap between gene sets.

Alternative splicing analysis

In this study, AS analysis was conducted on BAM files from the
old and young sample groups using rMATS (v4.1.2) (Shen et al.,
2014) to identify differential splicing events between the two groups.
A junction counting (JC) approach was applied to quantify each AS
event by targeting read and splice counts. All AS events were
rigorously screened based on the criteria of absolute inclusion
level difference (deltaPSI > 0.1) and false discovery rate (FDR <
0.05) between the old and young groups. Significant differential
splicing events were visualized using volcano plots. The
chromosomal distribution of differential AS events was
determined based on genomic coordinates provided in the
rMATS output files. Additionally, the overlap of these splicing
changes was calculated and visualized using the upsetR package.

For genes associated with significant differential splicing events,
we first performed protein-protein interaction (PPI) network analysis
using the STRING database (Wagner and Fischer, 1974) to identify
key network nodes and functional modules. The PPI network data
were then imported into Cytoscape for further topology analysis and
visualization editing. We then applied the rMATS output to rMAPS2

(version 2.0.0) (Hwang et al., 2020) for binding motif enrichment
analysis. The analysis focused on the binding motifs of 115 known
RNA-binding proteins, with significantly spliced regions serving as
the target regions and non-significantly spliced regions used to
estimate background binding levels. For motif enrichment analysis,
we set 250 base pairs (bp) and 50 bp as the lengths for intronic and
exonic regions, respectively, to examine and map the distribution of
motifs associated with splicing events. In addition, ordinary least
squares (OLS) linear regression was used to calculate the correlation
between Percent Spliced In (PSI) values and the expression levels of
genes with differential splicing events. Venn diagrams were used to
depict the overlap between the senescence-associated secretory
phenotype (SASP), immune gene set, and inflammatory factor
gene set. The top 200 genes associated with significantly different
splicing events were selected for Gene Ontology (GO) enrichment
analysis using the clusterProfiler package (Wu et al., 2021).

Neopeptides prediction

We obtained unspliced isoforms using chromosomal position
information from the reference genome (GRCh38), including
chromosome numbers and the start and stop base pair positions of
each gene. Based on the rMATS analysis results, we deleted, added, or
modified exons of the unspliced transcripts to construct spliced isoforms.
Python scripts were used to compare the coding sequences (CDS) of
spliced and unspliced isoforms for each differential splicing event.

Next, we applied InterProScan (Jones et al., 2014) to search for
protein structural domains in the Pfam database and used R scripts
to identify splicing events that overlapped with these domains. Using
the translate function, we translated unspliced and spliced
transcripts into amino acid sequences, which were divided into
9-amino acid peptides using a sliding-window technique (moving
one residue at a time).

Additionally, we constructed peptide libraries using gffread
(v0.11.4) (Pertea and Pertea, 2020), by translating transcripts
quantified by StringTie (Pertea et al., 2015) from young and
middle-aged samples into amino acid sequences, which were also
split into 9-mer peptides. By excluding peptides from the spliced
isoforms that matched those in the unspliced isoforms and in the
young and middle-aged peptide libraries, we identified novel
peptides specific to the aging process.

Finally, we used the OptiType tool (Szolek et al., 2014) for HLA
typing of elderly individuals and combined it with NetMHCpan-4.1
(Reynisson et al., 2020) to predict the binding affinity of the novel
peptides to HLA molecules. Peptides with a binding score below the
5% threshold were selected as potential neoantigen candidates.
Using makeblastdb, we constructed a custom amino acid
database from all peptide sequences derived from the mass
spectrometry data of three elderly blood proteomic datasets
(PXD034030, PXD033493, and PXD050061). The predicted
neoantigenic peptide sequences were then searched against this
database using the blastp algorithm. Peptides with 100%
sequence identity and matching gene annotations were classified
as fully matched neoantigenic peptides. For these fully matched
peptides, the corresponding protein subcellular localizations were
retrieved from the UniProt database to evaluate their membrane
association and immunological accessibility.
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Results

Comprehensive transcriptome analysis
revealed the age-related gene in
human blood

We collected 21 datasets with RNA-seq data and age
information from the Gene Expression Omnibus (GEO),
comprising a total of 1,255 healthy human blood transcriptome
samples for further analysis. Individuals were categorized into three
age groups: young (8–17 years), mid (18–59 years), and old

(60–87 years), based on definitions provided by the World
Health Organization and prior aging research (Sawyer et al.,
2018; Yoshida et al., 2022). Cognitive and memory-related
decline has been reported to begin as early as 18 years of age
(Chierchia et al., 2023; Salthouse, 2003), while tissue-level aging
signals, including neurophysiological and skin structural changes,
are detectable at the age of 20 (Salthouse, 2009; Reilly and Lozano,
2021). Moreover, transcriptomic remodeling and systemic
molecular aging tend to accelerate around age 60 (Shen et al.,
2024; Rando and Wyss-Coray, 2021). Several transcriptomic
studies based on peripheral blood have used 60 years old as a

