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Introduction: The receptor for hyaluronan-mediated motility (RHAMM), a
centrosomal protein expressing in multiple isoforms, is implicated in
telomerase-independent aging. However, its involvement in telomerase
regulation is unproven. This study aims to investigate whether RHAMM
correlates with telomerase activity in mammalian cells.

Methods:Mouse embryonic fibroblasts expressing or lacking full-length RHAMM
(RHAMMFL, amino acids 1–794) and the shorter isoform RHAMMΔ163 (amino acids
164–794), were explored to examine the effect of RHAMM isoforms on mRNA
expression of telomerase reverse transcriptase (TERT) and selective shelterin
proteins regulating telomere maintenance.

Results: The preliminary findings revealed that RHAMM regulated Tert expression
based on its isoforms. RHAMMΔ163 enhanced Tert mRNA expression and
promoted telomerase activity by stimulating sirtuin 1 (Sirt1), shelterin proteins
Tpp1, and Pot1a and repressing the telomerase inhibitor Pinx1 levels. In contrast,
RHAMMFL did not have significant effect on TERT expression and telomerase
activity. Increasing Tert mRNA expression by blocking leucine zipper sequence
with function-blocking RHAMM peptide NP-110 in a TERT-deficient mouse
model of idiopathic pulmonary fibrosis, alongside suppressing Tpp1 and Pot1a
expression in mouse embryonic fibroblasts using ERK1 inhibitor PD98059,
highlights the importance of the HATABD domain (amino acids 718–751),
which includes leucine zipper and ERK-binding sequences at the C-terminus
of mouse RHAMM in regulating telomerase function. Increased telomerase
activity raised Hmmr expression, suggesting a potential feedback loop
between RHAMM and TERT expression.

Discussion: Taken together, this report provides the first evidence that
RHAMMΔ163 regulates TERT and shelterin expression and telomerase activity in
mammalian cells.
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1 Introduction

Telomeres safeguard chromosome ends with the shelterin complex,
which includes six proteins, including telomeric repeat binding factor 1
(TRF1 or TERF1), protection of telomeres protein 1 (POT1), and TPP1
(de Lange, 2005). Each cell cycle leads to telomere attrition due to
incomplete synthesis of theG-rich leading strand and the C-rich lagging
strand. Telomerase, comprising of telomerase reverse transcriptase
(TERT) and an RNA template (TERC) in addition to dyskerin
(Dkc1), extends the G-rich strand, while CST-Pola/primase
maintains C-rich repeats through fill-in synthesis in coordination
with shelterin (Greider and Blackburn, 1985; Cohen et al., 2007; Cai
et al., 2024). Notably, telomerase activity and TERT expression in
human placenta-derived mesenchymal stem cells are significantly
affected when cultured on hyaluronan-coated tissue-culture plate
(Wong et al., 2017). Hyaluronan, a key glycosaminoglycan in the
extracellular matrix (ECM), plays critical roles in cell migration,
proliferation, and differentiation through its receptors, CD44, and
receptor for hyaluronan-mediated motility (RHAMM/HMMR)
(Heldin et al., 2013), and binding proteins, transcription factors and
growth factors (Basu et al., 2025). Although CD44 influences TERT
expression (Chung et al., 2013), RHAMM can interact with TERC’s
noncoding RNA (Terc-53) but not directly with TERC or TERT (Wu
et al., 2025). Notably, neither of these interactions needed hyaluronan
(Chung et al., 2013; Wu et al., 2025). While RHAMM is involved in
telomerase-independent aging (Wu et al., 2025), its role in telomerase
regulation remains unproven.

RHAMM is a unique nuclear protein that expresses negligibly in
healthy tissue, lacks an N-terminal signal peptide for conventional
export via Golgi/endoplasmic reticulum and is shuttled to the cell
surface under stress where it interacts with hyaluronan and
CD44 and facilitates cell motility, activating the MAPK/
ERK1,2 signaling pathway (Maxwell et al., 2008; Tolg et al.,
2006). It binds to actin filaments, microtubules, and centrosomes
and helps in spindle formation (Assmann et al., 1999). RHAMM
binds hyaluronan via hyaluronan binding domains, HABD1 (amino
acids 719–729, mouse) and HABD2 (amino acids 741–750, mouse)
in its C-terminus (Figure 2F). HABD1 contains ERK1-binding
sequence: 718LKQKIKHVVK727 which induces interaction with
CD44. HABD2 is critical for hyaluronan binding as it contains
part of the leucine zipper sequence (728LKDENSQLKSEVSKL742)
which stabilizes the helical hyaluronan binding sequences and is
critical for RHAMM’s interaction with targeting protein for XKlp2
(TPX2), and aurora kinase A (AURKA) (Tolg et al., 2010).
Combination of both the sequences results in ‘Hyaluronan-
Tubulin-AURKA Binding Domain’ (HATABD) (amino acids
718–751, mouse). Notably, Terc-53 binds to Hmmr sequence
(amino acids 596–794) which includes ‘HATABD’ domain (Wu
et al., 2021).

