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Sarcopenia, the age-related loss of skeletal muscle mass, strength, and function,
is driven by a convergence of molecular, cellular, hormonal, nutritional, and
neurological alterations. Skeletal muscle comprises multinucleated fibers
supported by satellite cells—muscle stem cells essential for repair and
regeneration. With age, both the structure and function of these components
deteriorate: myonuclei become disorganized, gene expression skews toward
catabolic, inflammatory, and fibrotic pathways, and satellite cell numbers and
activity decline. Concurrently, mitochondrial dysfunction, impaired proteostasis,
and vascular rarefaction limit energy availability and regenerative capacity.
Neurodegeneration and age-related muscle fibers denervation further
exacerbate muscle loss, particularly affecting fast-twitch fibers, and reduce
motor unit integrity. These neural deficits, alongside changes at the
neuromuscular junction, contribute to functional decline and diminished
contractility. Hormonal changes—including reduced levels of growth
hormone, testosterone, and IGF-1—undermine anabolic signaling and
promote muscle atrophy. Nutritional factors are also pivotal: anorexia of aging
and reduced dietary protein intake lead to suboptimal nutrient availability.
Compounding this is anabolic resistance, a hallmark of aging muscle, in which
higher levels of dietary protein and amino acids are required to stimulate muscle
protein synthesis effectively. Physical inactivity and immobility, often secondary
to chronic illness or frailty, further accelerate sarcopenia by promoting disuse
atrophy. The molecular constraints of sarcopenia are deeply intertwined with
non-molecular mechanisms—such as neuromuscular degeneration, hormonal
shifts, inadequate nutrition, and reduced physical activity—creating a complex
and self-reinforcing cycle that impairs muscle maintenance and regeneration in
the elderly. This review synthesizes current evidence on these interconnected
factors, highlighting opportunities for targeted interventions to preserve muscle
health across the lifespan.
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1 Introduction

Skeletal muscle plays a central role in maintaining mobility, metabolic regulation, and
overall physiological resilience. Beyond its contractile function, muscle is a dynamic organ
involved in thermogenesis, glucose uptake, amino acid storage, and endocrine signaling. As
individuals age, the progressive decline in muscle mass, strength, and quality—collectively
termed sarcopenia—emerges as a major contributor to frailty, functional impairment, and
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increased morbidity and mortality. This age-associated muscle
degeneration is not merely a consequence of reduced physical
activity but results from a complex interplay of molecular,
cellular, hormonal, neurological, and nutritional factors.

Understanding the biological mechanisms that underlie
sarcopenia is essential for developing effective strategies to
preserve muscle health in the elderly. Research over the past
decades has revealed a set of molecular constraints that hinder
muscle maintenance and regeneration with aging. These include
impaired satellite cell function, myonuclear disorganization, chronic
inflammation, mitochondrial dysfunction, and disrupted protein
homeostasis. These molecular alterations are compounded by
systemic changes such as neurodegeneration, hormonal decline,
anabolic resistance, and reduced mobility, creating a
multifactorial network of degeneration.

In this review, we examine the molecular and cellular
changes that constrain muscle adaptation and regeneration in
aging. We also explore how these interact with broader systemic
factors to accelerate the progression of sarcopenia. Our goal is to
provide a comprehensive perspective on the molecular
landscape of aging muscle and identify potential targets for
therapeutic intervention.

2 Muscle architecture and satellite
cell niche

Skeletal muscle is a complex and heterogeneous organ primarily
composed of multinucleated fibers with different contractile and
metabolic functions—slow-twitch/oxidative fibers (type I) and fast-
twitch/glycolytic fibers (type II). These fibers are syncytial structures
housing hundreds of nuclei (myonuclei), which are usually viewed
as post-mitotic. In each fiber, myonuclei are situated peripherally
and evenly spaced beneath the sarcolemma (Bruunsgaard et al.,
2001; Bruusgaard et al., 2006), while the cytoplasm is primarily filled
by longitudinally arranged muscle fibers. The number and spatial
arrangement of these myonuclei is vital for muscle fibers function
and play a key role in determining the size of mammalian skeletal
muscles (Cramer et al., 2020). Each myonucleus controls a specific
volume of cytoplasm, known as the myonuclear domain, which
helps minimize the need for extensive cytosolic transport of gene
and protein products (Bruunsgaard et al., 2001; Blau et al., 1990),
ensuring efficient distribution (Ha et al., 1989; Pavlath et al., 1989).
The spatial positioning of myonuclei is precisely regulated to
maximize their separation (Bruusgaard et al., 2006) without
surpassing the functional capacity of each myonucleus (the
physiological “ceiling” (Qaisar and Larsson, 2014)), thereby
supporting sustainable muscle development throughout life
(Cramer et al., 2020).

Myonuclei also function as cellular mechanosensors (Cho et al.,
2017; Kirby and Lammerding, 2018), which makes their optimal
spatial organization even more crucial. The nuclear envelope and its
nuclear lamina physically separate the nuclear genome from the
cytoplasm, and together, they mediate the transmission of
cytoplasmic mechanical forces to the nuclear interior, thus
promoting changes in the arrangement of chromatin and nuclear
domains (Maniotis et al., 1997; Lombardi et al., 2011; Guilluy
et al., 2014).

Each myonucleus might perform unique functions and express
various sets of genes. Specific regions of the muscle fibers exhibit
functional specialization, necessitating localized transcripts, such as
at the neuromuscular junction (Sanes and Lichtman, 2001;
Hippenmeyer et al., 2007; Burden et al., 2018) and muscle-
tendon connection sites (Charvet et al., 2012). Consequently, it
has been suggested that modest transcriptional heterogeneity among
myonuclei arises due to their association with distinct anatomical
locations and the influence of stochastic events (Kim et al., 2020;
Petrany et al., 2020; Saltin, 1983; Bottinelli et al., 1999; Trappe
et al., 2015)

In addition to these multinucleated fibers, muscle tissue contains
mononucleated adult myogenic stem cells, known as satellite cells.
Other mononucleated cell populations within the muscle include
connective tissue cells (e.g., fibroblasts), immune cells (myeloid,
lymphoid andmast cells), endothelial cells, pericytes, smoothmuscle
cells, glial cells (e.g., Schwann cells), and non-myogenic
mesenchymal progenitors (e.g., fibro-adipogenic progenitors
(FAPs)) (Saltin, 1983; Bottinelli et al., 1999). These various cell
types interact with muscle fibers and satellite cells, playing a crucial
role in maintaining skeletal muscle homeostasis.