FIGURE 1
Study design and sample information. (A) Overview of sample collection and analytical approach. The samples are categorized into three age
groups: young (8–17 years, n = 291), middle-aged (18–59 years, n = 884), and old (60–87 years, n = 80). (B) Scatter plot showing the age distribution of
samples across the 21 datasets. (C) Density plot of age distribution for the young and old groups. The upper panel shows the age density distribution for
the young group (The young samples predominantly spanned ages 15–16), while the lower panel illustrates the age density distribution for the old
group. (The older samples were mainly between 60–67 years).
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FIGURE 2
Differential gene expression between young and old groups and its association with immunosenescence. (A) Principal component analysis (PCA) of
young and old samples. Different datasets are color-coded; circles represent young samples and triangles represent old samples. (B) Volcano plot of
differentially expressed genes (DEGs) between the young and old groups. Yellow dots indicate upregulated genes (p-value <0.05, Log2-Fold Change ≥1)
and blue dots indicate downregulated genes (p-value <0.05, Log2-Fold Change ≤ −1). (C)Heatmap showing the expression patterns of DEGs across
all samples. Columns correspond to individual samples, annotated by dataset and age group; rows represent DEGs. (D) Top 10 upregulated and
downregulated biological processes enriched via GSEA in the old group. “Activated” indicates upregulated pathways (p-value <0.05, NES >1), and
“Suppressed” indicates downregulated pathways (p-value <0.05, NES < −1). Terms are sorted by ascending p-value. (E–G) Immunosenescence

(Continued )
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threshold to define the aging population (Zhong et al., 2023). To
better capture aging-related molecular changes, we focused on the
young and old groups, given their larger age span. Figure 1A
illustrates the selection, while Figure 1B shows the age
distributions across samples. The young samples predominantly
spanned ages 15–16, and the older samples were mainly between
60–67 years (Figure 1C). After detecting batch and sex effects
between young and old groups, we applied the
removeBatchEffect function in limma package. This correction
facilitated age-based clustering, thereby improving data integrity
(Figure 2A). Differentially expressed genes (DEGs) analysis between
young and old groups revealed 1,029 significantly upregulated
genes and 1,186 significantly down-regulated genes
(p-value <0.05, |Log2FC| > 1; Supplementary Table S4), shown
in Figure 2B. Heatmap clustering confirmed the distinct separation
of the two groups based on DEGs, demonstrating their biological
significance (Figure 2C). To assess the potential impact of sample
size imbalance between the young (n = 291) and old (n = 80) groups,
we applied a balanced resampling strategy. Specifically, 10 random
subsets of 80 young individuals were selected without replacement,
and each subset was compared to the old group. As shown in
Supplementary Figure S1A, the numbers of up and downregulated
genes in these subsets were highly similar to those identified using all
young samples, with an average of 1,017 upregulated and
1,166 downregulated genes per subset, compared to 1,029 and
1,186, respectively, in the all comparison. UpSet plots
(Supplementary Figure S1B,C) further demonstrated that a
majority of the DEGs identified in the all-sample were
consistently recovered across the resampled subsets, supporting
the stability of our findings.

We further compared these DEGs with 307 known aging-
associated genes from the GenAge database (de Magalhães and
Toussaint, 2004), identifying 17 overlapping genes, including
11 upregulated and six downregulated genes associated with
aging in both human and mouse models (Figure 2C). Notable
examples include TFAP2A, which is associated with
developmental abnormalities and potentially human aging
(Schorle et al., 1996); HOXB7, which is linked to extended
lifespan (Venkataraman and Futerman, 2002); PAPPA, whose
deletion in mice resulted in a significant 30%–40% increase in
lifespan (Conover and Bale, 2007); TP73, whose dysregulation
increases susceptibility to neurodegenerative diseases (Wilhelm
et al., 2010).The C1QA gene promotes aging by activating the
Wnt signaling pathway, with elevated expression in the brains of
aging mice and humans (Naito et al., 2012). Overexpression of
MT1E in a mouse model resulted in a 14% increase in lifespan (Yang
et al., 2006). The Klotho gene, which regulates phosphate, calcium,
and vitamin D metabolism, is also important; its deficiency in mice
leads to premature aging (Donate-Correa et al., 2023; Han et al.,
2023). In skeletal muscle, FLT1 expression decreases with age

(Wagatsuma, 2006). The LEP gene is involved in aging-related
neuroendocrine systems and has been linked to age-related
diseases such as diabetes and atherosclerosis (Niu et al., 2023).
PPARGC1A is associated with cholesterol metabolism, obesity, and
age-related diseases such as Parkinson’s disease (Li et al., 2022). The
limited overlap between DEGs and known aging-related genes
suggests that many aspects of aging mechanisms remain to be
understood and warrant further investigation.