RHAMM is expressed as multiple isoforms due to alternative
splicing and the use of alternate start codons (Messam et al., 2021).
In mice, in addition to the five natural isoforms of RHAMM, a
truncated isoform RHAMMΔ163 (also referred to as RHAMMv4,
amino acids 164–794) was variably detected in 3T3 cells using
techniques such as 5′RACE, primer extension, and RT-PCR,
corresponding to a protein size of 70–73 kDa (Zhang et al.,
1998) (Figure 1A). This isoform is capable of transforming
fibroblasts and exhibits oncogenic potential (Hall et al., 1995).

Notably, high telomerase activity is common in cancers (Blasco,
2003). The protein expression of the full-length RHAMM
(RHAMMFL, amino acids 1–794, MW: 95 kDa) and RHAMMΔ163

isoforms was confirmed in different cell lines using in vitro
translation followed by Western Blot analysis (Telmer et al.,
unpublished). Of note, high telomerase activity is common in
cancers (Blasco, 2003). The shorter isoform in mice, RHAMM
X1 (MW: 87 kDa), binds more strongly to Terc-53 than
RHAMMFL (Wu et al., 2025). Additionally, the isoform
RHAMMΔ163 can enter the nucleus but RHAMMFL cannot (Tolg
et al., 2010). This suggests that the shorter isoform of RHAMM
behaves differently from the full-length RHAMM and has distinct
functions. Taken together, it was hypothesized that RHAMMΔ163,
unlike RHAMMFL, could be linked to TERT expression through the
HATABD domain.

To test the hypothesis, seven cell lines were used. Commercially
available 10T1/2, a mouse embryonic fibroblast cell line expressing
endogenous RHAMMFL and a small amount of RHAMMΔ163 (Tolg
et al., 2010), was modified in Dr. Eva Turley’s laboratory at Western
University, Canada, to overexpress RHAMMΔ163, resulting in
LR21 cells (Tolg et al., 2006). The other three murine cell lines
were generated from mouse model in E. Turley’s research group.
RHAMM consists of 18 exons, in which exon 16 contains the leucine
zipper sequence and a microtubule-binding sequence facilitating
binding to tubulin, essential for the integrity of the mitotic spindle
and centrosome. A RHAMM−/− mouse model was developed by
deleting exons 8–16 by homologous recombination, retaining exons
1–7 and 17–18, leading to a fusion between exon 7 and 17, causing a
frameshift between exon 7 and the hyaluronan-binding region in
exon 18 (Tolg et al., 2003). This deletion allows for the expression of
a shorter 920 bp N-terminal mRNA but not the C-terminus and
HATABD sequence. From the embryos of these mice, a
RHAMMΔexon8-16 (KO) cell line was generated, which expresses
non-oncogenic truncated N-terminal isoforms of RHAMM
(RHAMMΔexon8-16), which promoted pancreatic cancer progression
in partnership with heterozygous p53 knockout (Tolg et al., 2003;
Lin et al., 2021). RHAMMFL and RHAMMΔ163 were rescued in the
RHAMMΔexon8-16 (KO) cell line, labeled KOV5 and KOV4,
respectively. Additionally, the human breast cancer MDA-MB-
231 cell line, known for its high telomerase activity, was
explored, along with RHAMM−/− MDA-MB-231 cells, to
investigate the role of RHAMM in telomerase activity.

2 Materials and methods

2.1 Cell culture

The mouse embryonic fibroblast (MEF) cell lines: 10T1/2
(purchased from ATCC (Manassas, VA)), RHAMMΔ163-
overexpressing (LR21) cells, RHAMMΔexon8-16 (KO), RHAMMΔexon8-16

