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The relationship between sleep andmetabolism has emerged as a critical factor in
aging and age-related diseases, including Alzheimer’s disease and dementia.
Mitochondrial oxidative phosphorylation, essential for neuronal energy
production, also generates reactive oxygen species (ROS), which increase with
age and contribute to oxidative stress. Sleep plays a vital role in modulating redox
balance, facilitating the clearance of free radicals, and supporting mitochondrial
function. Disruptions in sleep are closely linked to redox imbalances, and
emerging evidence suggests that pharmacological interventions, such as dual
orexin receptor antagonists and antioxidant-based therapies, may help restore
redox homeostasis. Furthermore, antioxidant-rich diets and supplements have
shown promise in improving both sleep quality and metabolic health in aging
populations. Neurons, with their high energy demands, are particularly vulnerable
to oxidative damage, making redox regulation crucial in maintaining brain
integrity. This review explores the bidirectional relationship between sleep and
redoxmetabolism through five key areas: (1) sleep’s role in free radical regulation,
(2) ROS as mediators of age-related sleep disturbances, (3) feedback loops
between impaired sleep and brain metabolism, (4) sleep, redox, and aging in
peripheral systems, and (5) therapeutic strategies to restore redox balance and
improve aging outcomes. Understanding these mechanisms may provide new
targets for interventions aimed at mitigating age-associated diseases.
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1 Introduction

Within the field of aging research, the intricate relationship between sleep architecture
and metabolism has emerged as a significant contributor to age-related health changes and
pathological aging conditions, such as Alzheimer’s disease and dementia (Carroll and
Macauley, 2019; Zhang W. et al., 2024). Studies have shown that oxidative phosphorylation
of glucose, along with electron transfer chain reactions used to generate energy, also
produces substantial free radicals, which are further elevated in the aging brain (Gemma
et al., 2007; Butterfield and Halliwell, 2019). Neuronal mitochondrial redox biology and its
optimization are essential for overall brain function, and sleep has been shown to regulate
and play an important role in scavenging free radicals (Yin et al., 2014; Hill et al., 2018;
Richardson and Mailloux, 2023). Imbalances in the brain’s redox potential within the
mitochondria can be directly linked to sleep disturbances, and studies have demonstrated
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that improving sleep with medications like dual orexin receptor
antagonists and benzodiazepine-like drugs can help restore redox
balance (Singh and Kumar, 2008; Zhang W. et al., 2024).
Furthermore, recent clinical and animal studies have shown that
oxidative stress can be mitigated by consuming antioxidant-rich
foods, supplements, and specialized diets which can, in turn,
improve both sleep and overall health (Lei et al., 2023).

As humans, we spend about one-third of our lives sleeping, yet
much of the underlying physiology and mechanisms of sleep remain
elusive. Sleep plays a critical role in regulating the body’s
bioenergetics, particularly in the brain (Richardson and Mailloux,
2023). Studies have highlighted many of sleep’s unique functions:
restoring energy levels, synthesizing biomolecules for tissue
regeneration, and clearing free radicals, all of which promote an
optimized physiological state (Adam and Oswald, 1977; Benington
and Heller, 1995; Siegel, 2005; Mackiewicz et al., 2007; Davinelli
et al., 2024). Deciphering the bidirectional relationship between
sleep and redox bioenergetics and understanding their impacts on
aging and age-associated pathologies, is both timely and highly
relevant to addressing the current disease burden. These studies will
offer vital insights into the complexities of aging and its connection
to sleep and metabolism, providing new opportunities for
developing better drug targets to reduce age-related health
disparities.

Reactive oxygen species (ROS), traditionally viewed as damaging
metabolic byproducts, are now recognized as critical signaling
molecules in the brain, where they modulate various neural
functions including synaptic plasticity, neurogenesis, and
circadian rhythm regulation. At physiological levels, ROS play an
essential role in redox signaling by influencing the activity of
transcription factors such as NF-κB and Nrf2, and modulating
pathways like MAPK and PI3K/Akt, which are vital for neuronal
survival and adaptation (Finkel and Holbrook, 2000; Sies and Jones,
2020). This redox signaling plays a critical role in maintaining
cellular homeostasis and responding to environmental cues.
However, when ROS production exceeds the cellular antioxidant
capacity, oxidative stress ensues, leading to damage of proteins,
lipids, and DNA. In the central nervous system, mitochondria in
neurons and astrocytes are key sources of ROS, which help fine-tune
neurotransmitter release, long-term potentiation, and cognitive
functions like learning and memory (Massaad and Klann, 2011).
However, due to the brain’s high oxygen consumption and lipid-rich
environment, it is particularly vulnerable to oxidative stress when
ROS levels exceed antioxidant defenses. This delicate balance, where
low to moderate ROS levels facilitate neuronal signaling and
plasticity, but excessive accumulation contributes to
neurodegeneration, highlights the brain’s reliance on tightly
regulated redox homeostasis (Schieber and Chandel, 2014;
Angelova and Abramov, 2016).

Neurons are highly energy-demanding, and their mitochondria
are key producers and modulators of oxidative stress, which can
have severe consequences if not neutralized by antioxidant
mechanisms (Angelova and Abramov, 2018). As we age,
mitochondrial function changes, leading to an increase in ROS
production over time, along with impairments in antioxidant
processes (Cui et al., 2012; Chistiakov et al., 2014; Giorgi et al.,
2018; Stefanatos and Sanz, 2018). These changes contribute to ROS-
mediated aging and associated sleep-wake disturbances (Davalli

et al., 2016). Over time, such changes can lead to several life-
threatening diseases, including neurodegeneration and
cardiovascular abnormalities (Cappuccio et al., 2011; Feng et al.,
2022; Zhang W. et al., 2024). Understanding how redox metabolism
is altered in sleep disorders, such as insomnia, neurodegenerative
diseases, and aging, may provide crucial insights into maintaining
brain integrity as we age.

In this review, we explore the complex interplay between sleep,
metabolism, and aging across five core themes: (1) the role of sleep in
maintaining optimal free radical levels, (2) whether ROS directly
contribute to or mediate sleep disturbances in aging, (3) how age-
related sleep disturbances may, in turn, contribute to impaired brain
metabolism and exacerbate age-related changes, (4) the role of sleep,
redox, and aging in peripheral systems, and (5) the evidence that
improving mitochondrial redox potential restores sleep and slows
aging, as well as the potential benefits of interventions like exercise,
antioxidant-rich foods, supplements, and specialized diets that
enhance sleep and/or metabolic efficiency, and their effects on
aging markers (summarized in Figure 1).

2 The role of sleep in regulating free
radicals in the brain: from Reimund’s
free radical flux theory to
modern insights

Reimund’s free radical flux theory of sleep, proposed in the
1990s, received significant attention for suggesting that ROS
accumulate in the brain during wakefulness, when energy
consumption is high, and are subsequently cleared during sleep
through a scavenging process that also suppresses their production
(Reimund, 1994; Liochev, 2013). This theory suggests that sleep is
one of the many antioxidant defense systems employed in
mammalian species that restores the redox status of cells and
tissues to its equilibrium. Reimund also proposed that oxidative
stress acts as a sleep-inducing factor like the catabolic reaction
byproduct adenosine diphosphate. In 2007, Savage and West
extended this work using mathematical modeling to demonstrate
that sleep duration correlates more strongly with brain metabolic
rate than whole-body metabolic rate, reinforcing the hypothesis that
sleep need is primarily driven by the brain’s metabolic and
restorative demands (Savage and West, 2007). Further support of
this hypothesis comes from work in drosophila suggesting that
overexpressing antioxidant genes specifically in the neurons of
wildtype flies reduces the amount of time sleeping (Hill et al.,
2018). Sleep has many restorative functions and plays a crucial
role in scavenging free radicals within the brain. Sleep is categorized
into two broad types: non-rapid eye movement (NREM) and rapid
eye movement (Mapamba et al., 2022) sleep (Schulz, 2008;
Rosenberg and Hout, 2013) based on the power in different
frequency bands in the electroencephalogram and level of muscle
tone. During NREM sleep the metabolic rate is reduced by
approximately 5%–15% compared to wakefulness in the body
and brain glucose metabolism also decreases. This creates a
restorative period where energy demands are lower, allowing for
clearance of metabolic waste like ROS and replenishment of energy
stores (Ramanathan et al., 2002; Sharma and Kavuru, 2010; Schmidt,
2014; Aalling et al., 2018; Mir et al., 2019). The hypometabolic state
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of the brain during NREM sleep inhibits neurons allowing for
clearance of toxins, including harmful metabolites and
accumulated free radicals during prolonged wakefulness (Xie
et al., 2013; Vaccaro et al., 2020). Sleep promotes antioxidant
production including melatonin as well as the antioxidant
enzymes superoxide dismutase, catalase, and glutathione
peroxidase (Gulec et al., 2012; Chang et al., 2016; Monteiro et al.,
2024). Finally, repair and regenerative processes during sleep
promote efficiency of cellular processes and mitochondrial
function, reducing ROS production (Richardson and Mailloux,
2023). Specifically, slow wave activity and delta power during
NREM sleep have been shown to promote mitochondrial health,
including enhancing mitophagy, increased cisternae surface area
(crucial for efficient adenosine triphosphate (ATP) production), and
division of mitochondria (Mauri et al., 2022; Hartmann and
Kempf, 2023).