Gene set enrichment analysis (GSEA) revealed significant
changes in both immunoregulatory and metabolic pathways
between young and old groups (Figure 2D; Supplementary Table
S5). Specifically, immune pathways like phagocytosis, complement
activation, and B cell receptor signaling were downregulated in
aging, consistent with age-related immune decline and reduced
pathogen clearance. Conversely, pathways related to glutathione
metabolism, ATP synthesis, oxidative phosphorylation, and
detoxification were upregulated in aging samples, likely
representing adaptive responses to mitigate oxidative stress and
maintain metabolic functions.

Age-specific gene expression is not
sufficient to capture the intricacies of
immunosenescence process

We next explored the association between DEGs and the process
of immune senescence. Our analyses revealed significant differences
(p ≤ 0.01) in senescence-associated secretory phenotype (SASP),
immune, and inflammatory scores between the young and old
groups (upper panel of Figure 2E, left panels of Figures 2F,G).
SASP, a complex secretome produced by senescent cells that enter a
stable arrest state, plays a critical role in recruiting immune cells for
their clearance (Birch and Gil, 2020). The elevated immune
senescence scores in the older group align with the established
characteristics of immunosenescence. However, a limited overlap
was observed between DEGs and known SASP, immune, and
inflammatory gene sets (lower panel of Figure 2E, right panels of
Figures 2F,G). This observation intimates that less-studied genes
and molecular pathways may significantly contribute to
immunosenescence, beyond the scope of the currently known
SASP, immune, and inflammatory genes. These findings highlight
the need for further in-depth exploration of immune senescence
traits at the molecular level.

Aging-specific alternative splicing patterns
during the aging process

Alternative splicing (AS) is a key regulatory mechanism that
drives gene expression diversity and contributes significantly to

FIGURE 2 (Continued)

characteristics between the two groups. Violin plots display SASP scores ((E), upper), immune scores ((F), left), and inflammatory scores ((G), left) for
the young and old groups. Two-tailed t-test p-values are shown. Venn diagrams illustrate the overlaps between dysregulated genes and SASP genes ((E),
lower), immune gene sets ((F), right), and inflammatory factors ((G), right).
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proteome variation in eukaryotes (Nilsen and Graveley, 2010).
Given the limitations of capturing the intricacies of
immunosenescence solely at the gene expression level, we
quantified differential splicing events during aging to revealits
association with immunosenescence. In total, 6,320 splicing
events across 4,566 genes were identified using stringent criteria
(FDR <0.05, |deltaPSI| > 0.1) (Figure 3A; Supplementary Figures
S2A,B; Supplementary Table S6). These included skipped exons

(SE), alternative 5′splice sites (A5SS), alternative 3′splice sites
(A3SS), mutually exclusive exons (MXE), and retained introns (RI).

The global splicing analysis revealed that MXE (n = 4,285) and
RI (n = 1,104) were the most frequent events, whereas SE (n = 464),
A3SS (n = 253), and A5SS (n = 214) were less common. MXE and RI
events involved the most genes, whereas SE, A3SS, and A5SS events
affected fewer genes (Figure 3B). Using the MASER tool, we
compared splicing events between the old and young groups. We

FIGURE 3
The pattern of alternative splicing (AS) during the aging process. (A) Volcano plot showing significant AS events between the young and old groups.
Each dot represents a splicing event, with yellow indicating higher usage in the old group (deltaPSI > 0.1), blue indicating lower usage in the old group
(deltaPSI < −0.1), and gray indicating non-significant events. The y-axis represents the false discovery rate (FDR). (B) Bar plots depicting the counts of
significant AS events and their associated genes. The left chart shows the distribution of five types of AS events, the center shows event counts, and
the right shows gene counts. (C) Facet plots illustrating upregulated and downregulated AS events and their associated genes in the old group. Event
counts are shown on the left, and gene counts on the right. (D) Chromosomal distribution of significantly different AS events. The upper panel shows
upregulated events (deltaPSI > 0.1), while the lower panel shows downregulated events (deltaPSI < −0.1). (E) UpSet plot showing the overlap between the
five types of AS events detected in the old group. (F) Protein-protein interaction (PPI) network analysis of differential splicing events. Nodes represent
distinct AS events, with colors indicating the type of splicing event and node size reflecting the degree of connectivity within the network. Edges indicate
interactions between nodes. Red circles highlight the top 10 hub genes.
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FIGURE 4
Regulation of alternative splicing (AS) by splicing factors. (A) Heatmap displaying the splicing factors associated with the highest number of splicing
events across five types of AS events. Darker shades indicate a greater number of associated events. (B) Venn diagram showing the overlap of the top
10 splicing factors ranked among the five AS event types. (C)Motif enrichment analysis of splicing factors. Each panel corresponds to one type of splicing
event (A3SS, A5SS, MXE, SE, and RI). The flanking regions of the splicing events are designated as R1 to R(n). Color intensity and circle size indicate the
significance of motif enrichment, with red and larger circles representing the most significant motif binding. The bar chart on the right shows the top
20 regions with the highest motif enrichment significance. (D) Distribution of RBMS3 binding motifs across five types of splicing events. Green boxes
represent target exons, while gray boxes denote adjacent exons. Lines indicate the intronic sequences 250 base pairs upstream and downstream of each

(Continued )
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found that 4,360 splicing events were upregulated in the old group,
affecting 3,222 genes. Notably, all splicing event types except SE
showed an increasing trend in old samples (Figure 3C).
Chromosomal distribution analysis revealed more splicing events
on chromosomes 1, 2, and 19, highlighting these regions as
transcriptionally active (Figure 3D). Chromosome 1 showed the
highest abundance of all five splicing types (Supplementary Figure
S2C). We also visualized the overlap of genes involved in different
AS types using an upset plot, which showed that more than 14% of
genes contained two or more splicing events (Figure 3E). This
combination of AS events contributes to the transcriptome
complexity and diversity.