rescued with RHAMMΔ163 (KOV4) and RHAMMΔexon8-16 rescued with
RHAMMFL (KOV5) and the human breast cancer cell lines: MDA-MB-
231 wild type and depleted of RHAMM using CRISPR/Cas9 were kind
gifts from Dr. E. Turley, Western University, Canada and Dr.
J. McCarthy, University of Minnesota. Because of different origin,
the analysis was done by comparing 10T1/2 vs. LR21 and by
comparing KO vs. KOV4 vs. KOV5. All the cell lines used in the
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FIGURE 1
RHAMMΔ163 regulates telomerase-mediated telomere elongation. RHAMM is present in multiple isoforms, including RHAMMFL and RHAMMΔ163 in
mice (A). HMMRwas eliminated using CRISPR-Cas9 inMDA-MB-231 cells. RNAwas isolated, and qRT-PCRwas used tomeasure themRNA expression of
TERT, TPP1, and POT1, normalized to Gapdh. Data are means ± SD; n = 3 experiments; *p < 0.05, **p < 0.01, ***p < 0.001 by Student’s t-test (B,F,I). RNA
was also isolated from 10T1/2, LR21, RHAMMΔexon8-16, KOV4, and KOV5 cell lines, with mRNA levels formTert, Pinx1, Sirt1, Tpp1, and Pot1ameasured
similarly (C,D,E,G,J). For RHAMMΔexon8-16 (KO) and rescued lines (KOV4 and KOV5), treatment with PD98059 at 50 µM for 24 h was followed by qRT-PCR
analysis to measure the mRNA expression of Tpp1, and Pot1a, normalized to Gapdh. Results are means ± SD; n = 2 experiments; *p < 0.05, **p < 0.01,
***p < 0.001 (H,K).
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FIGURE 2
RHAMM regulates TERT expression via shelterin and ‘HATABD’ domain. A cartoon illustrates mouse RHAMM’s interaction with microtubules, TPX2,
AURKA, and TRF1. The leucine zipper motif is highlighted (A). qRT-PCRwas used tomeasure themRNA expression of Terf1, Aurka, Tpx2, col1A andCol3A,
normalized toGapdh. Data are means ± SD; n = 3 experiments; *p < 0.05, **p < 0.01, ***p < 0.001 by Student’s t-test (B,D,E,G,H). HMMR was eliminated
using CRISPR-Cas9 in MDA-MB-231 cells. RNA was isolated, and qRT-PCR was used to measure the mRNA expression of TERF1 normalized to
Gapdh. Data are means ± SD; n = 3 experiments; *p < 0.05, **p < 0.01, ***p < 0.001 by Student’s t-test (C). Functional-blocking RHAMM peptide NP-110
(green line) inhibits hyaluronan (orange) binding (blue) and TPX2-AURKA binding domain with leucine zipper sequence (red) in RHAMM. The orange line
denotes the Terc-53 binding domain, and the purple line indicates the ERK1-binding sequence (F). Importance of ‘HATABD’ domain of RHAMM in aging

(Continued )
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study are telomerase positive. MDA-MB-231 cell line was used because
telomerase activity is high in these human cells. The panel of murine
cells were used to study the importance of N- and C- terminus of
RHAMM and different isoforms of RHAMM. The cells were prepared
and cultured to sub-confluency using Dulbecco’s modified Eagle’s
medium (DMEM) (DMEM, 4.5 g/L Glucose; ThermoFisher, Cat #
21068028) containing 10% fetal bovine serum (FBS; Sigma Aldrich, cat
#F0926), 4 μg/mL insulin, 8 μg/mL transferrin under the standard
culture conditions of 37oC in a humidified 5% CO2 atmosphere as
previously described (Tolg et al., 2003). Themediumwas changed every
2–3 days. The confluent cells were gently washed with sterile Phosphate
Buffer Saline (PBS), pH 7.2–7.4, followed by harvested using TrypLE™
Express Enzyme (1X) (Gibco, Cat # 12563011).

2.2 Cell treatment

The 10T1/2 fibroblasts were cultured in a complete medium for
24 h, then switched to a serum-starved medium (SSM) with 1% FBS.
Cycloastragenol (CAG; Cat # SML1448, Sigma-Aldrich,
United States) was added at 3 µM for 6 h, while control cells
received DMEM in SSM. After 6 h, removing the medium, the
cells were washed twice with cold PBS for qRT-PCR analysis.
RHAMMΔexon8-16 (KO), KOV4 and KOV5 were treated with
PD98059 at 50 µM in SSM for 24 h before qRT-PCR analysis.

2.3 Telomeric Repeat Amplification Protocol

The TRAPeze Gel-based Telomerase Detection Kit (Cat #S7700,
Millipore Sigma, United States) was used to perform the telomerase
repeat amplification protocol (TRAP) assay according to the
manufacturer’s instructions. Telomerase adds an AG sequence
and telomeric repeats to the 3′end of substrate oligonucleotide

(TS), followed by amplification using polymerase chain reaction
(PCR) with unlabeled TS and reverse (RP) primers. This produces a
ladder of products starting at 50 nucleotides in six-base increments.
The PCR conditions were 94°C for 30 s, 59°C for 30 s, and 72°C for
1 min over 30 cycles. The products were analyzed on a 1% agarose
gel, including controls for positive telomerase activity, PCR
contamination, and a TSR-8 template as provided by the kit.
Two independent experiments (n = 2) were conducted to validate
the results.