Satellite cells are adult myogenic stem cells (Trappe et al., 2015)
situated between the basal lamina and the sarcolemma of skeletal
muscle fibers (Giordani et al., 2019). They are small, with minimal
cytoplasm and organelles, and possess a single heterochromatic
nucleus (Rubenstein et al., 2020). In mature muscles, satellite
cells are typically in a resting state; however, they become
activated in response to physiological or pathological stimuli such
as exercise, mechanical injury, denervation, or muscle dystrophy.
Upon activation, these cells re-enter the cell cycle, proliferate, and
produce myoblasts. Some of these daughter cells revert to a
quiescent state to maintain the satellite cell pool (Dumont et al.,
2015; Mauro, 1961; Muir et al., 1965; Schultz et al., 1978; Parise et al.,
2008). Myoblasts derived from satellite cells can either repair
existing muscle fibers to accommodate muscle turnover or fuse
to form new multinucleated fibers, thereby contributing to skeletal
muscle adaptability (Lepper et al., 2011; Relaix and Zammit, 2012).

Importantly, satellite cells are heavily influenced by their local
microenvironment, known as the satellite cell niche, during
activation, proliferation, and differentiation. Various
environmental factors, including cytokines, growth factors, free
radicals, ion concentrations, and mechanical stimuli, can initiate
intracellular signalling pathways that ultimately affect the satellite
cell nucleus and regulate gene expression (Yin et al., 2013; Snijders
et al., 2015). Figure 1 illustrates muscle fibers and other resident cells
populations.

Throughout life, skeletal muscle mass responds to various
stimuli, such as growth factors, hormones, external loading, and
neural activity (Forcina et al., 2019).

3 Muscle ageing and sarcopenia

Skeletal muscle undergoes a series of gradual structural and
functional changes with aging—a process commonly referred to as
muscle aging. This physiological phenomenon includes reduced
regenerative potential, decreased mitochondrial efficiency, and
changes in fiber composition, even in otherwise healthy
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individuals. Moreover, muscle aging is characterized by an
upregulation of pathways related to immune response and
inflammation, such as the “NF-κB signalling pathway,” “Jak-
STAT signalling pathway,” “TNF signalling pathway,” and
“Cytokine-cytokine receptor interaction.” Additionally, pathways
involved in cell proliferation and growth—including the
“p53 signalling pathway,” “Cell cycle,” “Cellular senescence,” and
“PI3K-Akt signalling pathway” — also show increased gene activity
with age. Conversely, the expression of genes associated with
metabolic functions, particularly those involved in “Oxidative
phosphorylation,” the “Citrate cycle,” and “Glycolysis,” tends to
decline as muscles age (Börsch et al., 2021). While these changes
contribute to a general decline in muscle quality, they do not always
result in clinically significant impairment.

Aging is marked by a progressive loss of skeletal muscle mass
and strength. Typically, lean muscle mass declines from about 50%
of total body weight in young adults to approximately 25% in
individuals over the age of 80 (Brancaccio and Palacios, 2015).
The mechanisms driving this process are complex and
multifactorial, involving both intrinsic biological aging and
extrinsic lifestyle and health-related factors. However, they are
not yet fully understood (Hikida, 2011). These gradual changes
in muscle physiology set the stage for sarcopenia—a more severe and
pathological form of muscle decline. Sarcopenia, is a clinical
syndrome characterized by a more severe and generalized
reduction in skeletal muscle mass, strength, and physical
performance. It is now recognized as a distinct disease entity
(ICD-10-CM code M62.84) and is strongly associated with
frailty, falls, disability, and mortality. Sarcopenia reflects a
maladaptive or accelerated form of muscle aging in which
compensatory mechanisms fail to preserve muscle homeostasis.

While age-related changes in muscle physiology lay the
groundwork, sarcopenia results from the interaction of molecular
constraints—such as chronic inflammation, satellite cell
dysfunction, impaired protein synthesis, and mitochondrial
decline—with systemic factors like hormonal insufficiency,
physical inactivity, malnutrition, and neuromuscular degeneration.

In addition, one of the key questions in aging research concerns
identifying the earliest indicators of the aging process. In humans,
two distinct waves of change were identified: an initial phase of
metabolic remodelling during young adulthood, followed later by
shifts in cellular composition and increased inflammation (Börsch
et al., 2021). These observations are consistent with recent findings
from a study examining the human plasma proteome across the
lifespan, which also reported that changes in specific biological
pathways occur in distinct waves during the fourth, seventh, and
eighth decades of life (Lehallier et al., 2019).

3.1 Cellular senescence

Cellular senescence refers to a permanent halt in the cell cycle
that occurs when healthy cells reach their limited ability to replicate,
a process known as replicative senescence (Hayflick and Moorhead,
1961). Various stressors can trigger this state, including DNA
damage, telomere shortening, oxidative stress, mitochondrial
dysfunction, activation of oncogenes, and exposure to
chemotherapeutic drugs (van Deursen, 2014). These stimuli cause
cell-cycle arrest by activating several pathways, notably the two key
regulatory axes: the p53–p21̂ Cip1 and p16̂ Ink4a-Rb pathways.
Activation of these pathways inhibits cyclin-dependent kinases
(CDK2 and CDK4/6), leading to hyperphosphorylation of the

FIGURE 1
Muscle Fibers and Resident Mononucleated Cells. This illustration depicts themicroanatomy of skeletal muscle, highlighting the spatial relationships
between multinucleated muscle fibers and key resident mononucleated cell populations. Myonuclei are located peripherally within the muscle fibers,
while satellite cells are positioned between the sarcolemma and the basal lamina. The interstitial space contains a variety of cell types, including fibro-
adipogenic progenitors (FAPs), immune cells, fibroblasts, and endothelial cells, which interact with muscle fibers and contribute to tissue
homeostasis, regeneration, and remodeling. This cellular niche plays a central role in the maintenance of muscle integrity and its response to aging and
pathological stressors.
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retinoblastoma (Rb) protein and ultimately resulting in the cell
exiting the cycle (Sharpless and Sherr, 2015; Mankhong et al., 2020).