AS is critical for generating structural variation in gene products,
thereby affecting protein synthesis and function. To understand
selective splicing events in the context of protein interaction
networks, we constructed protein-protein interaction (PPI)
networks using genes with significant splicing events. Ten hub
genes were identified, including ACTB, RPS27A, AKT1, PTEN,
STAT3, BRD4, EP300, HDAC1, EFTUD2, and H3F3A. These hub
genes play essential roles in immune regulation and show
remarkable variability in splicing during aging. For example,
ACTB (involved in RI events) influences cytoskeletal
maintenance, cell migration, and immune cell function (Gu et al.,
2021); RPS27A is involved in the cell cycle, immune response, and
metabolism, and is closely linked to B- and T-cell antigen
recognition (Li et al., 2024); AKT1 is linked to multiple splicing
events, whose aberrant activation contributes to several cancers and
may regulate immune cell function (Liu et al., 2014). The PPI maps
further demonstrate how splicing influences the overall function of
the protein network, highlighting the impact of AS on the molecular
mechanism of aging (Figure 3F).

RNA-binding protein rbms3 as key regulator
of aging-related splicing variants

To further analyze the effects of AS during aging, we investigated
the molecular mechanisms driving aging-related splicing variants,
specifically the regulatory role of RNA-binding proteins (RBPs) in
AS. By analyzing the correlation between the gene expression levels
of RBPs and the Percent Spliced In (PSI) values of different splicing
event types, we selected the top 10 RBPs with the most correlations
for each splicing event type (Figure 4A). Notably, two RBPs
(RBMS3 and PCBP3) ranked in the top 10 across all splicing
event types (Figure 4B). We then performed enrichment analysis
of 115 binding motifs for 91 splicing factors (Supplementary Table
S7), observing varying degrees of motif enrichment in regions
adjacent to splicing events (Figure 4C). The splicing factors and
their corresponding motifs were ranked by the number of
significantly enriched regions around splicing events, with the
top 20 motifs displayed. Combined with the correlation results in

Figure 4A, we found that some splicing factors previously linked to
aging were also present in our ranking. For example, HNRNPA1 has
been shown to play a central role in aging and tumorigenesis by
regulating the 3′untranslated region (3′UTR) length of the
HN1 gene, affecting its stability and protein production (Jia
et al., 2019). TIA1 is associated with neurodegenerative diseases
(Apicco et al., 2018). Of particular interest, RBMS3 ranked within
the top 20 and appeared across five splicing event types, suggesting a
central role in aging-related splicing variants. Finally, we used
rMAPS to visualize the enrichment of the RBMS3 binding motif
[ACT]ATATA around splicing event regions. As shown in
Figure 4D, RBMS3 binds within 100 base pairs upstream of the
target exon, likely promoting exon skipping. Its binding in the
downstream intronic region may contribute to the formation of
mutually exclusive exon events, while its binding in the upstream
exonic region may be involved in intron retention. In addition,
RBMS3 binding within the target exon and within 50 base pairs of its
3′end may be associated with to selective 3′splice site events, while
its binding in the downstream intronic region may also influence
splicing at the 5′splice site.

Aging-specific alternative splicing is a key
regulator in immunosenescence

Immunosenescence is a process of decline in both innate and
adaptive immune functions with aging, which contributes to age-
related diseases, increased susceptibility to infection, and cancer
development. Previous research has highlighted inflammation and
T cell status as critical factors in immunosenescence (Liu et al.,
2023). Transcriptomic studies of aging T cells have identified
numerous alternative splicing events in genes involved in T cell
activation, differentiation, migration, and apoptosis. In addition,
genes such as PDCD4 and ARCN1 have emerged as potential
therapeutic targets for mitigating immunosenescence, as they
have been implicated in age-specific splicing events and T-cell
aging (Mao et al., 2023). To explore the potential link between
specific splicing events during aging and immunosenescence, we
explored the relationship between AS-related genes, gene
expression, and immunosenescence.