2.4 Extracellular hyaluronan

The 10T1/2 fibroblasts were cultured in six-well plates with
complete medium for 24 h, followed by serum starvation with 1%
FBS for another 24 h. The conditioned medium was collected, and
extracellular hyaluronan was quantified using the Hyaluronan
Quantikine ELISA Kit (R&D, Cat # DHYAL0) according to the
manufacturer’s instructions. In this assay, standards, controls, and
samples were added to a microplate pre-coated with recombinant
human (rh) aggrecan, allowing hyaluronan to bind to it. After
washing to remove unbound substances, enzyme-linked rh
aggrecan was added, followed by a substrate solution that
developed color proportional to the bound hyaluronan. After
stopping color development, the optical density was measured
within 30 min at 450 nm. hyaluronan concentration was
normalized to 1 μg of RNA extracted from cells, with data
presented as means ± standard deviation (SD) from three replicates.

2.5 RHAMM functional assay

The significance of the hyaluronan binding and leucine zipper
sequences was evaluated using a function-blocking RHAMM peptide,

TABLE 1 Gene expression related to telomere function and mitotic spindle integrity in 10T1/2 mouse embryonic fibroblasts overexpressing RHAMMΔ1.63.

Gene Description Ratio (10T1/2:LR21) Fold change (10T1/2 vs. LR21) Expression

Terf1/Trf1 Telomeric repeat binding factor 1 0.49 −2.33 Promotion

Aurka Aurora kinase A 0.43 −2.67 Promotion

Rtel1 Regulator of telomere elongation helicase 1 0.76 −1.54 Promotion

Blm Bloom syndrome, RecQ helicase-like 0.62 −1.60 Promotion

Tep1 Telomerase associated protein 1 1.71 1.71 Repression

Mad2l1 MAD2 mitotic arrest deficient-like 1 (yeast) 0.40 −2.47 Promotion

Nek2 NIMA (never in mitosis gene a)-related expressed kinase 2 0.44 −2.27 Promotion

Mad1l1 Mitotic arrest deficient 1-like 1 0.62 −1.60 Promotion

Note: Unpublished data from (Tolg et al., 2012). LR21 = 10T1/2 cells overexpressing RHAMMΔ163.

FIGURE 2 (Continued)

across the animal kingdom. Phylogenetic correlation between ectotherm (pink) and endotherm (green) vs. HMMR functional domains (HATABD)
with reference to human HMMR sequence. Molecular changes are marked yellow (I).
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FIGURE 3
Telomerase activity affects RHAMM expression. Cycloastragenol (3 µM) was added to 10T1/2 fibroblasts for 6 h, followed by RNA isolation and qRT-
PCR analysis to measure the mRNA expression of Hmmr, mTert, Tpx2, Aurka, and Has2, normalized to Gapdh or Snrpd3. Data are means ± SD; n =
3 experiments; *p < 0.05, **p < 0.01, ***p < 0.001 by Student’s t-test (A–E). The extracellular hyaluronan concentration was analyzed by hyaluronan-
based ELISA assay. The hyaluronan level was normalized by total RNA concentration (F).

Frontiers in Aging frontiersin.org06

Basu 10.3389/fragi.2025.1604051

https://www.frontiersin.org/journals/aging
https://www.frontiersin.org
https://doi.org/10.3389/fragi.2025.1604051


NP-110, in lung tissue from C57BL/6J mice. This tissue was sourced
from a previous study (Wu et al., 2021) (kind gifts fromDr. E. Turley,
Western University, Canada) in which the animal work was
conducted by Stelic MC, Inc. in Tokyo, Japan, with institutional
ethics approval and per the Guidelines for Proper Conduct of Animal
Experiments (Science Council of Japan). In total, 36 six-week-old
female C57BL/6J mice were randomly assigned to one of three groups:
(i) the control group receiving 50 µL of 0.9% saline; (ii) the bleomycin
(BLM) group receiving 50 µL of 1.5 mg/mL Bleomycin sulfate (Lot
#15180, Nippon Kayaku, Japan) for 28 days; and (iii) BLM group
receiving 3 mg/kg of NP-110 (sequence: 644KLKDENSQLKSEVSK)
every fourth day (i.e., day 0, 4, 8, 12, 16, 20, 24) after BLM injections.
Mice were subjected to sacrifice on day 28, and lungs were harvested
and stored at −80 ± 5oC for future use.