Previous studies indicated that senescent satellite cells
accumulate in the skeletal muscles of aged rodents and elderly
humans, as evidenced by increased p16^Ink4a expression and
positive senescence-associated β-galactosidase staining (Sousa-
Victor et al., 2014; Baker et al., 2008). However, a more recent
study did not confirm the presence of p16^Ink4a- or p21^Cip1-
positive cells in the skeletal muscles of older individuals (Idda et al.,
2020). Anyway, the involvement of p16̂Ink4a in sarcopenia has been
a particular focus, especially in satellite cells. Sousa-Victor and
colleagues demonstrated that silencing p16̂Ink4a in aged satellite
cells restored their quiescence and muscle regeneration abilities
(Sousa-Victor et al., 2014). Similarly, Baker et al. showed that
removing p16̂Ink4a in RubR1 progeroid mice delayed the onset
of sarcopenia (Baker et al., 2011). While the removal of senescent
cells has been shown to help prevent sarcopenia (Baker et al., 2011)
p21̂Cip1 plays a crucial role in completing muscle cell differentiation
(Zhang et al., 1999). Additionally, p53 can have a protective effect by
slowing the functional decline of skeletal muscle cells through a
p21̂Cip1-dependent mechanism that involves the suppression of
p16̂Ink4a (Baker et al., 2013). Senescent cells exhibit a distinctive
secretory profile known as the senescence-associated secretory
phenotype (SASP), which includes a variety of cytokines,
proteases, chemokines, growth factors, and extracellular vesicles.
Notably, the effects of the SASP can be either beneficial or harmful,
depending on the specific makeup of different cell types and the
nature of the stressors that trigger senescence (Coppé et al., 2008).
The accumulation of senescent cells promotes the production of
SASP, which contributes to the chronic, low-grade inflammation
known as “inflammaging.” Inflammatory signals activate IκB kinase
(IKK), which phosphorylates IκB—an inhibitor that normally binds
nuclear factor kappa B (NF-κB) and keeps it inactive in the
cytoplasm. Phosphorylation of IκB targets it for degradation by
the proteasome, thereby releasing NF-κB. Once freed, NF-κB
translocates into the nucleus, where it stimulates the expression
of pro-inflammatory genes and upregulates muscle ring finger 1
(MuRF1), a key factor promoting muscle protein degradation
(Mankhong et al., 2020).

Growing evidence shows that serum levels of tumor necrosis
factor (TNF)-α, interleukin (IL)-6, and C-reactive protein (CRP) are
elevated in individuals with sarcopenia, typically reaching levels
2–4 times higher than those observed in younger controls. A cross-
sectional study by Bain et al. found that older individuals with
sarcopenia had higher serum levels of IL-6 and TNF-α compared to
those without sarcopenia (Bian et al., 2017). Similarly, Marzetti et al.
reported increased levels of CRP, P-selectin, and interferon-induced
protein 10 in individuals with physical frailty and sarcopenia
(Marzetti et al., 2019).

3.2 Age-related structural and functional
alterations in myonuclei

Skeletal muscle fibers are a syncytia containing hundreds of
nuclei (myonuclei), which are generally considered post-mitotic.
However, Boro et al. (2022) observed DNA synthesis in the tibialis
anterior myonuclei of mice, suggesting that adult muscle fibers are

not completely post-mitotic. Each myonucleus may perform distinct
functions and express different gene sets, particularly at functionally
specialized regions like the neuromuscular junction and
muscle–tendon junction. Modest transcriptional heterogeneity
among myonuclei is believed to arise from anatomical
positioning and stochastic events (Kim et al., 2020; Bagley et al.,
2023; Williams et al., 2022; Cisterna and Malatesta, 2024).

Myonuclei are peripherally located beneath the sarcolemma.
Their spatial distribution is crucial to maintain functional domains
and efficient intracellular communication. Recent studies reported a
decreased count of myonuclei aged muscles (Kim et al., 2020; Bagley
et al., 2023;Williams et al., 2022; Cisterna andMalatesta, 2024; Kirby
and Dupont-Versteegden, 2022; Lai et al., 2024). Moreover,
alterations in structure and function of myonucle indicating
disrupted RNA processing have also been reported (Malatesta
et al., 2009).

Aging is associated with structural and spatial alterations in
myonuclei. In aged muscle fibers, myonuclei are often irregular in
shape, deviating from the elliptical forms typical of young fibers and
exhibiting nuclear envelope indentations (Brooks et al., 2009). These
changes have been linked to age-related disruptions in the
surrounding microtubule network (Brooks et al., 2009). Loss or
repositioning of myonuclei can compromise the size and function of
the myonuclear domain, particularly in fast-twitch Type II fibers
where a reduction in domain size has been observed. Conversely,
slow-twitch Type I fibers may display enlarged domains with fewer
myonuclei. Such reorganization may hinder protein turnover and
impair contractile protein distribution, contributing to muscle
weakness and sarcopenia (Cisterna and Malatesta, 2024; Azevedo
and Baylies, 2020).

Myonuclei also act as mechanosensors (Kirby and Lammerding,
2018; Lai et al., 2024; Azevedo and Baylies, 2020; Folker and Baylies,
2013), and their laminand nuclear pore complexes transmit
mechanical cues to the genome. In aged quadriceps muscle, Iyer
et al. (2021) reported reduced expression of lamin-β1, fewer nuclear
pores, and altered nucleoporin expression. These impairments likely
compromise mechanosignalling, increasing nuclear permeability
and promoting sarcopenia.

Alterations in nuclear shape and chromatin architecture
profoundly affect transcriptional regulation. In aged muscle,
myonuclei tend to be smaller, with a higher degree of chromatin
condensation, reduced levels of RNA polymerase II and splicing
factors, and mislocalization of key RNA processing machinery
(Cisterna and Malatesta, 2024; Malatesta et al., 2009). These
transcriptional deficits are further compounded by epigenetic
dysregulation, notably hypermethylation of gene regions, which
interferes with normal gene expression patterns in aging muscle
(Turner et al., 2020). Encouragingly, physical exercise has been
shown to partially reverse these deficits, restoring transcriptional
activity and reducing hypermethylation in key regulatory regions
(Murach et al., 2021).

Recent findings underscore fiber-type specific effects of aging on
myonuclei. Type II fibers, more vulnerable to atrophy, exhibit more
pronounced transcriptional impairments. These include
upregulated markers of proteolysis and oxidative stress, and
reduced contractile protein synthesis—features linked to anabolic
resistance and degeneration. These deficits are further exacerbated
by impaired mechano-transduction and growth factor
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responsiveness, undermining muscle adaptability and contributing
to sarcopenia (Brooks et al., 2009).

3.3 Reduction of satellite cells

Aging profoundly affects satellite cells—postnatal muscle stem
cells located between the basal lamina and the sarcolemma of
skeletal muscle fibers (Fu et al., 2015). These cells are small, with
limited cytoplasm and a single heterochromatic nucleus, and
typically remain in a quiescent state in adult muscle. Upon
stimulation—such as through exercise, injury, or disease—satellite
cells become activated and re-enter the cell cycle. They divide
asymmetrically to give rise to two daughter cells: one cell initiates
the myogenic program, becoming a myoblast that will contribute to
muscle fiber repair or regeneration; the other returns to a quiescent
state to maintain the stem cell pool and ensure long-term
regenerative capacity (Byun et al., 2024; Karami et al., 2025).

Satellite cell fate is tightly controlled by the surrounding
niche—a specialized microenvironment rich in signaling
molecules and mechanical stimuli. Factors such as cytokines,
growth factors, oxidative stress, ion fluxes, and mechanical
loading regulate gene expression and signaling pathways that
determine satellite cell activation, proliferation, and
differentiation (Loreti and Sacco, 2022).