We first examined the association between differential splicing
events and differential gene expression. Figure 5A shows a small
overlap between dysregulated genes and splicing-associated genes,
consistent with findings from previous studies (Aktas et al., 2022;
Xiao et al., 2024). Specifically, only 28 upregulated and
11 downregulated genes overlapped with AS-associated genes,
suggesting limited direct linkage between differentially expressed
and AS-associated genes. We further analyzed the correlation
between PSI) values of splicing events and gene expression values
(Supplementary Table S8). The upper panel of Figure 5B shows that
only about 30%–50% of the PSI values had a significant correlation

FIGURE 4 (Continued)

exon. The top panel of each plot shows average motif scores, calculated as the density of nucleotides covered by RBMS3 binding motifs within a
50 base pair sliding window. The black line represents background signal. Solid red and blue lines indicate enrichment of RBMS3motifs around exons that
are more (red) or less (blue) utilized in the old group. Dashed red and blue lines represent the significance of motif enrichment, with higher peaks
indicating greater significance.
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FIGURE 5
Associations between AS-related genes, gene expression, and immunosenescence. (A) Venn diagram showing the overlap of AS-related genes with
upregulated genes (left panel) and downregulated genes (right panel). (B) Correlation between AS-related genes and gene expression. The upper panel is
a table summarizing the correlation between splicing events and corresponding gene expression, including five splicing types (A3SS, A5SS, MXE, SE, RI). It
presents the total number of splicing events, the number of significantly correlated events (p < 0.05), the maximum R2 value, and the average R2

value, where a larger R2 indicates a stronger linear relationship. The lower panel is a distribution plot of the correlation coefficients for the five splicing
types. Each point represents the correlation coefficient of a splicing event, with different colors representing different splicing types. The y-axis shows
positively correlated events (0 < r < 1) and negatively correlated events (−1 < r < 0). (C) Venn plots showing the overlap of AS-related genes with SASP (top),

(Continued )
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with corresponding gene expression values, with generally low
maximum and mean correlation values (Max R2, Mean R2).
These correlations across the five splicing event types mostly
clustered around zero (Figure 5B), indicating low correlation
between splicing events and gene expression. Only a few retained
intron (RI) events showed significant correlation, suggesting that
abnormal splicing events do not necessarily lead to noticeable
changes in gene expression, and that relying solely on differential
gene expression may miss important insights.

Next, we examined the association between differential splicing
events and immune senescence. Our analysis revealed that AS-
associated genes overlapped more extensively with senescence-
associated secretory phenotype (SASP), immune, and inflammatory
gene sets than with differentially expressed genes. In particular, there
was an increased overlap with immune gene sets (Figure 5C). We
selected the top 200 significantly different splicing events for Gene
Ontology (GO) analysis, which revealed significant associations with
various biological processes (Figure 5D; Supplementary Table S9).
These splicing events were enriched in pathways related to protein
metabolism, including peptide biosynthesis, RNA splicing, and tRNA
aminoacylation—processes essential for intracellular protein
homeostasis. Dysregulation of these pathways is strongly associated
with aging. Furthermore, these splicing events have been linked to
age-related pathways such as the apoptotic signaling pathway and
negative regulation of telomere maintenance via telomerase,
highlighting telomere shortening as a key marker of cellular
senescence (Eppard et al., 2024). In immune-related pathways,
differential splicing events were particularly enriched in the T-cell
and B-cell receptor pathways, which are critical for adaptive immune
responses. The decline of adaptive immunity is a hallmark of immune
senescence. Collectively, these findings suggest that differential
splicing events are key regulators of protein metabolism, aging,
and immune response.

Aging-related splicing variants disrupt
structural domain in immune-
related proteins

Alternative splicing (AS), which occurs in the coding sequence
(CDS) regions of genes, leads to changes in protein sequences and
disruptions in structural domains.We investigated the effects of AS on
protein sequences and structural domains. The results showed that
splicing events have a significant impact on protein translation. More
than half of the events in splicing types such as retained introns (RI),
skipped exons (SE), mutually exclusive exons (MXE), and alternative
5′splice sites (A5SS) affected CDS regions, resulting in changes in
protein function (Figure 6A). In particular, MXE and SE events
significantly affected several protein structural domains
(Figure 6B). Gene ontology (GO) analysis showed that genes
affected by these splicing events were enriched in immune-related

pathways, including lymphocyte activation, protein deubiquitination,
and cellular amino acid metabolism (Figure 6C). These pathways are
critical for immune function, and alterations within them may
contribute to immune senescence (Damgaard, 2021; Liu et al.,
2021). Notably, immunoglobulin class I and the C-terminal
domain of lactate/pyruvate dehydrogenase were among the most
frequently affected (Figure 6D). Immunoglobulin class I is closely
linked to antibody production and immune response (Wang et al.,
2020), and its alteration could lead to the formation of new antigens,
potentially affecting immune recognition in older individuals. Lactate/
pyruvate dehydrogenase plays a vital role in cellular metabolism and
energy homeostasis, and its alteration may influence the metabolic
state and activity of immune cells (Xiang et al., 2020). These changes
in CDS regions and structural domains suggest that significant
splicing events not only affect aging-related immune functions, but
may also generate new antigens.