Sleep deprivation studies have provided firsthand evidence in
support of the free radical flux theory that sleep promotes clearance
of overloaded free radicals, protecting the brain against cellular
damage and neurodegenerative diseases as well as age-associated
pathology (Hill et al., 2018; Trist et al., 2019). Therefore, current
therapeutic strategies targeting sleep disturbances in aged
individuals could foster resilience against oxidative stress and
support overall cognitive function (Davinelli et al., 2024). The
bidirectionality of oxidative stress and sleep has also been
highlighted in sleep-wake and sleep-breathing disorders where
oxidative stress is increased with the progression of
pathophysiology. Reports suggest that even one night of sleep
deprivation in human subjects alters systemic redox metabolites
including plasma antioxidant levels such as glutathione (Trivedi
et al., 2017; Chen et al., 2022). Sleep deprivation might also impair
the balance of free radical generation by altering mitochondrial

FIGURE 1
A schematic model of pro-aging and anti-aging pathways modulated by sleep, diet, lifestyle, exercise, oxidative stress, and other metabolic
processes at the system and cellular levels. (A) The left panel illustrates the effects of interventions and biological processes such as optimal sleep,
antioxidant-rich foods, supplements, and exercise in promoting mitochondrial and cellular bioenergetic optimization that enhances longevity. These
factors improve free radical scavenging within the cytoplasm and mitochondria, thereby preventing oxidative stress-mediated DNA damage and
cellular senescence. Antioxidant ROS scavengers also enhance mitochondrial efficiency by inducing the expression of genes involved in mitochondrial
biogenesis, includingPGC-1α (Peroxisome Proliferator-Activated Receptor Gamma Coactivator 1-alpha) and NRF-2 (Nuclear Factor Erythroid 2-Related
Factor 2), which together protect against ROS-induced macromolecular damage. Sleep and exercise engage overlapping signaling pathways that
regulate mitochondrial biogenesis, redox-sensitive gene expression, and neuroinflammation. Anti-aging factors shown on the left panel also support
nuclear maintenance and chromatin remodeling, including DNA repair and preservation of telomere length, thereby promoting cellular health and
longevity. (B) The right panel depicts pathological aging, which accelerates pro-aging cellular pathways including mitochondrial ROS production, DNA
damage, neuroinflammation, and neurodegeneration, ultimately impairing brain health and shortening lifespan. Pathological aging is exacerbated by
various factors, including sleep disruption, metabolic disorders (e.g., obesity and diabetes), and adverse lifestyle behaviors such as alcohol consumption,
smoking, and diets high in processed foods. Chronic sleep loss, metabolic dysfunction, environmental toxins, stress, and physical inactivity elevate
systemic inflammation and ROS-mediated cellular damage. These factors impair mitochondrial function and trigger cytochrome-c release, initiating
apoptosis and neurodegeneration. Sleep disturbances and obesity also exacerbate insulin resistance, which promotes neuroinflammation, impairs Aβ
clearance, and disrupts blood brain barrier integrity, culminating in neurodegeneration.
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metabolic pathways resulting in spiked ROS generation (Cirelli,
2006; Hill et al., 2018; Hartmann and Kempf, 2023).

3 Changes in sleep-wake architecture
with aging: do reactive oxygen species
mediate sleep disturbances in
the elderly?

3.1 Changes in sleep with aging

Sleep serves a restorative role, allowing the brain and body to
recover from the oxidative and metabolic demands of wakefulness.
In the elderly, sleep architecture becomes increasingly fragmented,
characterized by difficulties in sleep initiation, frequent nocturnal
awakenings, and reduced sleep efficiency (Ohayon et al., 2004;
Mander et al., 2017). These disruptions are not limited to sleep
quantity but extend to qualitative aspects, such as diminished delta
power during slow-wave activity, fewer and shorter NREM/REM
episodes, and increased latency to these stages (Mander et al.,
2017). Importantly, these changes are strongly associated with
cognitive decline and age-related neurological disorders (Ohayon
et al., 2004; Lupi et al., 2024). In elderly individuals, circadian
rhythms as well as sleep-wake regulation are weakened, leading to
phase advances, decreased ability to adjust to phase shifts, and
reduced amplitude of circadian rhythms (Duffy et al., 2015). These
changes are attributed to reduced output of clock gene expression
in the suprachiasmatic nucleus (SCN) (Musiek and Holtzman,
2016), neuronal loss, and imbalances in neurohormonal and
neurotransmitter systems arising from age-mediated changes in
the central nervous system (Zhong et al., 2019). Circadian phase
delays and shifting chronotypes to an earlier phase with aging have
been associated with shorter telomere length of chromosomes in
leukocytes, indicating cellular senescence (Wynchank et al., 2019).
Further supporting this notion of the bidirectional relationship
between age and sleep-wake disruption, studies have noted that
behavioral or genetic manipulation of circadian rhythms also
causes aging-like phenotypes (Hood and Amir, 2017).
Importantly, age-related changes in sleep-wake patterns exhibit
significant sex differences, which are shaped by biological factors
(e.g., steroid hormones and genetic differences) as well as
environmental and dietary factors (Kostin et al., 2020;
Taporoski et al., 2024). In humans, significant sex differences in
sleep architecture emerge after middle age, with women more
frequently self-reporting sleep disturbances than men. However,
the validity of these findings is limited by inconsistencies in
objective measurement criteria (van den Berg et al., 2009; Bailey
and Silver, 2014; Taporoski et al., 2024). Understanding these sex
differences is critical for developing sex-specific geriatric and
chronomedicine-based interventions for sleep and age-related
disorders (Wiranto et al., 2024). Furthermore, women are
approximately 41% more likely than men to develop insomnia
or related sleep disturbances, such as delayed sleep onset, difficulty
maintaining sleep, and excessive daytime sleepiness, which tend to
worsen with age (Zhang andWing, 2006; Sidani et al., 2019; Alosta
et al., 2024). Collectively, these findings confirm that sex
significantly influences age-related changes in sleep architecture,
driven by sex-specific hormonal, genetic, and physiological factors

that must be considered when developing therapeutic strategies for
sleep and age-related health conditions.

3.2 Age-associated changes in oxidative
stress and metabolism

Aging is accompanied by increased oxidative stress due to
elevated ROS levels and a concurrent decline in endogenous
antioxidant defenses. This redox imbalance disrupts
neurochemical signaling and damages sleep-regulating brain
regions thereby impairing circadian rhythms and sleep-wake
regulation (Carroll and Prather, 2021). Melatonin, a sleep-
promoting hormone with antioxidant properties, declines with
age, leading to increased mitochondrial ROS production and
diminished regulation of the electron transport chain (Wurtman,
2000; Karasek, 2004; Petrosillo et al., 2008; Paradies et al., 2010). Age
associated failure of antioxidant machinery such as reduced
expression of antioxidant enzymes including catalase, superoxide
dismutase and glutathione peroxidase significantly contributes to
the age-associated ROS accumulation (Semsei et al., 1991; Finkel and
Holbrook, 2000; Barouki, 2006; Gemma et al., 2007). Moreover,
sleep deprivation and aging share similar oxidative profiles; both
increase ROS accumulation in key regions like the gut and brain,
contributing to cellular senescence, neuroinflammation, and
cognitive dysfunction (Wang et al., 2010; Vaccaro et al., 2020).
This creates a feedback loop in which sleep impairments not only
accelerate the aging process by promoting cellular senescence and
DNA damage, but also elevate ROS levels, leading to the
accumulation of unfolded or misfolded proteins in the
endoplasmic reticulum and increased activity of ROS generating
enzymes such as NADPH oxidase, xanthine oxidase and
phospholipase A2 (Xu et al., 2020). These changes further disrupt
antioxidant defense mechanisms in the brain, exacerbating age-
related pathologies, including neurodegeneration and memory
impairments (Singh and Kumar, 2008; Alzoubi et al., 2012;
Villafuerte et al., 2015; Kanazawa et al., 2016; Hill et al., 2018).

Aging profoundly impairs brain energy metabolism and
diminishes antioxidant defense mechanisms, leading to excessive
accumulation of ROS, which play a central role in sleep disturbances
among older adults (Camandola and Mattson, 2017; Błaszczyk,
2020). One key contributor to this metabolic inefficiency is the
age-related decline in nicotinamide adenine dinucleotide (Lananna
et al.) levels in the mitochondrial salvage pathway, which disrupts
the Krebs cycle, reduces ATP production, and impairs DNA
repair—cascading into neuronal stress and degeneration
(Błaszczyk, 2020). The brain, being highly dependent on glucose
and oxygen delivered via cerebral blood flow, becomes especially
vulnerable when cerebral blood flow declines due to aging or sleep
deprivation, resulting in metabolic instability and overproduction of
ROS (Leithner and Royl, 2014; Tarumi and Zhang, 2018; Mokhber
et al., 2021; Graff et al., 2023). Accumulated ROS contributes to both
sleep deterioration and aging by driving macromolecular damage,
including DNA and protein degradation. In addition, elevated ROS
levels impair neurogenesis and promote neuroinflammation, which
in turn lead to age-associated neurological disorders and cognitive
decline (Wang et al., 2010; Yuan et al., 2015; Hill et al., 2018;
Chiricosta et al., 2019).
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3.3 Age-associated changes in
circadian rhythms

Age-associated circadian desynchrony has been shown to
negatively impact metabolic function, contributing to increased
oxidative stress and impaired sleep. However, interventions such
as time-restricted feeding can help realign circadian rhythms, reduce
oxidative stress, improve sleep quality, and potentially extend
lifespan (Tevy et al., 2013; Hood and Amir, 2017; Acosta-
Rodríguez et al., 2021). Interestingly, nutrient-sensing pathways
which exhibit dynamic responses to dietary interventions, play a
central role in aging-related cellular signaling and are also
modulated by both circadian rhythms and the sleep-wake cycle
(López-Otín et al., 2016; Acosta-Rodríguez et al., 2021). These
pathways include pro-aging regulators such as mTOR, PI3K,
IGF-1, and AKT as well as anti-aging factors like SIRT1, PGC-
1α, and AMPK. Notably, SIRT1 acts as a key integrator of metabolic
and circadian signals by regulating core clock genes, including
BMAL1 and CLOCK, within the SCN (Tevy et al., 2013). With
age, SIRT1 levels decline, disrupting the molecular clock in the SCN
and thereby impairing both circadian and metabolic homeostasis
(Chang and Guarente, 2013; Acosta-Rodríguez et al., 2021).