In aging muscle, satellite cells experience both quantitative and
functional impairments. While the degree of cell loss may vary by
species and fiber type, evidence consistently shows a reduced satellite
cell pool and diminished responsiveness to activation signals. These
changes are associated with altered molecular signaling, including
impaired Notch pathway activation due to reduced Delta ligand
expression (Conboy and Rando, 2002). Additionally, chronic
inflammation, elevated cellular stress, and altered transcriptional
regulation further compromise their regenerative capacity (Careccia
et al., 2023).

Nonetheless, physical exercise remains a potent modulator of
satellite cell activity, even in older individuals. Exercise has been
shown to partially restore satellite cell responsiveness and reinitiate
pre-mRNA processing, although the regenerative response is
blunted compared to that in younger muscle (Snijders et al., 2019).

Hormonal regulation also plays a key role. Androgens,
particularly testosterone, support satellite cell activation and
proliferation, and satellite cells express androgen receptors
(Barsky and Monks, 2025; Fu et al., 2024; Kraemer et al., 2020).
Aging is associated with a reduction in both androgen levels and
receptor expression. Di Donato et al. (2023) found lower androgen
receptor expression in biopsies of gluteus medius and vastus
medialis muscles from older adults, and demonstrated androgen-
induced nuclear translocation of the receptor in murine myoblasts.
These findings suggest that reduced androgen signaling contributes
to satellite cell dysfunction and impaired muscle regeneration
in aging.

3.4 Altered microvascular function

Proper vascular supply is essential for nutrient delivery and
waste clearance in muscle tissue. Aging is marked by endothelial

dysfunction, atherosclerosis, and heightened alpha-adrenergic
vasoconstriction, all of which reduce muscle blood flow at rest
and during exercise (Richards et al., 2014). These vascular
changes hinder the efficient delivery of oxygen and nutrients to
muscles, accelerating the onset of sarcopenia. Additionally, the
reduction in capillary density, often a consequence of sedentary
lifestyles prevalent among older adults, exacerbates muscle
performance decline (Distefano and Goodpaster, 2018). Finally,
the downregulation of genes associated with cell junction
assembly and transmembrane transport, coupled with heightened
pro-inflammatory and chemoattractant signalling, leads to
increased immune cell activity and amplified inflammatory
responses. This cascade promotes greater infiltration of mast
cells, lipid-associated macrophages, and monocytes into aging
muscle tissue, significantly contributing to the progressive decline
in muscle health (Shen et al., 2023; Zhou et al., 2025).

3.5 Fibrotic and adipogenic shifts

With aging, there is a notable rise in fibroblast-like cells and
adipocytes, while the number of Fibro-Adipogenic Progenitors
(FAPs) decreases. Older FAP subtypes show an aging-related
signature, characterized by the downregulation of growth factor
pathways and the upregulation of profibrotic and pro-inflammatory
pathways. These molecular alterations reflect a shift toward a more
fibrotic and inflammatory environment in aging tissues,
contributing to tissue dysfunction and impaired muscle
regeneration (Kirby and Dupont-Versteegden, 2022; Lukjanenko
et al., 2019). Aging is also associated with ectopic fat accumulation
within muscles. This, along with excessive extracellular matrix
deposition—particularly collagen—leads to increased muscle
stiffness, impaired muscle regeneration, and reduced strength and
performance, contributing to the progressive decline in muscle mass
and function. A comparative analysis across different age groups
(15–46 years, 74–82 years, and ≥84 years) revealed that pro-
inflammatory pathways, such as IL-6/AP-1, are most active in
older individuals (74–82 years), while profibrotic pathways,
particularly TGFβ signalling, are most prominent in the oldest
group (those 84 years and older) (Kirby and Dupont-
Versteegden, 2022).

3.6 Disrupted protein homeostasis

Protein homeostasis—or proteostasis—refers to the dynamic
balance between protein synthesis and degradation, which is
essential for maintaining muscle mass, structure, and function. In
skeletal muscle, this balance is tightly regulated by hormonal signals,
nutrient availability, mechanical loading, and intracellular pathways.
With aging, this equilibrium becomes increasingly impaired, leading
to reduced muscle protein synthesis, heightened protein
degradation, and accumulation of damaged or misfolded proteins.

Disrupted proteostasis is now widely recognized as a central
driver of sarcopenia because skeletal muscle is a protein-rich tissue
with high metabolic demands. Unlike other mechanisms that may
operate locally or episodically (e.g., denervation, inflammation),
impaired proteostasis affects virtually all muscle cells
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continuously and directly compromises their structural integrity and
function. Moreover, it integrates signals from systemic factors (e.g.,
hormones, inflammation, nutrition) and intrinsic cellular
machinery (e.g., mTOR, autophagy, ubiquitin-proteasome
system), serving as a converging point for many aging-related
stressors. For this reason, the breakdown of protein homeostasis
is considered one of the primary molecular constraints that initiate
and sustain muscle degeneration during aging. The following
subsections detail how aging impairs both sides of the
proteostasis equation—synthesis and degradation.

3.6.1 Impaired protein synthesis
Protein synthesis in muscle cells is influenced by several factors,

including: (i) amino acids, particularly branched-chain amino acids
like leucine; (ii) physical exercise; (iii) insulin and insulin-like
growth factor-1 (IGF-1); and (iv) various hormones which act on
the mammalian target of rapamycin (mTOR) pathway (Yoon, 2017;
Rooyackers and Nair, 1997; Smith et al., 2012). mTOR is a serine/
threonine kinase encoded by the MTOR gene, located at 1p36.22.
Structurally, its C-terminal houses the catalytic (kinase) domain,
while its N-terminal contains domains facilitating protein-protein
interactions necessary for assembling TOR into two distinct
complexes: TOR complex 1 (TORC1) and TOR complex 2
(TORC2). Insulin-like growth factor-1 (IGF1) and physical
activity initiate a signalling cascade that activate class
1 phosphatidylinositol 3-kinase PI3K which phosphorylate AKT
and then activate TORC1. In contrast, the class 3 PI3K pathway
activates TORC1 in response to amino acids, particularly L-leucine
without AKT phosphorylation. Once activated,
TORC1 phosphorylates two key effectors involved in mRNA
translation: eukaryotic initiation factor 4E-binding protein-1
(4EBP1) and ribosomal protein p70 S6 kinase-1 (p70S6K1)
(Ragupathi et al., 2024). Older individuals exhibit a reduced
TORC1 signalling and ability to stimulate skeletal muscle protein
synthesis in response to physical exercise compared to younger
individuals (Yoon, 2017). Aging has been linked also to an impaired
activation of TORC1 in response to amino, a condition notably
known as anabolic resistance (Tezze et al., 2023).