2.6 RNA extraction and quantitative real time
polymerase chain reaction (qRT-PCR)

RNA isolation and qRT-PCR were performed according to
established protocols (Tolg et al., 2017). Briefly, TRIZOL reagent
(Ambion, United States) was used to isolate total RNA from the cells
and lung tissue following the manufacturer’s instructions.
Complementary DNA (cDNA) synthesis was conducted using
iScript Reverse Transcription Supermix (BioRad, United States).
Primers were designed with Primer three software (version 0.4.0)
and synthesized by Life Technologies, United States (Supplementary
Table S2). PCR reactions were set up with 1 μg of cDNA using the
SsoAdvanced Universal SYBR Green Supermix kit (BioRad,
United States). The PCR cycling conditions included an initial
denaturation step at 95°C for 10 min, followed by 40 cycles of
denaturation at 95°C for 30 s, annealing at 60°C for 1 min, and
extension at 72°C for 1 min. All samples were analyzed in triplicate.
Expression analysis and calculation of relative changes in gene
expression were carried out using Stratagene Mx3000Pro software
andMS Excel. Mouse gene expression was normalized to the Gapdh,
Ldha, and Snrpd3 while human gene expression was normalized to
GAPDH and HPRT1.

2.7 In-silico analysis

The Protein sequences of RHAMM from different animals, shown
in Figure 2I were sourced from the NCBI Protein database (https://
www.ncbi.nlm.nih.gov/protein/). NCBI-BLAST (https://blast.ncbi.nlm.
nih.gov/Blast.cgi) checked the homology of the protein sequences of the
‘HATABD’ domain in RHAMM across the phylogenetic tree in the
animal kingdom. Phylogenetic tree was drawn with iTOL (Letunic and
Bork, 2024), and silhouettes are available on phylopic.org. We analyzed
mRNA expression data of HMMR and hTERT using clinical datasets of
ten different types of cancer retrieved from the TCGA database using
cBioPortal (Cerami et al., 2012).

2.8 Statistical analysis

The difference between experimental groups of two-sample
unequal variance was analyzed using Student’s t-test, with *p <

0.05, **p < 0.01, ***p < 0.001 being considered significant. The
experiments were performed at least two to three times
independently and represented as bar diagrams or dot plots
using GraphPad Prism, ver. 10.3.1 (URL: https://app.
graphpad.com).

3 Results

3.1 RHAMMΔ163 enhances, but RHAMMFL

does not affect TERT mRNA expression and
telomerase activity

The mRNA expression levels of RHAMM and TERT are
positively correlated (p < 0.05) across ten types of human cancer
and cancer cell lines, obtained from the TCGA Pan-Cancer Atlas
database (Supplementary Table S1). To investigate this correlation,
RHAMMwas eliminated in the MDA-MB-231 cancer cell line using
CRISPR/Cas9 (kind gift from E. Turley), leading to a significant 3-
fold decrease (p < 0.01) in TERT mRNA expression (Figure 1B). A
TRAP assay revealed that RHAMM-depleted cells had lower
telomerase activity than those expressing RHAMMΔ163

(Supplementary Figure S1A; original gel image shown in
Supplementary Figure S3). Because RHAMM is expressed in
multiple isoforms exhibiting different functions, further
investigation revealed that RHAMMΔ163, significantly increased
TERT mRNA levels (p < 0.01; Figure 1C). However, TERT
mRNA level remained unchanged in RHAMMΔexon8-16 cells
rescued with RHAMMFL or depleted of RHAMMFL and
RHAMMΔ163, suggesting that RHAMMFL has no effect on TERT
mRNA expression (Figure 1C). Furthermore, this result underscores
that RHAMM C-terminus is crucial for TERT expression, but not
the N-terminus. Similar patterns were observed for mRNA
expression of dyskerin (Dkc1), which is critical for telomerase
biogenesis (Cohen et al., 2007) (Supplementary Figure S1B). The
TRAP assay confirmed that RHAMMΔexon8-16 cells expressing
RHAMMΔ163 affected telomerase activity significantly compared
to those with RHAMMΔexon8-16 cells lacking RHAMMΔ163

(Supplementary Figure S1A).