3.4 Effects of aging and sleep on the
glymphatic system and neuron-glial redox
coupling in brain health

Aging also impairs the glymphatic system, a crucial brain-wide
clearance network responsible for removing interstitial waste
products, including neurotoxic and ROS-generating protein
aggregates such as amyloid-β, α-synuclein, and neurofibrillary
tangles (Rasmussen et al., 2018; Benveniste et al., 2019; Hablitz
and Nedergaard, 2021). The glymphatic system primarily functions
during NREM sleep, when cerebrospinal fluid influx increases and
facilitates the convective removal of metabolic byproducts. This
clearance mechanism is essential for maintaining redox balance, as
the accumulation of protein aggregates can enhance mitochondrial
dysfunction and promote excessive generation of ROS, creating a
pro-oxidative and inflammatory environment. With aging, multiple
structural and functional alterations such as decreased
cerebrovascular pulsatility, reduced aquaporin-4 polarization on
astrocyte end feet, and impaired perivascular cerebrospinal fluid
exchange significantly reduce glymphatic efficiency. Additionally,
age-associated declines in cerebral blood flow and increased
blood–brain barrier permeability further compromise glymphatic
transport, allowing inflammatory mediators and ROS to accumulate
in the brain parenchyma (Banks et al., 2021; Xiong et al., 2024).
These alterations not only exacerbate oxidative stress but also fuel
chronic neuroinflammation, accelerating neuronal apoptosis and
degeneration. Importantly, sleep fragmentation and deprivation
themselves have been shown to acutely disrupt glymphatic
clearance. Sleep loss decreases the depth and continuity of slow-
wave sleep, limiting the time during which glymphatic transport is
most active. This creates a vicious cycle, where impaired waste
clearance contributes to ROS buildup, which in turn promotes
neuroinflammation, alters sleep architecture, and leads to further
fragmentation of sleep (Gu et al., 2022; Yi et al., 2022). Studies show

that even short-term sleep disruption can reduce the removal of
amyloid-β, while chronic sleep loss leads to its accumulation, both of
which are strongly associated with increased ROS levels and
subsequent damage to neurons.

Sleep disruption not only accelerates the production of ROS but
also impairs their clearance by compromising glymphatic system
function (Gu et al., 2022). A dysfunctional glymphatic system leads
to ROS accumulation across cellular compartments, triggering
injury signaling pathways and activating the
NLRP3 inflammasome in microglial cells, thereby amplifying
neuroinflammation and promoting neurodegeneration and brain
aging. Amyloid-β (Aβ) plaques further exacerbate this process by
generating ROS after entering mitochondria through the translocase
of the outer membrane, causing mitochondrial dysfunction (Chen
and Yan, 2007). Sleep deprivation worsens this cascade by hindering
glymphatic clearance of Aβ peptides, compounding oxidative
damage (Kang et al., 2009; Shokri-Kojori et al., 2018).
Glymphatic activity, particularly in clearing metabolic waste, is
heightened during sleep. Proteins such as aquaporin-4 are
essential for this clearance; aquaporin-4 knockout models
demonstrate over a 50% reduction in Aβ removal (Iliff et al.,
2012; Kopeć et al., 2023). Postmortem analyses of Alzheimer’s
disease brain tissue reveal abnormal aquaporin-4 expression and
mislocalization, supporting a bidirectional relationship between
impaired glymphatic clearance and Aβ accumulation that
accelerates brain aging and cellular degeneration (Zeppenfeld
et al., 2017; Rasmussen et al., 2018).

Beyond waste clearance, neurons and glia constantly exchange
metabolic signals, with glial cells, particularly astrocytes, playing a
critical role in redox homeostasis. Astrocytes supply neurons with
antioxidants like glutathione and facilitate cerebrospinal and
interstitial fluid movement to remove metabolic waste. This
astrocyte–neuron redox coupling is highly sensitive to sleep
disruption, which alters the brain’s oxidative state and
mitochondrial efficiency. Astrocytes exert robust antioxidant
effects via the glutathione system and the glutamine, glutamate
shuttle, both essential for maintaining neuronal mitochondrial
function and ATP production. Disruption of redox coupling can
be seen in experimental models where astrocyte-specific mutations
in the superoxide dismutase gene lead to enhanced motor neuron
degeneration, an effect mitigated by mitochondrial-targeted
antioxidants like MitoQ (Cassina et al., 2008). These findings
underscore that redox imbalance impairs astrocyte–neuron
metabolic interactions, contributing to neurodegeneration and
age-related cognitive decline. Finally, emerging evidence suggests
a fundamental metabolic divergence between neurons and glia:
neurons exhibit lower glycolytic rates and rely more heavily on
oxidative phosphorylation than glial cells. This metabolic
specialization highlights the importance of glia in supporting
neuronal bioenergetics, particularly under conditions of oxidative
stress and sleep disruption. In summary, age-related changes in sleep
architecture are closely intertwined with elevated oxidative stress
and declining antioxidant capacity in the aging brain. ROS emerge as
a central mediator in this process, disrupting circadian regulation,
impairing glymphatic clearance, altering metabolism and damaging
sleep-regulating neural circuits. As sleep disruption further impairs
redox balance and waste clearance, a self-reinforcing loop is
established thus linking disrupted sleep, oxidative stress, and
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aging. Understanding these interdependent mechanisms offers
critical insight into therapeutic strategies aimed at preserving
sleep quality and mitigating neurodegenerative risk in the elderly.

4 Sleep disturbances and impaired
brain metabolism are closely
interconnected, both contributing
significantly to the aging process

Sleep is an active process initiated and supported by distinct
neural populations within the brain. The aging process and sleep are
both significantly influenced by the dynamics of brain bioenergetics.
During sleep, the brain undergoes several restorative processes,
including energy preservation, DNA repair, tissue repair,
clearance of toxins, and rejuvenation of the immune system,
ensuring optimal physiological functions. However, as we age,
these processes begin to slow down and deviate from their
optimal efficiency. Cellular repair mechanisms rely heavily on
energy availability. Neuroimaging studies have shown that aging
and Alzheimer’s disease brains exhibit a hypometabolic state, which
may compromise these repair processes and contribute to
accumulating cellular damage. (Womack et al., 2011; Mertens
et al., 2021; Xue et al., 2022). Humans spend roughly one-third
of their lives sleeping, highlighting the significant role sleep plays in
our overall wellbeing (Aminoff et al., 2011). Mitochondria play a
crucial role in neurocognitive function and the survival of neuroglial
cells by supplying the energy necessary for essential physiological
processes. Mitochondrial pathologies include calcium
dyshomeostasis, altered mitophagy as well as impaired redox
potential which contribute to neurodegeneration and cognitive
decline often seen with aging. Interestingly, disrupted sleep has
been found to promote mitochondrial dysfunction, increasing
oxidative stress in the brain (Hill et al., 2018). Understanding
this complex interaction between sleep physiology and brain
metabolism could reveal vital insights about aging and its impact
on brain health. Prioritizing restorative sleep may be a crucial
strategy for supporting healthier aging pathways in the brain.

Since aging is a multifactorial and highly complex biological
process, many factors including genetic mutations, epigenetic
alterations and metabolic dysregulation play a significant role in
the process. Brain metabolism along with sleep impairment play a
crucial role in deteriorating cellular and system homeostasis that
contributes to cognitive decline as well as aging trajectories
(Gonzales et al., 2022; Mukherjee et al., 2024). Current research
has significantly explored the bidirectional relationship between
dysregulated brain metabolism and sleep impairments in
influencing aging as well as age-associated neurocognitive deficits,
and suggests that alterations in any one of them exacerbate the other,
leading to accelerated aging and neurodegeneration (Bah et al.,
2019). Aging has a significant impact on brain metabolism and
vice versa, since impaired glucose utilization, lipid metabolism as
well as oxidative stress in the mitochondria, are altered as we age and
conversely, exacerbated ROS and a decline in bioenergetics in
neuroglial cells, aggravates aging and cognition (Bratic and
Larsson, 2013; Bartman et al., 2024). Additionally, studies from
the last decade have suggested that mitochondrial dysfunction
caused by mutations in the mitochondrial DNA (mtDNA) as

well as impairments in the respiratory chain are the most
important molecular determinants of aging and could be vital
therapeutic targets (Bratic and Larsson, 2013; Srivastava, 2017).
Therefore, age-related diseases and strategies to mitigate them
must account for sleep impairments and the restoration of the
brain’s bioenergetic balance in order to develop effective
therapeutics that slow the aging process. We will review how
sleep impairments and brain metabolism affect each other and
contribute to the aging process.