3.6.1.1 Influence of hormones on protein synthesis
A decline in anabolic hormones may play a role in

accompanying age-related musculoskeletal impairments. In older
adults, reduced levels of sex steroids, growth hormone (GH), and
insulin-like growth factor-1 (IGF-1) are closely linked to the
deterioration of muscle mass and function (Barsky and Monks,
2025; Kraemer et al., 2020; Huang and Wang, 2021). Testosterone, a
powerful anabolic hormone, enhances muscle protein synthesis and
supports muscular regeneration, while estrogens offer protective
benefits to skeletal muscle by mitigating inflammation. Similarly,
GH and IGF-1 stimulate protein synthesis and reduce protein
degradation (Kraemer et al., 2020). On the other hand, the
reduction in muscle mass in older individuals, determine a
resistance to the anabolic effects of insulin. Notably the degrees
of insulin resistance across glucose, protein, and lipid metabolism
vary in older individuals. For instance, many older adults remain
insulin-sensitive for glucose metabolism but exhibit resistance when
it comes to protein synthesis. Adding to this complexity, muscles
with different fiber type compositions display distinct sensitivities to

insulin in regulating both glucose and protein metabolism
(Rasmussen et al., 2006).

3.6.2 Impaired proteolytic and
autophagic pathways

The ongoing breakdown of faulty proteins and organelles,
coupled with the production of new proteins, enables muscles to
preserve their functionality and adjust to various stimuli.

3.6.2.1 Ubiquitin-proteasome pathway
Most intracellular proteolysis occurs through the ubiquitin-

proteasome pathway (UPP), with additional contributions from
the autophagy-lysosomal pathway. The UPP involves a 26S
proteasome complex composed of 19S and 20S subunits.
Ubiquitin is conjugated to target proteins through a tagging
process mediated by three enzyme families (E1, E2, and E3),
marking these proteins for degradation (Shang and Taylor, 2011).
Upregulation of this pathway is a hallmark of muscle atrophy, with
increased expression of key E3 ubiquitin ligases, atrogin-1 (MAFbx/
FBXO32) and muscle ring finger protein-1 (MuRF1/TRIM63)
(Bodine and Baehr, 2014).

The expression of atrogin-1 and MuRF1 is regulated by the
phosphorylation status of forkhead box (FOXO) proteins. Under
normal conditions, FOXO proteins are phosphorylated by Akt,
which sequesters them in the cytoplasm, preventing their nuclear
translocation and transcriptional activation of atrogin-1 andMuRF1
(Kim et al., 2021).

Figure 2 illustrates the main molecular mechanisms
underpinning muscle protein synthesis and breakdown.

The active form of vitamin D, 1,25(OH)2D3, and its receptor
(VDR) play key roles in regulating proteolysis in skeletal muscle.
1,25(OH)2D3 can inhibit the expression of atrogin-1 and
MuRF1 while increasing FOXO1 levels (Hayakawa et al., 2015).
The widespread deficiency of vitamin D among older adults has
significant negative implications for muscle health. This deficiency
not only contributes to increased protein breakdown, impairing
muscle repair and maintenance. Furthermore, low vitamin D levels
may exacerbate inflammation and diminish the effectiveness of
anabolic signals necessary for muscle growth and preservation,
compounding its detrimental effects on overall musculoskeletal
health (Ruggiero et al., 2024).

3.6.2.2 Autophagy
Autophagy is a lysosome-driven degradation mechanism that

primarily targets malfunctioning proteins and organelles by
breaking them down to recycle impaired cellular components. It
involves the creation of a double-membrane vesicle known as an
autophagosome, which encapsulates cytosolic material. The
autophagosome then merges with a lysosome to form an
autolysosome, where enclosed organelles and proteins are broken
down (Liu et al., 2023). It is well recognized that autophagy plays a
vital role in eliminating protein aggregates and damaged
mitochondria. However, ageing impairs the efficacy of autophagy
(Lim et al., 2024). It has been demonstrated that, mice lacking
autophagy exhibit several age-related traits, including reduced
muscle mass and quality (Li P. et al., 2021; Masiero et al., 2009).
Moreover, the inadequate clearance of damaged mitochondria
through autophagy can lead to elevated reactive oxygen species
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(ROS) production, which in turn increases protein carbonylation
and associated damage, further aggravating muscle impairment
(Wang et al., 2023).

3.7 Muscle fibers denervation

The integrity of neuromuscular connections is essential for
maintaining muscle mass and function. With aging, progressive
denervation contributes significantly to muscle fiber atrophy and the
onset of sarcopenia (Sayer et al., 2024). Aging is characterized by a
reduction in the number of motor neurons and large-diameter
axons. Motor neuron loss begins around the age of 50, causing
temporary denervation of muscle fibers. This is mitigated by
compensatory mechanisms, such as collateral reinnervation by
nearby axon terminals. During this temporary denervation, the
fibers cannot contract but maintain their contractile machinery.
This may help explain why muscle strength and power decline more
significantly than muscle mass with aging, although other factors
have also been suggested. In later life, motor neuron loss accelerates,
and reinnervation eventually becomes insufficient, resulting in
permanent muscle fiber denervation (Soendenbroe et al., 2021;
You and Chen, 2021). Moreover, aging has been associated with
morphological and biochemical changes at the neuromuscular
junction (NMJ) in both humans and rodents, which either
contribute to or result from NMJ destabilization (Khosa et al.,

2019). Motor neurons vary in characteristics such as cell body
size, activation threshold, fatigue resistance, tension generation,
and transmission speed. Alpha motor neuron cell bodies are
located in the ventral horn of the spinal cord and extend
myelinated axons to the periphery, where each motor neuron
forms multiple specialized synapses with skeletal muscle fibers.
These synapses, known as neuromuscular junctions (NMJs), play
a critical role in muscle function (Hughes et al., 2006). Notably, the
properties of a motor neuron align with those of the muscle fibers it
innervates, forming what is known as a motor unit, where all fibers
within the unit are of the same type (Hughes et al., 2006). The NMJs
are situated at a specialized region of the sarcolemma known as the
endplate. In mammalian muscles, a healthy endplate typically
exhibits a “pretzel-like” shape formed by the branching terminals
of the motor neuron. At the ends of these branches are presynaptic
boutons—enlarged structures filled with synaptic vesicles containing
the neurotransmitter acetylcholine (ACh) (Hughes et al., 2006).
These boutons are precisely aligned with post-synaptic indentations
in the sarcolemma called junctional folds. These folds are densely
packed with acetylcholine receptors (AChRs), which are essential for
synaptic transmission (Liu et al., 2008). Surrounding the junctional
folds are perisynaptic Schwann cells (PSCs), specialized glial cells
that support and regulate the structure and function of the NMJ
(Hughes et al., 2006). When ACh is released into the synaptic cleft, it
binds to AChRs on the post-synaptic membrane, generating an
endplate potential (EPP). This local depolarization initiates an