3.2 RHAMMΔ163 suppresses PINX1 expression
and enhances TPP1-POT1 complex

Telomere length is controlled through multiple mechanisms
involving telomerase regulators and shelterin proteins (de Lange,
2005). PINX1 directly binds to TERT and inhibits telomerase
catalytic activity endogenously (Zhou and Lu, 2001). Conversely,
the NAD-dependent deacetylase sirtuin 1 (SIRT1) interacts with
telomeric repeats and positively regulates telomere elongation
(Palacios et al., 2010). SIRT1 directly interacts with TERT and
regulates its nuclear localization and stability (Lee et al., 2024). In
contrast, its abrogation results in increased telomere erosion.
SIRT1 acts upstream of TPP1 and interacts with it (Lee et al.,
2024) to regulate telomere function and cellular senescence. A
reduction in TPP1 levels leads to telomere attrition and cellular
senescence associated with SIRT1 (Ahmad et al., 2017). TPP1 forms
complex with POT1 which is essential for recruiting telomerase to
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telomeres (Sekne et al., 2022). TPP1 does not bind to telomeric DNA
but interacts with the telomerase essential N-terminal (TEN)
domain, which is critical for the TTAGGG repeat addition
processivity of telomerase and its recruitment to telomeres, while
POT1 flexibly binds both telomeric DNA and telomerase. Together,
TPP1 and POT1 enhance telomerase processivity by minimizing
DNA dissociation during repeat synthesis, while TPP1-POT1
depletion impairs processive DNA synthesis. Hence, the TPP1-
POT1 complex is vital for telomerase processivity (Sekne et al.,
2022). This complex protects telomeres (Kibe et al., 2010).

The qRT-PCR analysis showed that RHAMMΔ163 significantly
reduced the negative regulator of TERT, Pinx1 mRNA levels while
RHAMMΔexon8-16 depleted of C-terminus RHAMM and
RHAMMΔexon8-16 rescued with RHAMMFL increased Pinx1
expression (Figure 1D). Pinx1 expression was higher in
C-terminus RHAMM-depleted cells compared to RHAMMFL-
expressing cells (p < 0.01). It could be possible that the
N-terminus of RHAMM might enhance Pinx1 expression, while
the C-terminus RHAMM represses it, which remains elusive and
warrants further investigation. Thus, RHAMMΔ163 may potentially
activate TERT expression and lengthen telomeres, while RHAMMFL

is likely to inactivate TERT and shorten telomeres. Furthermore,
RHAMMΔ163 increased the mRNA levels of Sirt1 (positive regulator
of TERT) while neither RHAMMΔexon8-16 depleted of C-terminus
RHAMM, nor RHAMMΔexon8-16 rescued with RHAMMFL had any
effect (Figure 1E). This finding indicates that most likely, the
N-terminus of RHAMM suppresses Sirt1 expression, while the
C-terminus RHAMM elevates it. Eliminating RHAMM reduced
TPP1 and POT1 mRNA expression in MDA-MB-231 (Figures
1F,I), indicating that RHAMM may regulate TPP1-POT1
complex. Further investigation revealed that RHAMMΔ163

increased the mRNA levels of Tpp1 and Pot1a, while RHAMMFL

exerted no effect on these gene expression (Figure 1G). Taken
together, these results show that RHAMMΔ163 may promote
telomerase activity by increasing SIRT1 and TPP1 expression and
suppressing PINX1.

To further understand how RHAMM controls Tpp1 and Pot1a
expression, RHAMMΔexon8-16 (KO), RHAMMΔexon8-16 rescued with
RHAMMΔ163 (KOV4) and RHAMMΔexon8-16 rescued with
RHAMMFL (KOV5) were treated with PD98059 (50 µM), an MEK/
ERK pathway inhibitor. As previously mentioned, RHAMM binds
directly to ERK1 and indirectly to ERK2 and MEK through the
sequence 718LKQKIKHVVK727 at the C-terminus of RHAMM
(mouse) (Tolg et al., 2010). This binding is vital for microtubule
dynamics and hyaluronan- and CD44-mediated cell motility. The
results show that PD98059 significantly decreased Tpp1 (Figure 1H)
and Pot1a mRNA expression (Figure 1K) in KOV4 and KOV5 cells,
while RHAMMΔexon8-16 (KO) which lacks ERK1-binding domain
(amino acids 718–727, mouse) promoted decreased Tpp1 and Pot1a
levels. This result suggests that RHAMMΔ163 may regulate TPP1 and
POT1 expression through the ERK-mediated signaling pathway,
possibly via the ERK1-binding domain, which needs further
validation. Notably, RHAMM, CD44, and ERK1,2 form a complex
that is required for activating ERK1,2 (Tolg et al., 2006). qRT-PCR
analysis revealed a significant increase in Cd44 mRNA expression in
RHAMMΔexon8-16 rescued with RHAMMΔ163 (KOV4) compared to
RHAMMΔexon8-16, with and without RHAMMFL

(Supplementary Figure S2A).