4.1 Impaired brain metabolism leads to sleep
disturbances

Sleep is a physiologically active and regulated state during which
consciousness and sensory processing are temporarily reduced to
support essential homeostatic functions such as cellular repair,
memory consolidation, and metabolic detoxification.
Electrophysiologically, sleep is broadly divided into NREM and
REM sleep stages, which differ in neurochemical profiles,
neuronal activity patterns, and metabolic demands (Savage and
West, 2007; Schmidt, 2014). NREM sleep, particularly its deeper
stages, is considered a hypometabolic state characterized by reduced
cardiorespiratory output, reduced energic demands, and rhythmic
slow oscillations. This phase is critical for DNA damage repair,
immune memory and homeostasis, synaptic downscaling, and
clearance of debris and metabolic waste including byproducts of
oxidative stress from brain tissue (Tononi and Cirelli, 2006; Iliff
et al., 2012; Xie et al., 2013; Besedovsky et al., 2019; Nedergaard and
Goldman, 2020; Zada et al., 2021).

Aging compromises the brain’s metabolic efficiency, primarily
due to mitochondrial dysfunction and cumulative oxidative damage
to mtDNA (Bhatti et al., 2017; Bartman et al., 2024). These
alterations impair ATP synthesis, which is essential for sustaining
synchronized neuronal activity during NREM sleep. ATP deficits
reduce the ability of sleep-regulating circuits—such as those in the
ventrolateral preoptic nucleus, to maintain deep, consolidated sleep,
leading to frequent arousals and fragmented sleep patterns in the
elderly (Benington and Heller, 1995; Scharf et al., 2008).
Interestingly, the ventrolateral preoptic nucleus and other sleep-
promoting regions can detect glucose levels in cerebrospinal fluid,
further linking central energy sensing to sleep regulation (Mavanji
et al., 2015; Varin et al., 2015). Age-related metabolic impairment
also disrupts neuro-glial interactions critical for brain homeostasis.
For example, astrocyte-neuron metabolic shuttles, such as the
glutamate–glutamine cycle, are affected by mitochondrial
inefficiency and oxidative stress, reducing synaptic plasticity and
impairing glymphatic clearance during sleep (Vyazovskiy and
Harris, 2013; Edison, 2024). These dysfunctions not only impact
sleep architecture but also accelerate neurodegenerative processes.

In addition to aging, several metabolic disorders underscore the
strong bidirectional relationship between disrupted metabolism and
sleep impairment. In phenylketonuria, altered amino acid
metabolism leads to deficiencies in neurotransmitters like
serotonin, dopamine, and norepinephrine, resulting in delayed
sleep onset, prolonged latency, and excessive daytime sleepiness
(Bruinenberg et al., 2017). Similarly, chronic metabolic diseases such
as diabetes impair glucose transport, increase oxidative stress, and
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trigger neuroinflammation, factors that are known to impair sleep-
wake regulation and exacerbate age-related cognitive decline
(Muriach et al., 2014; Al-Sayyar et al., 2023). Lifestyle-related
metabolic stressors, including alcohol consumption, smoking,
obesity, and poor dietary choices, are additional contributors to
metabolic dysfunction in the brain and are commonly associated
with sleep disorders such as insomnia, sleep apnea, and circadian
misalignment (Romero-Corral et al., 2010; Simou et al., 2018; Liu
et al., 2021). These conditions further underscore how disrupted
brain metabolism, whether due to aging or disease, is a central factor
in the pathophysiology of sleep disturbances.

4.2 Sleep disruption contributes to
dysregulated brain redox and altered
metabolism: a bidirectional relationship
dictating longevity and neurodegeneration

Sleep plays an essential role in energy optimization and
replenishing carbon sources not only for the brain but at a
systematic level. Metabolic demands are high during wake to
support different body movements, food seeking, reproduction as
well as survival of the organism from predators (Ding et al., 2018;
Lesku and Schmidt, 2022). Sleep deprivation studies have provided
first-hand information about the metabolic changes including the
oxidative stress that occurs in the brain as well as peripheral organs
as a result of insufficient or total lack of sleep (Vaccaro et al., 2020;
Davinelli et al., 2024). Positron emission tomography studies
revealed that lack of sleep also causes inefficient glucose
utilization especially in higher-order brain regions such as
prefrontal cortex, thalamus, hippocampus and cortex that
ultimately lead to impairments in cognitive functions (Wu et al.,
1991; Shin et al., 2024). Sleep and metabolic disruption including
impairments in sleep quality, delta power, spindle density, and
altered mitochondrial bioenergetics are intricately linked to aging
and age-related dementia (Xie et al., 2013; Zielinski and Gibbons,
2022; Shin et al., 2024). Among several essential factors accelerating
age-associated neuropathology, oxidative stress, impaired
mitochondrial function, neuroinflammation, and compromised
blood-brain barrier integrity are significantly modulated by sleep
disruption often observed in elderly subjects (Brunetti et al., 2021;
Melhuish Beaupre et al., 2021; Zielinski and Gibbons, 2022). Studies
have suggested that the sleep-wake cycle is profoundly affected with
age marked by insomnia, sleep fragmentation, and daytime
sleepiness that trigger the neurodegeneration and significantly
affects the mental health and longevity in elderly subjects
(Casagrande et al., 2022; Parhizkar and Holtzman, 2025).
Moreover, aging and sleep impairments are co-variable
physiological processes that cause a significant reduction in the
metabolic efficiency of the brain, especially impacting mitochondrial
integrity and function (Tevy et al., 2013; Srivastava, 2017; Zhong
et al., 2019). Several studies have reported that targeting metabolic
impairments could be a potential tool to mitigate age-mediated
changes in sleep, cognition, and longevity by reducing oxidative
stress and inflammatory signaling pathways (Brown-Borg et al.,
2012; Brunetti et al., 2021; Melhuish Beaupre et al., 2022; Zegarra-
Valdivia et al., 2025). Since sleep regulates the brain’s clearance of
metabolic toxins such as tau and Aβ-42 peptides via the glymphatic

system, age-related sleep disruption may impair this clearance,
thereby exacerbating neuronal pathology through increased ROS
production and ultimately triggering neuronal apoptosis (Xie et al.,
2013; Chong et al., 2022). Therefore, enhancing sleep quality,
optimizing metabolism, and reducing ROS may represent
promising pharmaceutical targets for managing age-related
cognitive decline. These interventions could help mitigate
molecular pathologies such as microglial activation, oxidative
stress, and mitochondrial dysfunction, which accelerate aging and
neurodegeneration, ultimately affecting longevity. Although the
complex relationship between oxidative stress and sleep
regulation remains under active investigation, numerous studies
suggest that wakefulness increases ROS levels, as mitochondria must
continuously produce ATP to sustain arousal. This ROS
accumulation may, in turn, promote sleep by modulating key
signaling pathways (Hill et al., 2018; Davinelli et al., 2024).
Studies have linked ROS-mediated gene expression changes in
SCN, especially clock and period genes, that influence sleep-wake
architecture and cause sleep disturbances (Rutter et al., 2001;
Lananna et al., 2018; Davinelli et al., 2024).

4.3 Mitochondrial redox signaling as a
bidirectional regulator of sleep and cellular
homeostasis

Mitochondria are the primary source of intracellular ROS,
generating approximately 90% of cellular ROS as byproducts of
oxidative phosphorylation (Balaban et al., 2005). Importantly, ROS
are not merely metabolic waste, they serve as signaling molecules
that regulate essential cellular processes, including autophagy,
immune function, differentiation, and responses to hypoxia (Sena
and Chandel, 2012; Dai et al., 2014). Emerging evidence also
implicates ROS in the regulation of sleep and circadian rhythms.
Low levels of ROS promote sleep, whereas excessive ROS disrupt
sleep architecture (Ikeda et al., 2005; Wilking et al., 2012; Fagiani
et al., 2022). Sleep disruption, in turn, impairs mitochondrial
function, reduces antioxidant defenses, elevates ROS production,
and leads to the release of mtDNA, calcium dyshomeostasis, and
ATP depletion, changes that trigger inflammation and contribute to
fragmented NREM sleep (Hartmann and Kempf, 2023; Hu et al.,
2024; Zhang Q. et al., 2024).

Sleep loss further compromises mitochondrial health by
reducing activity in complexes I and IV of the electron
transport chain and dysregulating mitochondrial dynamics.
This includes increased phosphorylation of dynamin-related
protein 1 (DRP1) at serine-616, promoting mitochondrial
fragmentation, and decreased expression of fusion proteins
such as mitofusins (MFN1/2) and optic atrophy 1 (OPA1)
(Andreazza et al., 2010; Vaccaro et al., 2020; Dai et al., 2021;
Mauri et al., 2022; Sarnataro et al., 2025). Sleep deprivation also
inhibits mitophagy by suppressing the PINK1/Parkin pathway,
allowing the accumulation of damaged mitochondria that further
increase ROS and inflammation, accelerating neurodegeneration
(Chakravorty et al., 2019; Covarrubias et al., 2021). These
mitochondrial impairments are accompanied by reductions in
sirtuins, NAD+-dependent deacetylases that govern metabolism,
stress responses, and circadian gene expression, and altered
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NAD+/NADH ratios (Covarrubias et al., 2021; Zhuang
et al., 2024).