Identification of neoantigens from age-
related splicing events as targets for anti-
aging immunotherapy

With the rise of immunotherapy, cancer-specific neoantigens
have become critical targets for anti-tumor therapies (Huang et al.,
2024). Alternative splicing (AS), which regulates gene expression
and protein diversity, plays an important role in cancer prognosis.
Neoantigens generated by AS could serve as key targets for anti-
tumor vaccines or CAR T-cell therapies (Wickland et al., 2024; Du
et al., 2024). Although aging and cancer have distinct features, they
share commonalities like genomic instability and epigenetic
changes. During aging, senescent cells produce more senescence-
associated self-peptides (Marin et al., 2023).

This study also explores neoantigens induced by aging-related
splicing events. Neoantigen prediction analyses were conducted for
significantly upregulated splicing events during aging. Amino acid
sequences from spliced and unspliced isoforms were obtained, and
these proteins were cleaved into 9-mer peptides. Potential
neoantigenic peptides were identified by excluding the peptides
normally expressed in adolescent and middle-aged individuals.
Using the NetMHCpan-4.1 prediction algorithm, we assessed the
likelihood of these new peptides binding to major histocompatibility
complex (MHC) molecules (Figure 6E and Methods). The results
showed that transcripts with CDS alterations across five splicing
types generated numerous neo-peptides, with about a quarter
showing strong MHC binding affinity, suggesting that they could
serve as candidate neoantigens in aging.

Population-level analysis of HLA alleles revealed that some
alleles presented more neoantigenic peptides than others. HLA-
C14:02 presented the highest number of neoantigenic fragments
(1,254), with a detection rate of 1.9%, while HLA-A02:01 was the
most commonly detected allele, present in 4.9% of older samples and

FIGURE 5 (Continued)

immune gene sets (middle), and inflammatory factors (bottom). (D) Enrichment network diagram showing significantly enriched pathways (p < 0.05)
related to the top 200 splicing events. Similar terms are grouped into larger categories (Protein metabolism, Immune reactions, Aging). Each node
represents an enriched term, with size indicating the number of enriched genes, different colors representing different categories, and edges indicating
connections between pathways.
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presenting 532 neoantigenic peptides (Figure 6F). These findings
suggest the feasibility of anti-aging vaccine development based on
these peptides. In addition, neoantigenic peptides in aged samples
were more likely to be presented by the HLA-B allele (Figure 6G),

suggesting that HLA-B may be a preferred target for anti-aging
vaccines. Further analysis identified 28 neoantigenic peptides
present in all elderly samples (Figure 6H), and 60 potential
neoantigenic peptides that validated by mass spectrometry-based

FIGURE 6
Identification and characterization of aging-associated AS-derived neoantigens. (A) Grouped pie chart showing the number and proportion of
splicing events with identical (blue) or distinct (green) coding sequences (CDS) across the five types of AS events. (B) Bar chart displaying the number of
splicing events affecting protein structural domains for each AS type. (C) Top 10 biological processes (BP) identified through GO enrichment analysis of
genes associated with AS events that affect protein structural domains (p < 0.05). (D) Heatmap illustrating the most frequently impacted protein
structural domains. Color intensity represents the frequency of impact, with darker shades indicating a greater number of events affecting the same
domain. (E) Summary of AS-derived peptides and neoantigens. The upper section shows the number and proportion of transcripts altered by the five
types of AS events through changes in the CDS, the number of novel peptide segments, and the number of neoantigens binding to MHCmolecules. The
lower bar chart displays the number of candidate neoantigens generated by the five types of AS events. (F) Scatter plot summarizing the frequencies of
HLA alleles in elderly individuals and their corresponding counts of bound neoantigens. (G) Bar chart showing the number of HLA alleles presenting
neoantigenic peptides in 80 elderly samples. Different colors represent different HLA types (HLA-A, HLA-B, HLA-C). (H) Bar plot showing the distribution
of neoantigenic peptides according to the number of individuals presenting them. The 28 peptides shared across all 80 elderly samples are highlighted in
pink (MXE: 17), yellow (SE: 9), and blue (A5SS: 2) boxes. (I) Table detailing 60 peptides matched in old blood proteomic data, including gene symbols,
peptide counts, verification by mass spectsrometry, and AS types.
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proteomics data from elderly individuals (Figure 6I; Supplementary
Table S10). Notably, peptides produced through MXE splicing were
associated with the senescence-related geneUBE2D2, which encodes
a ubiquitin-binding enzyme essential for maintaining protein
homeostasis and delaying aging (Hunt et al., 2024). These
findings support the aberrant production of neoantigenic
peptides in the elderly population and highlight the potential for
immunotherapy targeting these peptides in anti-aging treatments.

Discussion

The biological process of aging involves genomic instability,
telomere attrition, epigenetic modifications, and disruptions in
protein homeostasis (López-Otín et al., 2023). These changes
compromise physiological integrity over time, leading to organ
dysfunction and an increased risk of age-related diseases, such as
cancer and cardiovascular conditions. While current therapies target
these complications, their effectiveness in extending a healthy
lifespan is limited. The immune system also undergoes significant
age-related changes, such as altered immune cell composition,
increased inflammation, and functional decline (Mogilenko et al.,
2022). Despite these insights, identifying effective targets for anti-
aging immunotherapy remains a challenge, necessitating a deeper
understanding of the aging mechanisms.