3.3 RHAMMΔ163 enhances TRF1 mRNA
expression

During mitosis, chromosome segregation relies on the
organization of polymeric tubulin into bipolar spindles, with
RHAMM decorating these spindles. As demonstrated in
Figure 2A, the interaction of RHAMM with the cytoskeleton and
centrosomes through TPX2 and AURKA is crucial for mitotic
spindle assembly (Chen et al., 2014). Excessive AURKA
upregulation disrupts normal mitosis, causing multinucleated
cells and centrosome amplification. This is linked to TRF1, which
stabilizes microtubule-kinetochore connections essential for
chromosome segregation. AURKA phosphorylates TRF1, and
excessive phosphorylation can lead to mitotic abnormalities
(Ohishi et al., 2010). Notably, TRF1 is linked to TPP1 and
POT1 via TIN2 and utilizes them to prevent ATR kinase during
telomere replication and suppress sister telomere associations
(Zimmermann et al., 2014).

RHAMMΔ163 increased Trf1 levels significantly (Figure 2B). In
contrast, RHAMMΔexon8-16, with and without RHAMMFL did not
affect Trf1 expression (Figure 2B). The elimination of RHAMM
decreased TRF1mRNA expression inMDA-MB-231 cells indicating
that RHAMM positively regulates TRF1 (Figure 2C). Ectopic
expression of RHAMMΔ163 elevated Tpx2 (Figure 2D) and Aurka
mRNA levels (Figure 2E), provokes to hypothesize that RHAMMΔ163

may regulate TRF1 transcription through TPX2-AURKA-mediated
pathways, which needs further investigation. Notably,
TRF1 interacts with BubR1, Nek2, Mad1, and Mad2 in the
mitotic spindle checkpoint, playing a role in spindle formation
(Muñoz et al., 2009; Prime and Markie, 2005). It is not clear if
RHAMM and TRF1 act together in mitotic spindle regulation.
However, evaluation of unpublished microarray analysis of 10T1/
2 and LR21 cells (Tolg et al., 2012) indicates that RHAMMΔ163

increases mRNA expression ofMad1l1, Mad2l1, and Nek2 (Table 1).
This suggests that RHAMMΔ163 affects TRF1-partners in mitotic
spindle checkpoint (Figure 2E). Furthermore, RHAMMΔ163

increases Rtel1 and Blm mRNA levels (Table 1). Notably
TERF1 recruits these essential helicases, which resolve
replication-associated issues and suppress the fragile-telomere
phenotype. Additionally, RHAMMΔ163 represses the mRNA level
of telomerase-associated protein 1 (Tep1) (Table 1). Taken together,
this pilot study suggests that RHAMMΔ163 affects TERF1 expression,
which may have paramount importance in telomere elongation and
mitotic spindle regulation.

3.4 Importance of HATABD sequence of
RHAMM for TERT expression

To investigate the importance of the ‘HATABD’ sequence of
RHAMM on TERT mRNA expression, a mouse model with
idiopathic pulmonary fibrosis (IPF) was chosen as IPF is
characterized by TRF1 deletion or Tert deficiency, especially
following a bleomycin (BLM) challenge (Povedano et al., 2015).
HAS2 dysregulation in IPF (Li et al., 2016) and the effects of
RHAMM antibodies and peptide mimetics in reducing
macrophage recruitment and early fibrosis (Zaman et al., 2005)
highlight the connection between RHAMM, hyaluronan, and IPF. In
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a prior study, the function-blocking RHAMM peptide, NP-110,
which sterically disrupts RHAMM’s association with hyaluronan,
TPX2, and AURKA (Figure 2F), was injected into BLM-treated
mice, reducing fibrosis and increasing antifibrotic adipokines in skin
(Wu et al., 2021). The current study analyzed the retained lung
tissues from the previous study (a generous gift from Dr. E. Turley,
Western University), revealing that NP-110 administration
decreased the collagen 1a to collagen 3a ratio (Figure 2G) and
elevated mTert mRNA expression almost three-fold (Figure 2H).
These findings emphasize that blocking the interaction of RHAMM
with hyaluronan, TPX2, tubulin, and AURKA via HATABD
sequence may control IPF by regulating TERT expression.