In Drosophila, a mechanistic link between mitochondrial ROS
and sleep regulation has been demonstrated. Sleep deprivation
increases mitochondrial ROS in dorsal fan-shaped body neurons,
where the β-subunit of Shaker potassium channels (Hyperkinetic)
senses redox status via its NADPH cofactor. Oxidation of NADPH
slows A-type K+ current inactivation, enhances neuronal
excitability, and promotes sleep. Genetic or optogenetic
suppression of ROS in these neurons reduces sleep, establishing a
bidirectional feedback loop: wakefulness elevates oxidative burden,
which triggers sleep, and sleep in turn reduces ROS levels (Kempf
et al., 2019). Additional mechanisms linking oxidative stress and
sleep include the accumulation of extracellular adenosine, resulting
from inhibition of adenosine kinase, that activates adenosine
A1 receptors to promote sleep (Park and Gupta, 2013; Correia
and Vale, 2024). ROS also affect the activity and gene expression of
sleep-regulatory neuronal populations, including orexinergic
neurons and the SCN, where redox-sensitive transcriptional
feedback loops modulate circadian timing (Wilking et al., 2012;
Lananna et al., 2018; Pardillo-Díaz et al., 2022). Notably, REM sleep
deprivation has been associated with increased mitochondrial
biogenesis in the hippocampus and the emergence of manic-like
behaviors in rodent models (Kim et al., 2022).

Collectively, these findings support a bidirectional relationship
in which sleep promotes mitochondrial redox homeostasis, while
mitochondrial oxidative status shapes sleep quantity, quality, and
circadian stability, processes with broad implications for aging and
neurodegenerative diseases. While Drosophila models provide
compelling evidence for a causal, bidirectional relationship
between oxidative stress and sleep, further work is needed to
determine whether these mechanisms are conserved in mammals.

4.4 Sleep disruption including jet lag,
shiftwork, and sleep apnea contribute to
impaired metabolism

Shift work, where an individual’s schedule overlaps with their
typical sleep time, is linked to various health issues and contributes
to the development of shift work disorder in approximately 25% of
affected individuals. This condition is characterized by chronic or
recurrent insomnia and excessive daytime sleepiness. Shift-work is
associated with cardiovascular disease, diabetes, obesity, cancer, and
mood disorders. Studies have shown that limiting food consumption
to daytime hours can reduce circadian misalignment, prevent
impaired glucose tolerance and pancreatic beta-cell function,
reduce cardiovascular risk factors and impaired mood associated
with shift work. At the molecular level, feeding during the inactive
phase has been shown to abolish the daily rhythm in skeletal muscle
mitochondria respiration (de Goede et al., 2022). Moreover,
essential mitochondrial processes such as fission, fusion,
mitophagy, and NAD + production are regulated or influenced
by circadian timing (de Goede et al., 2018). Collectively, these
findings suggest that sleep disruption associated with circadian
misalignment may impair mitochondrial function and
compromise cellular health, leading to redox imbalance and
contributing to accelerated aging phenotypes.

Sleep apnea, particularly obstructive sleep apnea, is
characterized by recurrent episodes of intermittent hypoxia
during sleep due to upper airway collapse. These hypoxic
episodes are followed by rapid reoxygenation, which triggers a
surge in the production of ROS through mechanisms such as
mitochondrial dysfunction and activation of NADPH oxidase
pathways (Stanek et al., 2021). This pattern of hypoxemia,
hypercapnia, and reoxygenation mimics an ischemia-reperfusion
injury, leading to significant oxidative stress and inflammatory
responses that have been strongly linked to accelerated biological
aging and increased risk of neurodegenerative disease (Li andWang,
2021). Moreover, intermittent hypoxia leads to repeated micro-
arousals, resulting in sleep fragmentation, with individuals
experiencing between 10 and 43 micro-arousals per hour (Martin
et al., 1997). These frequent arousals disrupt the continuity and
depth of slow-wave sleep, reducing the restorative functions of sleep
and further impairing glymphatic clearance of metabolic waste
products, including ROS-generating aggregates such as beta-
amyloid. Over time, this results in increased ROS accumulation,
neuronal stress, and a decline in redox homeostasis. High-frequency
sleep fragmentation in obstructive sleep apnea has been shown to
induce outcomes similar to chronic sleep deprivation, including
reduced antioxidant enzyme activity (e.g., superoxide dismutase,
glutathione peroxidase), aberrant mitochondrial morphology, and
diminished ATP production, all of which impair neuronal
metabolism (Bonnet and Arand, 2003). These metabolic
disturbances contribute to neuronal inflammation, cellular
senescence, and cognitive dysfunction, hallmark features of
brain aging.

5 Sleep and mitochondrial health affect
peripheral systems including the
immune system and gut

5.1 Mitochondrial decline, inflammaging,
and sleep

The concept of “inflammaging,” first introduced by Claudio
Franceschi in 2000, refers to the chronic, low-grade systemic
inflammation that characterizes biological aging (Franceschi
et al., 2000; Franceschi and Campisi, 2014). This age-associated
inflammatory state arises from a complex interplay of internal and
external stressors, including poor diet, psychosocial or physical
stress, environmental toxins, persistent infections, and disrupted
circadian rhythms. Chronic exposure to these factors leads to
sustained immune cell activation, which in turn drives
mitochondrial dysfunction and elevated ROS levels further
amplifying immune activation and inflammatory signaling (Allen
et al., 2021; Kaliszewska et al., 2021; Li et al., 2021; Shang et al., 2021;
Reddam et al., 2022; Pollicino et al., 2023).

Mitochondria play a pivotal role in immune cell metabolism and
function. As immune cells age, particularly T cells, mitochondrial
efficiency declines, leading to reduced ATP production, increased
ROS generation, and impaired mitophagy. These changes drive
T cells toward senescence, a state of irreversible cell cycle arrest
accompanied by the senescence-associated secretory phenotype,
characterized by inappropriate activation, poorer function and
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enhanced secretion of proinflammatory cytokines such as IL-6,
TNF-α, and IFN-γ (Olivieri et al., 2018; Lee et al., 2022). This
not only contributes to systemic inflammation but also impairs
immune surveillance and responsiveness. Experimental models have
further highlighted the causal role of mitochondrial dysfunction in
immune aging. For instance, targeted deletion of mitochondrial
transcription factor A, known as TFAM, is important for mtDNA
stability leading to decreased mtDNA copy number and impaired
oxidative phosphorylation. This results in elevating ROS and
oxidative damage ultimately inducing early mitochondrial failure
in T cells. This mitochondrial failure results in the immune
senescence of those same T cells and a systemic accelerated aging
phenotype, marked by motor deficits, cardiovascular dysfunction,
and cognitive decline (Desdín-Micó et al., 2020). These findings
underscore the centrality of mitochondrial health in maintaining
immune competence and delaying age-related degeneration.

Sleep supports mitochondrial restoration through enhanced
antioxidant defenses, autophagy, and bioenergetic recovery (Mauri
et al., 2022; Richardson and Mailloux, 2023; Lei et al., 2024). In
immune cells, these processes are essential for preventing
metabolic exhaustion and maintaining immunological vigilance
(Angajala et al., 2018; Steinert et al., 2021). Sleep, particularly deep
slow-wave NREM sleep, emerges as a critical modulator of
immune function and a potential buffer against inflammaging.
Beyond its restorative effects, sleep actively shapes immune
responses and is essential for immunological memory
consolidation. During NREM, antigen-presenting cells interact
more effectively with helper T cells to reinforce adaptive
immune responses. This process resembles memory
consolidation in the brain and is thought to optimize long-term
immune defense (Lange et al., 2011; Besedovsky et al., 2012;
Besedovsky et al., 2019). Hence, sleep disruption may not only
impair the acute immune response but also weaken the long-term
immunological repertoire, increasing susceptibility to infections
and impairing vaccination efficacy.

The immune system is also a critical regulator of
sleep. Cytokines such as IL-1β and TNF-α, which are pivotal in
inflammation, also serve as sleep-regulating molecules, promoting
NREM sleep at physiological levels but contributing to sleep
fragmentation when chronically elevated (Besedovsky et al., 2019;
Zielinski and Gibbons, 2022). Conversely, sleep deprivation skews
immune balance, reducing the number and function of natural killer
cells (De Lorenzo et al., 2015), impairing T-cell responsiveness
(Tune et al., 2021), and elevating circulating proinflammatory
cytokines, thus mimicking an inflammaging-like profile even in
younger individuals (Garbarino et al., 2021).

Sex-based differences in mitochondrial physiology add an
important layer of complexity when considering mitochondrial-
targeted interventions for sleep, aging, and age-related
inflammation. Studies in Fischer rats have shown that female
skeletal muscle exhibits greater mitochondrial resilience and
sustained function following oxidative stress, likely due to the
protective effects of estrogen (Farhat et al., 2017). In sedentary
animals, female muscle fibers maintained more efficient respiration
and ATP production in response to ROS compared to males;
however, this advantage diminished with exercise, where males
showed improvements, indicating a sex-specific interplay between
physical activity and redox regulation. Estrogen is proposed to exert

its effects through activation of the MAP kinase pathway and
transcription factor NF-κB, leading to increased expression of
antioxidant enzymes such as superoxide dismutase (Farhat et al.,
2017; Guajardo-Correa et al., 2022). It also enhances mitochondrial
respiratory chain activity, improves membrane potential, and
reduces hydrogen peroxide production (Stirone et al., 2005;
Klinge, 2020). Moreover, nuclear–mitochondrial genome
interactions differ by sex, influencing longevity and stress
adaptation, with females exhibiting more robust mitochondrial
maintenance—again, largely attributed to estrogenic signaling
(Tower, 2015). Together, these findings underscore significant sex
differences in mitochondrial function that contribute to disparities
in aging trajectories, cellular senescence, sleep impairments, and
dementia risk. As such, sex should be carefully considered when
developing mitochondrial-targeted therapeutics or supplements for
aging and sleep-related disorders.