In this study, transcriptomic analysis was conducted on blood
samples from individuals across various age groups to investigate
changes in gene expression and alternative splicing patterns
associated with aging. Data from 1,255 healthy samples obtained
from the GEO database were categorized into young, middle-aged,
and old groups (ages 8–87 years), based on developmental and
molecular aging patterns supported by previous studies. Given our
study’s focus on aging-specific alternative splicing (AS), a groupwise
comparison between biologically distant age extremes offers greater
sensitivity. Previous work has demonstrated that AS changes are
more evident at developmental boundaries than duringmidlife (Kim
et al., 2025). In addition, our splicing analysis tool, rMATS, supports
only binary group comparisons and does not accommodate
continuous age modeling. PSI values were also unavailable for
middle-aged individuals, limiting the feasibility of regression
analysis. Including this large middle-aged cohort in either group
would introduce imbalance and confound interpretability.
Therefore, we focused on young vs. old comparisons for
transcriptomic and splicing analyses, and utilized the middle-
aged cohort post hoc to filter splicing noise and minimize false-
positive neoantigen identification. Although the young and old
groups differ in sample size, our balanced resampling analysis
(10 iterations of randomly selecting 80 young individuals)
produced comparable results to those obtained using all young
samples, both in terms of the number of differentially expressed
genes and the identification of shared genes. These findings suggest
that the observed transcriptomic differences between age groups are
not merely artifacts of sampling imbalance, but likely reflect genuine
biological variation. To begin, we compared the transcriptomes of
the young and old groups, and the results showed that only a few of
the differentially expressed genes overlapped with known aging,
senescence-associated secretory phenotype (SASP), immune, and
inflammatory gene sets. Gene set enrichment analysis (GSEA)

indicated downregulation of immune-related pathways, such as
phagocytosis and complement activation, and upregulation of
pathways linked to antioxidant metabolism, energy production,
and oxygen transport during aging. These findings align with
those of Lorna W. Harries et al., who observed a small number
of age-related transcripts using transcriptome microarray
technology on human blood leukocytes from individuals aged
30–104 years (Harries et al., 2011). In their study, only 295 out
of 16,571 transcripts (~2%) were strongly associated with aging,
including several linked to inflammation and immune senescence.
Although our dataset represents the most comprehensive RNA
sequencing data available for healthy older individuals in the
GEO database as of June 2023, the smaller sample size in the
older age group may impact statistical robustness. Including
more elderly samples in future studies would improve the depth
and reliability of these findings. Moreover, Harries et al. highlighted
the role of mRNA processing in aging, providing valuable insights
for exploring alternative splicing in our study. Our RNA sequencing
approach offers advantages over microarray technology, particularly
for analyzing splicing isoforms and alternative splicing events.

Current research into aging mechanisms has expanded from
DNA damage and protein homeostasis to RNA processing. In
particular, mRNA splicing, which plays a crucial role in regulating
gene expression and generating protein diversity, has been closely
linked to aging and longevity interventions (Bhadra et al., 2020;
Baralle and Romano, 2023). Holly et al. reported increased
alternative splicing events in senescent fibroblasts and endothelial
cells (Holly et al., 2013). Similarly, Stegeman et al. identified variable
splicing changes in Drosophila, underscoring the conserved role of
splicing in senescence across species (Stegeman et al., 2018). In our
study, variable splicing patterns in human blood increased with age,
and retention of introns (RI) significantly rose, consistent with aging
signatures identified by Adusumalli et al. (Adusumalli et al., 2019).
The choice of alternative splicing analysis tool can affect the
interpretation of results. The rMATS tool, which uses predefined
splicing models and compares splicing patterns between sample sets,
is more efficient and accurate than tools like LeafCutter for large
datasets (Aktas et al., 2022). We used the rMATS tool, identifying
6,320 splicing events associated with aging across 4,566 genes. To
address concerns about sample imbalance, we applied a single
balanced resampling step by selecting 80 young individuals and
comparing them to the old group, due to the computational
demands and BAM-format input required by rMATS. As shown
in Supplementary Figure S3A, the number of genes involved in
significantly altered AS events—except for SE—was higher in old
individuals, consistent with results from the all sample. Additionally,
Supplementary Figure S3B shows a substantial overlap between AS-
related genes identified in the resampled subset and those from the all
comparison, although some differences remained. These differences
may reflect the increased sensitivity of AS detection to sample size,
noise, and methodological constraints. Nonetheless, the similarity in
trends supports the validity of using all samples to capture aging-
associated splicing alterations. The 4,566 genes affected by splicing
alterations included many that overlapped with known aging, SASP,
immune, and inflammatory gene sets. And these genes are involved in
regulating protein metabolism, immune responses, and signaling
pathways, suggesting that splicing alterations could be valuable
targets for anti-aging immunotherapy. Dysregulated pre-mRNA
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splicing can lead to age-associated pathological conditions, and fine-
tuning the regulation of splicing factors could delay aging and treat
age-related diseases (Angarola and Anczuków, 2021). For example,
splicing factors such as HNRNPA1 and TIA1 are strongly associated
with aging and aging-related diseases (Jia et al., 2019; Apicco et al.,
2018), and both ranked highly in our splicing factor correlation
results. Notably, RBMS3 was found to be highly correlated with
splicing events across all five splicing types, suggesting that its
dysregulation may play an important role in the splicing patterns
of aging. RBMS3 belongs to the MSSP family of RNA-binding
proteins and has been characterized as a tumor suppressor gene
involved in apoptosis, post-transcriptional mRNA regulation, and
fibrosis. Tumorigenesis is an age-associated process, and reduced
RBMS3 expression has been linked to poor prognosis in various
cancers (Li Wen et al., 2023). Recent studies have also suggested that
RBMS3may be involved in immune regulation and aging. Specifically,
RBMS3 suppression was found to downregulate PD-L1 and enhance
immune responses (Zhou et al., 2023), while metformin treatment
increased RBMS3 expression and promoted ferroptosis in ovarian
cancer cells (Zhao et al., 2025). As metformin has been shown to reset
aging clocks and delay aging in primates (Yang et al., 2024), these
findings raise the possibility that RBMS3 could participate in the
regulation of immunosenescence and age-associated cellular
remodeling. These findings highlight a strong link between
changes in splicing patterns during aging and immune senescence,
which may lead to the identification of new targets for anti-aging
immunotherapy.