FIGURE 2
Main molecular mechanisms of protein synthesis and breakdown. PI3: phosphatidylinositol trisphosphate; PDK1: phosphoinositide-dependent
kinase-1; Akt: a serine/threonine-protein kinase; TSC: tuberous sclerosis complex; mTOR: mammalian target of rapamycin; FOXO: belongs to the O
subclass of the forkhead family of transcription factors which are characterized by a distinct fork head DNA-binding domain. This transcription factor has
the ability to be inhibited and translocated out of the nucleus on phosphorylation by proteins such as Akt/PKB in the PI3K signalling pathway; MAFbx:
muscle atrophy F-Box/atrogin-1; MuRF1: muscle-specific RING-finger protein 1; 4EBP1: eukaryotic initiation factor 4E-binding protein-1 (4EBP1);
p70S6K1: ribosomal protein p70 S6 kinase-1. This figure depicts the key signalling pathways involved in muscle atrophy, focusing on themammalian target
of rapamycin (mTOR).
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action potential that propagates across the muscle fiber, ultimately
causing muscle contraction and force generation. A healthy
neuromuscular connection is crucial for the survival of muscle
fibers, as fibers deprived of neural input (denervated)
progressively atrophy and eventually die. Consequently,
denervation significantly contributes to muscle weakness and
frailty in aging (Bao et al., 2020). Reinnervation of denervated
muscle fibers can lead to an increase in the size of smaller motor
units. This aligns with observations in older adults, who tend to have
fewer but larger motor units, up to a certain limit (Piasecki et al.,
2016). Fast-twitch type II muscle fibers are more likely to lose their
nerve supply, and when they are reinnervated by slow motor
neurons, they transform into slower Type I fibers (Gonzalez-
Freire et al., 2014).

The neural contribution to muscle wasting appears to be an early
event in the onset of sarcopenia and seems to be a significant
determinant of reduction of muscle quality (Padilla et al., 2021).
However, this process may also be reciprocal, with inactivity
potentially contributing to denervation. In addition to
anterograde signalling, there is evidence for retrograde signalling,
where molecular signals are transported from the presynaptic
terminal along the axon back to the cell body in the spinal cord.
These signals can be taken up by motor neurons at the NMJ,
providing a pathway from the periphery to the central nervous
system. A notable example of physiological retrograde signalling is
the study by Chakkalakal et al. (2010), which demonstrated that
overexpression of PGC1a in muscle fibers, promoting a slow
phenotype, induced a corresponding slow phenotype in motor
neurons. Moreover, in cases of malnutrition of muscle inactivity,
which directly impact on muscle health, an increase in negative
retrograde signalling could theoretically lead to muscle fiber
denervation, regardless of motor neuron condition. Thus,
bidirectional signalling, from nerve to muscle and muscle to
nerve, plays a crucial role in motor neuron survival and the
maintenance of NMJs.

3.8 Mitochondrial dysfunction

Mitochondrial morphological and functional alterations precede
the reduction of muscle function and mass typical of the ageing
process (Ferri et al., 2020). Mitochondria are organelles critical for
maintaining muscle mass and function by providing the energy
necessary for movement and metabolic activities via oxidative
phosphorylation (OXPHOS). Although mitochondria are
primarily recognized for ATP production, they also play crucial
roles in apoptosis, cellular metabolic and redox signalling, and
calcium homeostasis, collectively linking them to the aging
process. Subsarcolemmal mitochondria, characterized by greater
interconnectivity compared to intermyofibrillar mitochondria,
play a key role in gene expression and the regulation of reactive
oxygen species (ROS) levels. In contrast, intermyofibrillar
mitochondria are primarily dedicated to supporting oxidative
phosphorylation (OXPHOS) and calcium homeostasis.
Mitochondrial volume varies across muscle fiber types, with type
II (fast-twitch) fibers containing smaller mitochondria than type I
(slow-twitch) fibers. To sustain the high energy demands of skeletal
muscle, mitochondria rely on well-regulated quality control

mechanisms, including oxidant-scavenging systems,
mitochondrial DNA maintenance, calcium homeostasis, protein
repair and degradation, autophagy and mitodynamics (Spinelli
and Haigis, 2018).

3.8.1 Mithocondrial dynamics
Mitochondrial dynamics involve two key processes: fission,

facilitated by proteins like dynamin-related protein 1 (DRP1),
and fusion, mediated by proteins such as optic atrophy protein 1
(OPA1) and mitofusins 1 and 2 (MFN1 and MFN2) Disruptions in
either process can impair mitochondrial function, leading to
dysfunction and potential pathological conditions. Age-related
declines in OPA1 have been associated with decreased skeletal
muscle mass (Tezze et al., 2017), while reductions in MFN2 have
been linked to metabolic changes and the development of sarcopenia
(Sebastián et al., 2016). Indeed, MFN2 is also important in the
regulation of mitochondrial cristae ultrastructure and energy
production. Knocking out MFN2 leads to a decrease in the
number, volume, and surface area of cristae, which implies a
diminished oxidative capacity. Previous research in skeletal
muscle has also demonstrated that deleting MFN2 leads to
reduced activity of electron transport chain complex I and cause
mitochondrial swelling, driven by osmotic imbalances (Zanfardino
et al., 2025).

3.8.2 MICOS complex
Aging appears to be also linked to lipid-driven changes in

membrane viscosity, which influence the Mitochondrial Contact
Site and Cristae Organizing System (MICOS) complex. The MICOS
is a protein complex essential for maintaining the structure and
organization of mitochondrial cristae and for facilitating contact
sites between the inner and outer mitochondrial membranes. These
contacts are critical for mitochondrial function and cellular energy
production. Thus, alterations in the MICOS complex impact on
mitochondrial structure, such as the loss of cristae morphology, as
well as overall function (Vue et al., 2024). Indeed, in a murine model
of aging, a reduction in both the number and quality of
mitochondrial cristae has been showed (Vue et al., 2023).

3.8.3 ATP production
ATP production during aging is further impacted by a decline in

Carnitine Acyltransferase levels, an enzyme essential for
transporting acyl groups from the cytosol into the mitochondrial
matrix to facilitate beta-oxidation (Noland et al., 2009).