In summary, the immune system is a pivotal mediator of aging
where disruptions in sleep and mitochondrial function form a self-
reinforcing loop that accelerates inflammaging processes.
Mitochondria are at the nexus of this interaction, both as
generators of ROS and as regulators of immune cell function.
Sleep, by modulating redox balance and supporting immune
homeostasis, acts as a critical counterbalance. Disruption of this
equilibrium, whether through poor sleep, chronic inflammation, or
mitochondrial dysfunction, propels the aging process and increases
vulnerability to age-related diseases. Addressing sleep quality,
mitochondrial health, and sex differences may therefore represent
a powerful strategy to delay immunosenescence and mitigate
inflammaging.

5.2 The gut’s role in mediating sleep and
redox balance during aging

The gastrointestinal tract has long been studied within the
context of aging and exhibits multiple hallmarks of physiological
decline, including altered microbial colonization, elevated low-grade
inflammation, compromised barrier integrity, and reduced
absorptive capacity. These changes contribute to broader issues
such as nutritional deficiencies, systemic inflammation, and gut
dysbiosis in aging individuals. Importantly, sleep disorders and
circadian misalignment have been shown to further disrupt gut
microbiota composition, leading to altered microbial metabolite
profiles (Lin et al., 2024), impaired antioxidant production, and
increased generation of ROS. Together, these fuel inflammatory
cascades and metabolic dysfunction. More recently, the gut has
emerged as a central organ at the intersection of sleep, redox biology,
and aging (Homolak, 2023). Groundbreaking work by Vaccaro et al.
(2020) demonstrated that chronic sleep deprivation in drosophila
and mice induces the most dramatic increase in ROS not in the
brain, but in the gut. Intriguingly, lifespan under sleep deprivation
conditions could be extended by the gut-specific expression of
antioxidant enzymes, whereas similar antioxidant interventions in
the brain had no protective effect. These findings suggest that gut
redox homeostasis is a key beneficiary of the restorative processes
associated with sleep but that the gut may also actively mediate the
systemic effects of sleep, including on longevity and aging (Vaccaro
et al., 2020).
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The gut, being the largest mucosal interface between the external
environment and internal physiology, is a unique redox-sensitive
organ. Unlike the brain and other high-oxygen tissues where ROS
generation is largely linked to mitochondrial oxidative
phosphorylation, the gut’s redox balance is shaped by a more
complex interplay between host mitochondrial metabolism,
microbial ROS/antioxidant production, and immune cell activity.
Aging disturbs this delicate balance through mechanisms including
impaired epithelial turnover, immune senescence, and shifts in
microbial populations that favor pro-oxidant species. These age-
related changes impair mucosal integrity and nutrient sensing,
fostering a proinflammatory gut environment that can accelerate
systemic aging processes. Recent studies have also identified
microbial-host co-metabolites that link gut dysbiosis to sleep and
aging. For instance, phenylacetylglutamine, a metabolite derived
from microbial metabolism of dietary phenylalanine, has been
associated with short sleep duration, mitochondrial dysfunction,
and age-related comorbidities in humans (Fritz et al., 2023;
Krishnamoorthy et al., 2024; Yang et al., 2025). Mechanistically,
phenylacetylglutamine has been shown to induce mitochondrial
stress and elevate ROS levels, leading to cellular senescence and
tissue dysfunction (Yang et al., 2025). This suggests that microbial
metabolites can directly influence host redox signaling and aging
trajectories, potentially linking sleep disturbance-induced dysbiosis
to long-term health consequences. Altogether, these findings
underscore the gut as a metabolically and immunologically active
organ whose redox homeostasis is central to the aging process, and
which is highly sensitive to disruptions in sleep architecture. The
feedback loop between poor sleep, gut dysbiosis, redox imbalance,
and aging highlights a promising target for future interventions
aimed at promoting healthy aging and metabolic resilience.

6 How exercise, antioxidant-rich foods,
and supplements improve sleep, boost
metabolic efficiency, and
support longevity

Aging is a gradual loss of optimal physiological processes with
accumulated cellular and molecular damage that cannot be reversed
but certain factors, both intrinsic and extrinsic, play an important
role in its acceleration or slowing it down to delay cellular senescence
and aging (Tenchov et al., 2024). The fast-growing socioeconomic
uncertainties over the health burden of age-related diseases has put
significant research focus on the science of aging and longevity.
Gerontologists and ancient philosophers alike have long pondered
ways to reverse or slow the aging process, a pursuit that continues
into the 21st century, now empowered by cutting-edge technology.
In addition to the genetic basis of longevity and metabolic efficiency,
lifestyle factors including diet, sleep, stress, exercise as well as
supplements are essential tools to mitigate and improve
longevity. The world population above 60 years old will cross
2 billion by the end of 2050 making almost one-fourth of the
global population “aged and vulnerable” to multiple age-
associated comorbidities (Officer et al., 2016; Tenchov et al.,
2024). With this there will be a rise in age-related health
conditions including but not limited to Alzheimer’s disease,
cardiovascular, metabolic, cancer as well as other diseases that

typically double in incidence after every 5 years after 60 years old
(Melzer et al., 2020). The history of anti-aging research is rich and
stretches back to ancient times, with early physicians and
philosophers from civilizations like Rome and China developing
a variety of strategies. These included herbal remedies, acupuncture,
and specialized diets featuring foods such as cabbage and berries,
which were believed to slow the aging process. We will now examine
briefly how exercise as well as antioxidant-rich diets along with
supplements improve brain metabolism, thereby improving sleep
and slowing age-associated diseases. The cellular mechanisms
behind exercise and diet induced improvements in sleep and
longevity are still being determined. Cutting-edge technologies
have advanced our understanding regarding the signaling
pathways that are activated by physical exercise and specific
nutrient uptake rich in antioxidants.

6.1 Evidence supporting the role of exercise
in regulating ROS, enhancing sleep, and
promoting longevity

Regular physical exercise offers multiple health benefits,
including improved sleep quality, regulation of blood glucose
levels, and mitigation of oxidative stress and metabolic
dysfunction in both humans and animal models. These include
optimal cardiovascular health and reduced risk of age-related
diseases like cancer, neurodegeneration promoting longevity
(Simioni et al., 2018). Physical exercise has been shown to
enhance the production of melatonin which is an antioxidant
and promotes sleep (Kruk et al., 2021; Alnawwar et al., 2023).
The indoleamine structure of melatonin helps it exert antioxidant
as well as anti-inflammatory effects in addition to acting on the SCN
(the circadian master clock) to synchronize day-night rhythms.
However, the relationship between physical exercise and
melatonin production remains complex and not fully understood.
While exercise induces a mild increase in oxidative stress due to
heightened energy demands, melatonin counteracts this effect by
serving as a potent antioxidant and reducing oxidative stress (Kruk
et al., 2021; Alnawwar et al., 2023). The type and duration of
exercise, chronic versus acute, short term versus long term, and
timing of exercise are other factors that dictate whether the oxidative
stress is elevated or mitigated. However, the general consensus is
that long-term and moderate intensity exercise decrease ROS
production and also mitigate the age-mediated decrease in
antioxidant defense mechanisms and mitochondrial dysfunction
(Bouzid et al., 2018; Jia et al., 2023). Physical exercise stimulates
tissue rejuvenation and repair as well as resets the circadian rhythms
altered by aging and age-mediated diseases especially cardiovascular,
neurodegeneration, cancer, obesity and liver dysfunction that are
primarily due to impairments in metabolic homeostasis (Silva et al.,
2021; Jia et al., 2023). Age-related sarcopenia with a significant loss
of skeletal muscle and overall body weight is a significant factor
contributing to loss of physical vigor in elderly. Physical exercise has
been shown to mitigate sarcopenia and improve vascular health in
the elderly largely by influencing inflammatory pathways as well as
clock genes that regulate circadian rhythms and sleep-wake
physiology (de Sá Souza et al., 2022). Aging significantly elevates
ROS and inflammation that together exacerbate cardiometabolic
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and vascular diseases. Intense exercise including resistance training
decreases both ROS and inflammatory markers including
interlukin-6, C-reactive protein and tumor necrosis factor-alpha
(Sardeli et al., 2018). Exercise optimizes the antioxidant defense
pathways and simultaneously prevents protein oxidation and lipid
peroxidation both adults as well as the elderly (Bouzid et al., 2018).
These studies highlight the fact that exercise acts on various cell
signaling levels to limit the generation of ROS as well as enhance its
clearance when accumulated.