The HATABD domain’s significance in regulating TERT
expression by RHAMM prompted to screen the sequence across
the animal kingdom in silico to understand if this sequence could be
linked to longevity and telomere maintenance. The animals were
selected based on their lifespan. The protein sequence homology of
HATABD domain was examined in selected long-lived and short-
lived species, using human RHAMM (HMMR) as a reference, with
key amino acid changes highlighted in yellow (Figure 2I). The
LKQKIKHVVK sequence in HABD1 is crucial for binding ERK1
(Tolg et al., 2010). Long-lived ectothermic reptiles showed two
modifications (K636R and V644M), except crocodiles
(demonstrating only V644M). These changes may influence
RHAMM-ERK binding, although their connection to aging and
telomere function is unclear. Stable HABD1 sequences were found
in endothermic animals and long-lived naked mole rats.
Additionally, the leucine zipper sequence (LKDENSQLKSEVSKL)
contains three serine residues that were modified in long-lived
ectothermic reptiles but not in short-lived species (Figure 2I). In-
depth functional study is required to investigate the importance of
these modifications on RHAMM interactions. Ectothermic
tetrapods like crocodiles, turtles, and salamanders tend to age
more slowly and have longer lifespans than birds and mammals
(Reinke et al., 2022). This bioinformatic study prompts to
hypothesize that amino acid substitutions in the ‘HATABD’
domain of RHAMM, under selection pressure, may relate to
telomere maintenance and longevity, which warrants
experimental validation.

3.5 Telomerase activity affects RHAMM
mRNA expression

To examine the impact of telomerase activity and TERT
expression on RHAMM, 10T1/2 fibroblasts were treated with
telomerase activator, cycloastragenol (CAG), a triterpenoid
saponin from Astragalus membranaceus (Yang et al., 2023).
This treatment significantly increased mRNA levels of Hmmr
and Tert (p < 0.05) (Figures 3A,B) and enhanced mRNA
expression of Tpx2 and Aurka (Figures 3C,D). It enhanced
Has2 mRNA expression (Figure 3E), resulting in a nearly
four-fold increase in hyaluronan synthesis in treated cells
(600 ng/mL) compared to untreated cells (150 ng/mL, p <
0.05) (Figure 3fF. These findings suggest that telomerase
activation and TERT upregulation may significantly enhance
Hmmr expression and indicate a potential feedback loop with
TERT, as noted for CD44 (Chung et al., 2013).

4 Discussion

This pilot study reveals, for the first time, that RHAMM
regulates telomerase expression and activity, with different
isoforms having distinct roles. The C-terminus of RHAMM is
critical for TERT expression via the HATABD domain, which
contains the leucine zipper (LKDENSQLKSEVSKL) and ERK1-
binding sequences (LKQKIKHVVK). The study demonstrates
that RHAMMΔ163 affects the expression of protein components of
telomerase, i.e., TERT and dyskerin, as well as the expression of
shelterin proteins TRF1, TPP1, POT1, and TRF2IP (Supplementary
Figure S2B) and telomerase activity, supporting TERT-mediated
telomere maintenance. Notably, POT1/TPP1 protects telomeres
(Kibe et al., 2010) and regulates the synthesis of the C-rich
lagging strand through their interaction with CST-Polα/primase
(Cai et al., 2024). The possibility of RHAMMΔ163’s contribution to
these processes cannot be ruled out. In contrast, RHAMMFL does not
affect the mRNA expression of TERT and shelterin proteins. Based
on previous findings (Messam et al., 2021), it is speculated that
nuclear localization of RHAMMΔ163 but not RHAMMFL may play a
significant role in triggering TERT mRNA expression. However, the
possibility of a potential telomerase inhibitor domain (TID) at the
N-terminus of RHAMM (amino acids 1–163, mouse) cannot be
ruled out. Because the RHAMMΔexon8-16 isoform is non-oncogenic
(Lin et al., 2021) and originated from the N-terminus, it is unlikely
that it will affect TERT expression and have an additive effect on
RHAMMΔ163. However, further investigation may be required to
understand the role of RHAMMΔexon8-16 in telomerase regulation. An
in vivo assay with the function-blocking RHAMM peptide NP-110
highlights the importance of RHAMM’s interaction with hyaluronan,
tubulin, ERK1, and aurora kinase A via HATABD domain to regulate
TERT expression. NP-110 peptide may offer a therapeutic approach to
modulate telomerase function and control idiopathic pulmonary fibrosis
which needs further validation in larger cohorts of mice. A limitation of
the study is that it exclusively investigated mRNA expression through
qRT-PCR analysis, without addressing protein analysis. Furthermore, it
is unclear whether telomerase affects RHAMM expression through
TERT activity or an off-target mechanism. Additional experiments
are necessary to address this question. However, this study, along
with Wu et al. (2021), identifies RHAMM as a key telomere-
associated protein involved in both telomerase-dependent and
independent aging, suggesting it as a promising biomarker for aging.
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