3.8.4 Mitochondria and calcium
Mitochondrial calcium (Ca2+) uptake is critical for maintaining

intrinsic mitochondrial functions, with Ca2+ playing a central role in
regulating metabolic activity. TheMitochondrial Calcium Uniporter
(MCU) and Mitochondria-ER Contact Sites (MERCs) fulfil distinct
yet interconnected roles in mitochondrial function and calcium
homeostasis. MERCs, which are physical contact points between the
mitochondrial outer membrane and the endoplasmic reticulum
(ER), facilitate the transfer of calcium, lipids, and other signalling
molecules between the two organelles. This process is essential for
calcium transfer from the ER to the mitochondria and relies on
tethering proteins, such as MFN2, to maintain the structural and
functional coupling between the ER and mitochondria. The MCU, a
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calcium channel located in the inner mitochondrial membrane,
mediates the direct uptake of Ca2+ into the mitochondrial matrix.
This Ca2+ influx is vital for regulating key metabolic processes,
including the tricarboxylic acid (TCA) cycle, oxidative
phosphorylation, and ATP production (Mishra et al., 2017).

The increased expression of MERC proteins (Grp75, Ip3r3, and
Vdac3) in human skeletal muscle during aging confirms a
compromise in mitochondrial dynamics and structural integrity
(Scudese et al., 2024). Excessive expression of MERC proteins and
excessive activation of the MCU can lead to increased calcium
transfer into mitochondria, causing oxidative stress and
mitochondrial dysfunction. This dysfunction may reduce the
mitochondria’s ability to maintain their normal dynamics, such
as fusion and fission processes, compromising mitochondrial
structural integrity. Consequently, these alterations may
contribute to the reduction in muscle mass and function
observed during aging. Moreover, Ca2+ overload can trigger the
opening of the mitochondrial permeability transition pore (mPTP)
and potentially cause cell death (Abramov and Duchen, 2011). On
the other hand, the increase in MERC proteins detected during
ageing could also reflect a compensatory attempt by the cell to
maintain calcium homeostasis and cellular signalling in response to
aging-associated stress.

3.8.5 Mitochondria and oxidative stress
Mitochondria are a primary source of oxidants, and aging is

closely linked to impaired mitochondrial respiratory function and
elevated production of reactive oxygen species (ROS), although the
severity of these changes is largely influenced by an individual’s level
of physical activity (Hepple, 2016). Oxidative stress establishes a
vicious cycle in which mitochondrial dysfunction further amplifies
ROS generation, thereby accelerating cellular senescence.

3.8.6 Mitochondria swelling
Ca2+ overload or oxidative stress can induce mitochondrial

swelling, leading to an increase in mitochondrial volume, as
observed in aged samples. Notably, this volume increase occurs
without corresponding changes in mitochondrial surface area or
perimeter, which remain unchanged. Swelling disrupts cristae
structure, impairing ATP production. Moreover, it is coupled
with a loss of membrane potential, which typically precedes the
opening of the mitochondrial mPTP, a process that can ultimately
result in cell death. Indeed, swelling often precedes apoptosis
(Scudese et al., 2024).

3.8.7 Mitochondrial DNA
The replication, deletion, and mutation rates of mitochondrial

DNA (mtDNA) increase with age, leading to significant impacts on
cellular metabolism and mitochondrial function. Elevated
circulating levels of mtDNA have been linked to sarcopenia. This
association underscores the critical role of mitochondrial health in
maintaining muscle integrity and highlights mtDNA as a potential
biomarker and contributor to age-related muscle degeneration (Fan
et al., 2022)

3.8.8 Mitochondrial extracellular vescicles
In recent years, extracellular vesicles (EVs) have emerged as

important mediators of intercellular communication, carrying a

variety of bioactive molecules, including mitochondrial
components. The release of mitochondrial components through
extracellular vesicles (EVs) has recently been recognized as an
important mechanism of cellular quality control and intercellular
communication, particularly in the context of aging. Mitochondria-
derived EVs play a pivotal role in regulating inflammatory pathways,
maintaining tissue homeostasis, and mitigating mitochondrial
dysfunction. However, increasing evidence suggests that
impairments in the biogenesis and secretion of these vesicles may
contribute to the development of chronic low-grade inflammation,
or “inflammaging,” and age-associated conditions such as
sarcopenia. Picca et al. reported that the amount of
mitochondrial components in secreted extracellular vesicles (EVs)
was lower in sarcopenic elderly individuals compared to non-
sarcopenic elderly controls, while the overall serum levels of EVs
were higher in sarcopenic patients []. Moreover, mitochondria-
derived EVs can carry danger-associated molecular patterns
(DAMPs) that can activate sterile inflammatory pathways, such
as the Toll-like receptor system and the NLRP3 inflammasome.
Thus, mitochondrial dysfunction in aging skeletal muscle may drive
“inflammaging,” contributing to the development of sarcopenia
(Picca et al., 2020). In this regard, mitochondrial EVs are not
only emerging as biomarkers of cellular health and aging but also
as potential therapeutic targets aimed at preserving muscle function.

3.9 Gut microbiota

The gut microbiota refers to the diverse community of
microorganisms residing in the human gastrointestinal tract,
including bacteria, fungi, viruses, and other microbes. Among
these, bacteria constitute the predominant group. Key bacterial
taxa commonly found in the gut include Bacteroidetes,
Firmicutes, Proteobacteria, and Actinobacteria. In addition to
these major groups, a variety of other microorganisms, such as
anaerobic species and members of the Anaerococcus genus, can also
be present. The intestinal tract also harbors several types of viruses,
including haloviruses and bacteriophages.

The composition of the gut microbiota is influenced by
numerous factors such as diet, environmental exposures, age,
physiological conditions, and genetic background. As a result,
significant variability in microbiota composition exists between
individuals (Gao et al., 2024). Alterations in the gut microbiota
and its metabolites may play a role in the distinct clinical
complexities observed in frail older adults (Casati et al., 2019).

The gut microbiota engages in complex interactions with the
host, likely affecting muscle metabolism, growth, and atrophy
through multiple pathways, ultimately influencing muscle quality
and function (Lahiri et al., 2019; Yan et al., 2023).

Imbalances in the gut microbiota may negatively impact muscle
health by initiating systemic inflammatory responses (Mendes et al.,
2023; Agostini et al., 2023). Research suggests that disruptions in gut
microbial balance can compromise intestinal barrier integrity,
increase intestinal permeability, and facilitate the translocation of
bacterial endotoxins, such as lipopolysaccharides, into the
bloodstream, thereby promoting systemic inflammation (Chen
et al., 2024; Li et al., 2024). This chronic, low-grade
inflammatory state is recognized as a key pathological
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mechanism underlying sarcopenia, where inflammatory mediators
like TNF-α and IL-6, activated through the NF-κB signalling
pathway, inhibit muscle protein synthesis and accelerate muscle
protein breakdown (Bian et al., 2017; Xuekel et al., 2024).