The literature on exercise as an intervention is extensive and has
demonstrated benefits across multiple systems affected by aging
including the immune system and gut (Mattson and Arumugam,
2018; Vecchio et al., 2018). One of the broadest benefits of exercise is
its ability to improve redox balance by upregulating antioxidant
genes, enhancing mitochondrial quality and function (Steiner et al.,
2011; Marques-Aleixo et al., 2015), and modulating redox-sensitive
signaling pathways. The improvement in redox balance has
important downstream effects, such as reducing DNA damage,
lowering chronic immune activation, and improving
vascular function.

In the brain, exercise mitigates aging-related decline by
supporting cellular repair and regenerative processes and
enhances molecular waste disposal. Exercise supports
neuroplasticity and repair by enhancing brain-derived
neurotrophic factor production (Yang et al., 2013; Szuhany et al.,
2015), stimulating DNA repair processes (Yang et al., 2013; Soares
et al., 2015; Vilela et al., 2020), and boosting the expression of
neurogenesis-related and proliferative genes in aged animals
(Buckley et al., 2023). Crucial factors in aging are the reduction
of autophagy (Andreotti et al., 2020) and glymphatic clearance.
Exercise improves glymphatic function and molecular waste
disposal by reduced activation of glia, resulting in better
clearance of amyloid-β (He et al., 2017) and enhanced aquaporin
4 expression and localization to astrocytic end feet. Interestingly,
glymphatic clearance can be enhanced even during wakefulness, as
von Holstein-Rathlou et al. (2018) demonstrated increased
glymphatic flux during daytime, non-exercise awake periods,
suggesting a role for circadian regulation beyond sleep-dependent
mechanisms. (von Holstein-Rathlou et al., 2018).

Moderate exercise is associated with improved immune function
and reduced cellular senescence. It enhances key immune responses,
including natural killer cell cytotoxicity, neutrophil phagocytosis,
and monocyte activity (Simpson et al., 2015) while also promoting
immunosurveillance (Baskerville et al., 2024). Additionally,
moderate exercise contributes to reduced immune senescence by
rejuvenating aging immune cells (Lee et al., 2019), decreasing the
number of senescent cells (Spielmann et al., 2011), and suppressing
signaling pathways that promote stem cell exhaustion (Liu
et al., 2023).

The role of exercise in promoting gut health during aging is an
emerging but still underdefined area of research. Aging is commonly
associated with gut dysbiosis, marked by reduced microbial diversity
and a decline in beneficial bacterial populations, which has been
linked to cognitive decline and increased frailty (Claesson et al.,
2012; O’Toole and Jeffery, 2015; Salazar et al., 2017). While several
studies suggest that regular exercise can enhance microbial diversity,
increase secretory IgA levels, and promote short-chain fatty acid
production, benefiting gut barrier integrity, reducing inflammation,

and improving motility, these effects appear less consistent in older
adults (Clauss et al., 2021). Interventions in elderly populations have
shown more variable and often attenuated outcomes (Ramos et al.,
2022; Hernández-Urbán et al., 2023). This variability may stem from
differences in baseline microbiome composition, exercise type,
intensity, frequency, and individual factors such as age, diet, and
overall health status, complicating the interpretation and
generalization of findings.

6.2 Evidence for antioxidant rich foods/diets
in regulating ROS, improving sleep, and
promoting longevity

Growing evidence from recent studies has shifted the focus from
sleep-promoting drugs with latent side effects to different
antioxidant-rich foods and dietary strategies, including fasting,
supplements, and ketogenic diets. These may improve sleep as
well as restore metabolic dysregulation, thereby mitigating age-
associated health conditions. Recent studies suggest that varying
the macronutrient fat and carbohydrate composition impacts the
quality of sleep, especially NREM sleep, delta power, and the
frequency of REM sleep (St-Onge et al., 2016; Mantantzis et al.,
2022). Since oxidative stress is prevalent in insomnia patients as well
as those with sleep-related disorders (Bin Heyat et al., 2022),
antioxidant rich foods and ketogenic diets have been shown to
improve sleep patterns. They reset metabolic dysregulation that in
turn promotes longevity by minimizing cardiovascular disease
(Pietrzak et al., 2022; Sarode and Nikam, 2023). The buildup of
free radicals with aging as well as sleep loss, exacerbates the
metabolic dysfunctions and risks for age-related morbidity due to
cardiovascular and neurodegenerative diseases (de Almeida et al.,
2022; David et al., 2023). Foods that are rich in antioxidants such as
vitamins, polyphenols, flavonoids, carotene and minerals have been
shown to mitigate age-associated pathologies in human and animal
models by reducing the cellular damage mediated by ROS
(Bakoyiannis et al., 2019; Rusu et al., 2020; Wang et al., 2023).
This signifies the need for maintaining good and balanced dietary
practices that largely include consuming whole nutrient dense foods
including fruits, nuts, seeds, vegetables, green tea and spices like
turmeric that have abundant amounts of antioxidants (Jiang and
Xiong, 2016; David et al., 2023) which have been shown to decrease
age-related illnesses (Jiang and Xiong, 2016; St-Onge et al., 2016;
Katsube et al., 2022; David et al., 2023). These studies suggest that
foods rich in antioxidants protect against age-related diseases,
improve metabolism and enhance sleep quality that together act
to increase longevity.

Studies using the ketogenic diet, which is high in fat and low in
carbohydrate, have shown that effective implementation of the
ketogenic diet regimen offers significant neuroprotective benefits,
including improved cognition in different psychiatric disorders and
decreased age-related symptoms (Hallböök et al., 2012; Choi et al.,
2024). Interestingly, various cellular signaling pathways modulated
by the ketogenic diet are implicated in sleep-wake regulation as well
as in circadian rhythm dynamics. The ketogenic diet improves
NREM sleep and resets the programming of circadian rhythms
mediated by the ketones bodies acetoacetate and β-hydroxybutyrate
(O’Hearn, 2021; Merlino et al., 2023). The ketogenic diet has a direct
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effect on metabolism as the ketones generate fewer free radicals than
glucose in the mitochondria. Thereby preventing ROS-mediated
damage to cells and providing efficient ATP supply to neurons, both
necessary to support optimal sleep quality (Maalouf et al., 2007;
Robberechts et al., 2023). Moreover, the ketogenic diet has been
shown to improve and significantly increase median lifespan as well
as survival in mice compared to the control diet by enhancing and
preserving motor function and cognition as well as preventing
sarcopenia and tumor development in aged mice (Roberts et al.,
2017). Sleep deprivation and aging are known to upregulate histone
deacetylases, which remove acetyl groups from histone proteins,
leading to chromatin condensation and suppressed expression of
genes critical for long-term potentiation and synaptic plasticity
(Wong et al., 2020). The ketone beta-hydroxybutyrate extends
lifespan and improves cognition in yeast and fly models by
directly inhibiting histone deacetylases as well as reducing ROS
(Shimazu et al., 2013; Newman and Verdin, 2014). Since
inflammation, alongside oxidative stress, is a major contributor
to aging and age-related neurodegeneration, ketone bodies have
also been shown to reduce both oxidative stress and inflammatory
markers, thereby promoting longevity and alleviating age-associated
health issues (Pinto et al., 2018; Monda et al., 2024). Collectively,
these studies highlight the positive health effects of ketogenic diets,
particularly in enhancing longevity and cognitive function in
the elderly.

In addition to antioxidant-rich foods and ketogenic diets,
another dietary intervention that has shown many benefits in
reducing age-related disease burden and improving metabolism is
fasting. Fasting resets neuroimmunomodulation, enhances
autophagy and clearance of dead tissues, and restores
metabolism, thereby helping to increase lifespan (Shabkhizan
et al., 2023). Various fasting regimens are currently being studied
to improve health, including alternate-day fasting, intermittent
fasting, 5:2 where one eats normal healthy meals 5 days and a
very calorie restricted diet 2 non-consecutive days a week, 16:8 time
restricted eating where one fasts for 16 h a day and only eats during
an 8 h window. These fasting interventions improve metabolic
health (Różański et al., 2021). Alternate-day fasting in middle-
aged humans improves physiology and reduces markers of aging
and metabolic impairments (Stekovic et al., 2019). Metabolic
dysregulation such as insulin resistance and diabetes are often
associated with obesity and are comorbid factors for
cardiovascular disease, inflammaging, and shorter lifespan.
Fasting has been shown to improve these factors, thereby
delaying aging and age-related disorders (Longo and Mattson,
2014; Sutton et al., 2018; Hardiany et al., 2022). Interestingly, a
study found that a short-term modified fasting regimen in middle-
aged individuals reduced sleep arousals and periodic leg movements.
It also showed a trend to increased REM sleep, suggesting potential
benefits to overall sleep quality (Michalsen et al., 2003). Overall,
there is no clear consensus on the effects of fasting on sleep and
wakefulness. While some studies report improved sleep quality,
others have found reductions in sleep duration (Bohlman et al.,
2024; Kerkeni et al., 2024). These discrepancies may be due to
variations in fasting regimens and individual factors such as
metabolic health, age, sex, and race. Future research is needed to
clarify the underlying mechanisms and cell signaling pathways
influenced by different types of fasting protocols.