In cancer therapy, personalized vaccines targeting neoantigens
can be developed by predicting variable splicing mutations in tumor
cells, stimulating a specific immune response against the tumors
(Lybaert et al., 2023; Xie et al., 2023). Given the similarities
between cancer and aging, the discovery of age-specific
neoantigens has become a major research focus. Vaccines have
already entered clinical trials for age-related diseases such as
Alzheimer’s disease (Wu et al., 2024; Hovakimyan et al., 2024).
Amor et al. analyzed the transcriptome of senescent cells and
identified proteins widely expressed and specifically anchored to
cell membranes, which can serve as CAR T cell targets for the
removal of senescent cells (Amor et al., 2024). Following the
workflow of Rui Cheng et al. (Cheng et al., 2021), we identified
new epitopes generated by specific variable splicing during aging and
validated 60 neoantigenic peptides using mass spectrometry-based
proteomics data from elderly individuals. Notably, several of these
peptides are derived from membrane-associated proteins, suggesting
their potential accessibility to immune surveillance. However, due to
the limitations of sequence-based analyses, these findings require
further experimental validation to assess their immunogenicity and
therapeutic applicability. Future studies will focus on experimentally
confirming the surface presentation of these neoantigens and
evaluating their potential as targets for anti-aging immunotherapies.

Despite providing valuable insights, our study has several
limitations. Although we accounted for sex as a confounding
factor—an adjustment that showed minimal impact on differential
expression outcomes in our dataset (Supplementary Figures S4A,B)—
other demographic and environmental variables such as ethnicity,
comorbidities, medication use, diet, and socioeconomic status may
also influence gene expression and splicing profiles.We incorporated all
available clinical metadata from the public datasets used; however,

detailed annotations were often incomplete. This lack of comprehensive
metadata may limit the generalizability and interpretability of our
findings. Future studies incorporating more comprehensive sample-
level annotations could better account for the influence of additional
confounding variables on age-related transcriptomic changes.
Moreover, While neoantigens derived from aging-associated splicing
events present promising therapeutic opportunities, their use in
immunotherapy must be approached cautiously (Huang et al.,
2024). Aging tissues may express peptides that were not
encountered during thymic development, potentially bypassing
central tolerance (Xie et al., 2023) and raising the risk of
autoimmunity (Mustelin and Andrade, 2024). The aging immune
system exhibits altered peripheral tolerance and a pro-inflammatory
environment, which could exacerbate immune-related side effects.
Similar risks have been observed in cancer CAR-T therapies, where
even low-level antigen expression in normal tissues can result in severe
toxicity (Sebastian-Valverde and Pasinetti, 2020). Strategies such as
stringent target selection (e.g., membrane-bound proteins highly
enriched in senescent cells) (Flugel et al., 2023), combinatorial
antigen gating, and built-in safety switches may help mitigate these
effects (Huang and Liu, 2020). Nevertheless, the use of CAR-T cells or
other immune strategies against aging-related neoantigens should be
regarded as exploratory, requiring thorough preclinical validation to
ensure specificity, safety, and immune tolerance (Feucht and Abou-El-
Enein, 2020).

In summary, this study investigated age-related changes in gene
expression and their association with immune system decline using
blood transcriptome analysis. We uncovered distinct patterns of
alternative splicing associated with human aging and identified
novel antigens produced by abnormal splicing events that may
serve as promising targets for anti-aging immunotherapy. Our
study provides new insights into alternative splicing during aging,
highlights promising avenues for anti-aging immunotherapy, and
advances our understanding of immunosenescence.
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