Moreover, metabolites produced by the gut microbiota,
including short-chain fatty acids (SCFAs) and branched-chain
amino acids (BCAAs), play critical roles in regulating muscle
metabolism and function. SCFAs such as butyrate and
propionate exhibit anti-inflammatory and immunomodulatory
properties, and enhance muscle protein synthesis through
activation of the AMP-activated protein kinase (AMPK)
signalling pathway (den Besten et al., 2013). Moreover, butyric
acid, inhibits histone deacetylases, resulting in increased histone
acetylation and subsequent changes in gene expression (de Conti
et al., 2013). This epigenetic regulation can influence the
differentiation and regenerative capacity of muscle cells,
ultimately affecting muscle health and function (Ticinesi et al.,
2024). Reduced fecal butyrate levels have been observed in older
individuals with lowmuscle mass (Yuan, 2024). When gut microbial
balance is disrupted, the production of these beneficial metabolites
declines, adversely affecting muscle health (Yuan, 2024).
Additionally, elevated levels of harmful metabolites, such as
indole and p-cresol, have been linked to muscle atrophy (Kang
et al., 2024; Xu et al., 2024). Furthermore, the gut microbiota can
modulate host gene expression by influencing the expression of
microRNAs (miRNAs). Research has shown that shifts in gut
microbiota composition are associated with altered expression
patterns of certain miRNAs, which may play key roles in
regulating muscle metabolism and processes linked to muscle
atrophy. Transplanting gut microbiota from healthy individuals
into mice with muscle wasting has been shown to significantly
improve muscle mass and function, highlighting the therapeutic
potential of gut microbiota restoration for treating muscle wasting.
Moreover, supplementation with specific probiotics and prebiotics
has been reported to enhance muscle mass and function in patients
with sarcopenia, further reinforcing the critical role of the gut
microbiota in the development and management of sarcopenia
(Qaisar et al., 2024; Nistor-Cseppento et al., 2022).

3.10 MicroRNA

miRNAs are a class of non-coding RNA molecules that regulate
gene expression by either inhibiting translation or promoting the
degradation of specific mRNA targets (Dong et al., 2021). Non-
coding RNAs, particularly microRNAs (miRNAs) and long non-
coding RNAs (lncRNAs), have emerged as crucial regulators of
muscle atrophy and regeneration. These molecules influence muscle
mass and function by modulating multiple signalling pathways,
including the insulin-like growth factor 1 (IGF-1)/AKT/mTOR and
the TGF-β/SMAD pathway (Sohi and Dilworth, 2015; Pinheiro and
Naya, 2021).

Circulating levels of many microRNAs (c-miRNAs) have
identified as potential biomarkers for sarcopenia.

It has been demonstrated that the upregulation of miR-141-3p
in ovariectomized mice contributes to mitochondrial dysfunction by
inhibiting FKBP prolyl isomerase 5 (FKBP5) and Fibin (Lee et al.,
2021). Lower levels of miR-133b and miR-206 have been associated

with sarcopenia, often linked to malnutrition in older individuals
(Iannone et al., 2020). The downregulation of miR-532-3p, an
inflammation-associated miRNA, regulates the apoptotic pathway
during sarcopenia progression by targeting BCL2 antagonist/killer 1
(BAK1) (Chen et al., 2020). A significant downregulation of miR-
29b has been observed in elderly individuals with sarcopenia,
particularly those with cardiovascular risk factors such as
diabetes, hypertension, and dyslipidemia (He et al., 2022). Plasma
levels of miR-21, along with miR-206, have been identified as
indicators of accelerated sarcopenia (Qaisar et al., 2021).
Upregulation of miR-126-5p has demonstrated high diagnostic
accuracy for sarcopenia (Faraldi et al., 2024), while miR-146a
upregulation contributes to sarcopenia by modulating the
IRAK1/TRAF6/NF-κB signaling pathway (Jin et al., 2023). miR-
133b, miR-206, miR-155, miR-208b, miR-222, miR-210, miR-328,
and miR-499 downregulation has been associated with sarcopenia
(Iannone et al., 2020; He et al., 2020; Salamanna et al., 2023).

Also, miR-532-3p downregulation has been associated with
sarcopenia progression though inflammation mediated via
BAK1 regulation (Chen et al., 2020). On the contrary the
downregulation of miR-1290 promotes myoblast differentiation
and protects against myotube atrophy through activation of the
Akt/p70/FoxO3 signalling pathway (Che et al., 2021). Also, miR-
672-5p downregulation has been shown to alleviate symptoms of
sarcopenia (Ahmad et al., 2019).

3.11 The myostatin pathway

Myostatin/activin, key components of the TGF-β superfamily,
plays a fundamental role in controlling muscle mass and function.
Some studies suggest increased myostatin levels with age
(Wilhelmsen et al., 2024) and indeed myostatin/activin pathway
dysregulation is strongly implicated in the development of
sarcopenia (Amthor and Hoogaars, 2012). Secreted mainly by
muscle cells, myostatin and activins exert both autocrine and
paracrine effects by interacting with Activin type IIB receptors
(ActRIIB) on muscle cell membranes (Li J. et al., 2021). This
receptor activation subsequently recruits type I receptors such as
ALK4 or ALK5, triggering the phosphorylation of SMAD2 and
SMAD3. These phosphorylated SMAD proteins form a complex
with SMAD4 (Welle, 2009), which then migrates into the nucleus to
regulate gene transcription. Through this mechanism, the pathway
downregulates key myogenic factors necessary for muscle growth
and differentiation, while also suppressing protein synthesis
(Armaghani and Han, 2020). In addition to inhibiting anabolic
processes, myostatin/activin signaling enhances muscle protein
degradation via the ubiquitin-proteasome system and may also
promote autophagy pathways, collectively accelerating muscle
wasting (Sartori et al., 2009).

3.12 Novelty and innovation

Myonuclear alterations, mitochondrial dysfunction, disrupted
protein homeostasis, muscle fibers denervation, fibro-adipogenic
progenitor depletion, and microvascular dysfunction all occur
simultaneously in the ageing muscle. We review novel evidence
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on the cellular crosstalk among the key players of the sarcopenia,
which is the consequence of these processes, emphasizing the role of
fibroblastic-like cells, adipocytes, and locally recruited immune cells
in shaping the aging muscle microenvironment and the molecular
hints to hierarchy among them. By integrating cellular, molecular,
and vascular perspectives, this work sets the stage for novel
intervention strategies aimed at preserving muscle health in aging
populations.

4 Conclusion and future perspective

The future of research into muscle aging holds promising
potential for addressing the challenges of sarcopenia. Advances in
molecular biology, particularly in the understanding of satellite cells
and myonuclear domain regulation, may pave the way for therapies
that restore muscle regenerative capacity and mitigate muscle
degeneration. Personalized exercise regimens and nutritional
strategies, tailored to individual genetic and metabolic profiles,
are likely to become more prevalent. As we further unravel the
complexities of muscle aging, a more proactive approach to healthy
aging may emerge, allowing individuals to maintain muscle health,
reduce the risk of frailty, and enjoy an improved quality of life in
later years.
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