6.3 Evidence supporting the role of
antioxidant supplements in regulating ROS,
enhancing sleep, and promoting longevity

More than half of United States adults buy supplements
containing antioxidants including vitamins A, C, and E, as well
as lycopene, glutathione, flavonoids, lutein, and resveratrol aiming
to improve health (Poljsak et al., 2013). The effectiveness of
antioxidants in mitigating age-associated pathology and
improving sleep is still debated and an active area of research.
An ideal antioxidant must meet certain criteria to be effective
including a fast absorption rate, chelating redox metallic
compounds, work in cell membranes as well as in aqueous
medium, and induce changes in gene expression to help cells
mitigate ROS (Rahman, 2007; Di Meo et al., 2016). Antioxidants
can be synthetic or natural biomolecules that neutralize free radicals
and offer cellular protection against ROS-mediated senescence. The
use of antioxidant supplements to slow aging and promote optimal
health is gaining traction, driven by their unique properties and anti-
inflammatory benefits. However, studies investigating their
effectiveness in aging remain inconclusive, as ROS also play
essential physiological roles, including functioning as signaling
molecules. Moreover, excessive use of certain antioxidants may
disrupt these processes and potentially cause harm to cellular
function (Poljsak et al., 2013; Di Meo et al., 2016). Several
antioxidants have improved sleep quality and reduced oxidative
stress. For example, the mushroom-derived antioxidant
ergothioneine mitigates anxiety and improves sleep quality in
human subjects in a 4-week trial period (Katsube et al., 2022).
Antioxidant supplements hold significant potential in mitigating
ROS-mediated cellular and tissue damage, either by directly
neutralizing free radicals, as seen with vitamins C and E, or by
supporting enzymatic defense systems such as superoxide dismutase
and catalase, which actively scavenge free radicals (Poljsak et al.,
2013; Liu et al., 2018). Antioxidant supplements contain various
macronutrients, such as amino acids, and micronutrients that
individually or synergistically target ROS molecules, aiding in
their neutralization and helping restore a balanced redox state
that minimizes cellular risk.

Several studies have shown that antioxidant supplements can
alleviate sleep problems in both young and elderly populations,
primarily by targeting ROS-generating pathways and scavenging
free radicals, thereby preventing cellular damage (David et al., 2023;
Jiang et al., 2024). Many of these supplements are derived from
naturally occurring polyphenolic compounds, such as flavonoids,
which have been reported to reduce oxidative stress and
neuroinflammation (Bakoyiannis et al., 2019). Current evidence
suggests that polyphenol-based dietary supplements containing
flavonoids, including astragalin, may enhance sleep duration,
decrease sleep latency, and improve overall sleep quality,
ultimately reducing the health burden associated with sleep
disorders (Li et al., 2017; Wang et al., 2023). Additionally, a
randomized controlled trial found that isoflavone-based
supplements improved sleep quality and reduced insomnia
symptoms in postmenopausal women, further supporting a
strong link between antioxidant supplementation and improved
sleep outcomes (Hachul et al., 2011). Another widely used
antioxidant supplement for sleep enhancement is melatonin, a
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naturally occurring hormone that regulates the sleep-wake cycle and
also functions as a potent antioxidant. Although exogenous
melatonin has not been officially approved by the United States
Food and Drug Administration, it is available over the counter as a
synthetic dietary supplement that mimics the effects of endogenous
melatonin. However, it is important to note that excessive use of
antioxidant supplements can lead to “antioxidant stress,”which may
counteract their benefits and potentially contribute to metabolic
disorders, including cancer (Mondul et al., 2011; Jabbari et al., 2024).
A randomized chemoprevention trial in Finland involving of
29,133 male smokers aged 50–69 years found that beta-carotene
supplementation increased the risk of lung cancer compared to
placebo, highlighting how antioxidant effects can be influenced by
confounding lifestyle factors such as tobacco and alcohol use
(Middha et al., 2019). Similar concerns apply to other
supplements, including melatonin, where long-term safety
remains an area of active investigation. Thus, while antioxidant
supplements may offer benefits for sleep and oxidative stress, their
use should be guided by evidence-based recommendations to
minimize potential adverse effects.

7 Current challenges, future
perspectives, and conclusions

This review explores the complex relationship between sleep, redox
metabolism, and aging, highlighting their critical role in brain health
and longevity (Figure 1). Sleep is essential for regulating metabolism,
clearing free radicals, and maintaining neuronal function. However,
aging disrupts mitochondrial redox balance, leading to increased
oxidative stress, sleep disturbances, and a heightened risk of
neurodegenerative diseases like Alzheimer’s disease. Studies suggest
that interventions such as antioxidant-rich diets, sleep-enhancing
drugs, and exercise can improve mitochondrial function, mitigate
oxidative damage, and promote healthier aging. By understanding
these interactions, researchers can develop targeted therapies to reduce
age-related diseases and improve overall wellbeing.

Oxidative stress andmitochondrial dysfunction are central features
of aging, sleep-wake disruptions, and neurodegenerative disorders such
as Alzheimer’s disease. As mitochondrial efficiency declines and ROS
accumulate with age and disease progression, cells experience
increased molecular damage and impaired neurophysiological
function, including disrupted sleep architecture. Antioxidant
interventions, whether through supplementation or diets rich in
polyphenols, flavonoids, and carotenoids, hold promise for restoring
mitochondrial function, reducing oxidative damage, and improving
sleep and cognitive outcomes. While experimental evidence in animal
models and some human studies supports the potential benefits of
antioxidant strategies for mitigating age-related pathologies,
translation to clinical practice remains challenging. Variability in
study outcomes is influenced by dose, timing, source (synthetic vs.
natural), individual health status, and biological variables such as sex
and genetics. These complexities underscore the need for caution and
precision in the clinical application of antioxidant supplements.

Future research should prioritize integrative, systems-level
approaches to unravel how antioxidants influence mitochondrial
bioenergetics, redox signaling, and sleep regulation across diverse
populations. Longitudinal cohort studies and well-controlled clinical

trials are needed to examine sex- and race-specific responses, as well as
the impact of genetic variation in antioxidant pathways. New
technologies, such as single-cell multiomics, mitochondrial
transcriptomics, and real-time in vivo imaging of ROS and calcium,
offer powerful tools to dissect the spatial and temporal dynamics of
antioxidant effects. Importantly, antioxidant therapies may be most
effective when combined with lifestyle interventions. Approaches such
as time-restricted feeding, exercise, natural antioxidant-rich diets, and
sleep hygiene practices may act synergistically to support
mitochondrial health and promote healthy aging. Interdisciplinary
research aimed at decoding the mechanistic links between
antioxidants, metabolic and inflammatory signaling, and aging
biology will be essential to develop personalized, evidence-based
strategies for enhancing sleep, cognition, and longevity.

Studying redox biology in the context of sleep and aging presents
several challenges due to the complexity of these interconnected
processes. One of the primary difficulties lies in the dynamic and
context-dependent nature of redox signaling, making it hard to
establish clear causal relationships between oxidative stress, sleep
regulation, and aging. Additionally, measuring real-time redox
changes poses a significant challenge for future studies, as ROS
and antioxidants operate on very short timescales and in localized
cellular compartments, requiring highly specialized techniques for
accurate assessment. Interindividual variability further complicates
research, as aging and sleep patterns differ widely among
individuals, making it difficult to generalize findings and establish
universal mechanisms. Furthermore, while animal models provide
valuable insights, differences in sleep architecture and metabolic
processes between species can limit the direct applicability of these
findings to humans. The bidirectional relationship between sleep
and redox biology also presents a challenge, as sleep influences redox
balance, while oxidative stress, in turn, affects sleep patterns, making
it difficult to determine cause and effect.

Lifestyle factors such as diet, exercise, and environmental
exposures further complicate the study of redox regulation in
sleep and aging, as they significantly influence both oxidative
metabolism and sleep architecture. These confounding variables
make it difficult to isolate intrinsic effects of aging in experimental
models. Technological limitations also persist, as non-invasive
methods for assessing oxidative stress in the human brain during
sleep are still under development, restricting real-time, in vivo
observations. Although fluorescent ROS-sensitive dyes (e.g.,
dihydroethidium) and genetically encoded probes (e.g., Grx1-
roCherry) allow postmortem ROS detection in animal models
(Hosoi et al., 2019; Shokhina et al., 2019), translating these tools
for human use remains a major challenge. Advancements in ROS
imaging, such as bioluminescent sensors, protein-based reporters,
and hybrid modalities like PET-ROS imaging, are emerging but
remain limited by sensitivity, specificity, and tissue accessibility
(Boutagy et al., 2018). Human studies currently rely on indirect
markers of oxidative stress in plasma, urine, or tissue biopsies, such
as 8-hydroxy-2′-deoxyguanosine (8-OHdG), which primarily reflect
DNA oxidation while overlooking protein and lipid oxidative
damage (Hawkins and Davies, 2019; Larsen et al., 2019; Murphy
et al., 2022). A recent proof-of-concept study demonstrated in vivo
ROS imaging by applying cold atmospheric plasma to the skin of
mice injected with TEMPOL, then detecting hydroxyl radical
oxidation products using dynamic nuclear polarization–MRI and
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electron paramagnetic resonance; however, such techniques remain
technically demanding and restricted to superficial tissues (Badr
et al., 2024). Importantly, redox biology does not operate in
isolation, it intersects with key aging-related pathways including
inflammation, autophagy, and energy metabolism. This mechanistic
overlap complicates efforts to parse the independent contribution of
oxidative stress to sleep and aging. Moving forward, progress in this
field will require integrative, multi-disciplinary approaches that
leverage advanced imaging techniques, longitudinal studies, and
systems-level tools such as genetics, metabolomics, and sleep
phenotyping. These efforts will be critical to unravel the complex
interplay between sleep, redox biology, and aging, and to develop
targeted interventions that promote healthy longevity.
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