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Rapamycin, an antibiotic discovered in the 1970s from Streptomyces
hygroscopicus on Easter Island (Rapanui), has become a critical tool in
biomedical research. Initially recognized for its potent antifungal and
immunosuppressive properties, rapamycin has recently gained significant
attention for anti-aging therapy and seizure treatment via mTOR pathway
inhibition. The mechanistic target of the rapamycin (mTOR) pathway is an
evolutionarily conserved metabolic signaling cascade that regulates cell
division, growth, and survival. There is growing evidence that mTOR pathway
activity accelerates aging and the development of age-related diseases including
cancer, atherosclerosis, diabetes, and declining immune function. Therefore
physicians and “biohackers” are using mTOR inhibition via rapamycin (and
rapamycin analogs) off-label for prevention of age-related conditions despite
not being widely recognized as a treatment by the broader clinical community.
Currently, rapamycin (i.e., sirolimus and everolimus) is FDA approved for the
prevention of transplant organ rejection and for anti-seizure therapy in Tuberous
Sclerosis Complex (TSC; caused by variants in TSC1 or 2). We aim to summarize
the mTOR pathway, the impact rapamycin has on the mTOR pathway, and the
state of rapamycin use in the field of aging and longevity. Importantly, we will
discuss the gaps in knowledge, pitfalls, and potential for the use of rapamycin to
prevent aging/age-related disease and discuss the lessons learned from
achieving FDA approval of evirolimus for TSC-related seizures after many
years of off-label use.
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Introduction

Rapamycin in anti-aging and longevity research

Aging is defined as an intrinsic, progressive decline in physiological function that
increases vulnerability to disease and death (Kirkwood, 2005; Elsevier, 2005; Vijg and
Campisi, 2008; López-Otín et al., 2013). This process is characterized by cellular senescence,
genomic instability, mitochondrial dysfunction, and loss of proteostasis. Researchers have
long pursued interventions to delay or reverse aspects of aging and caloric restriction (CR)
as a potential intervention. Initial findings demonstrated that reduced nutrient intake
extended lifespan in rodents (McCay et al., 1935). Since then, CR has extended lifespans
across experimental models (e.g., yeast, flies, and rodents) including with significant results
in primates. However, evidence for lifespan extension by CR in humans is unclear (McCay
et al., 1935; Colman et al., 2009; Mattison et al., 2012; Swindell, 2012; Longo et al., 2015;
Mihaylova et al., 2023). These findings prompted the search for CR-mimetic compounds
that engage similar molecular pathways without the need for chronic CR (Longo et al., 2015;
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Madeo et al., 2019). The effects of CR converge on nutrient-sensing
pathways and therefore, the mTOR pathway and its inhibition by
rapamycin has emerged as a leading CR mimetic.

mTOR complex 1 (mTORC1), the master kinase within the
mTOR pathway, regulates cell growth, protein synthesis, and
metabolism, and its activity increases with age, contributing to
age-related pathologies (Kennedy and Lamming, 2016; Mannick
and Lamming, 2023). By inhibiting mTORC1, rapamycin mimics
the biochemistry of nutrient scarcity achieved by CR. Thus,
suppression of mTORC1 is theorized to shift cellular activity
from anabolic processes toward maintenance and repair
pathways, promoting autophagy, and improved
proteostasis–mechanisms associated with lifespan extension
(Harrison et al., 2009; Johnson et al., 2013; Longo et al., 2015;
Papadopoli et al., 2019). Translating these findings to humans
remains uncertain, as the complexity of human aging and lack of
validated endpoints complicate implementation (Lee et al., 2021).
Some early clinical studies suggest that short-term rapamycin or
analogs (rapalogs) may improve aspects of immune function in
older adults (Mannick et al., 2014). However, this study relied on
serologic responses to influenza vaccinations as a marker of
enhanced immune function. Such markers have limited
predictive value for broader immunocompetence, especially in
aging populations where vaccines elicit only a weak to modest
stimulus of CD8 T-cells (McElhaney et al., 2020; Riese et al.,
2022). Broader measures of immunocompetence including T cell
repertoire diversity, innate immune activity, and real-world
infection resistance remain underexplored in human rapamycin
trials (Mannick and Lamming, 2023; Lee et al., 2024). Further,
the long-term effects and safety of chronic mTOR inhibition in
healthy humans and whether rapamycin can truly “slow” human
aging or prevent age-related diseases without unacceptable side
effects is unknown.

The mTOR pathway and the function
of rapamycin

The mTOR pathway was first identified through the purification
of the FKBP12–rapamycin complex from mammalian cells,
revealing a protein (RAFT1) homologous to yeast TOR (Target
of Rapamycin) proteins (Sabatini et al., 1994). Additional discoveries
in yeast identified TOR as a conserved nutrient sensing kinase,
establishing the pathway’s role in regulating cell growth in response
to environmental cues (Heitman et al., 1991). Together, these
findings positioned the mammalian target of rapamycin (mTOR;
now called “mechanistic target of rapamycin”) as a master regulator
of cell growth integrating signals from growth factors, nutrients, and
energy status to control protein synthesis, lipid metabolism, and
autophagy (Sabatini et al., 1994; Sabatini, 2006; Saxton and Sabatini,
2017; Papadopoli et al., 2019) (Figure 1). Additional work has
demonstrated mTOR’s critical role in aging and disease.
Hyperactive mTOR signaling has been implicated in many age-
related conditions–cancer, type 2 diabetes, neurodegeneration–and
in the aging process itself (Johnson et al., 2013; López-Otín et al.,
2013; Longo et al., 2015; Saxton and Sabatini, 2017). Notably, mTOR
pathway activity is elevated in many tissues with age and correlates
with a decline in clearance of damaged proteins and organelles (Guo

et al., 2022; Dai et al., 2023; Mannick and Lamming, 2023). These
observations have provided support for mTOR inhibition as a
potential mechanism to slow aging. Indeed, rapamycin was the
first small molecule shown to extend murine lifespan (Harrison
et al., 2009).

Rapamycin’s purported geroprotective effects are often
attributed to its ability to induce autophagy, a cellular recycling
process responsible for degrading protein aggregates and other
damage-associated molecular patterns (DAMPs) (Rubinsztein
et al., 2011; Arensman and Eng, 2018; Zinecker and Simon, 2022;
Szőke et al., 2023; Tabibzadeh, 2023). mTORC1 normally inhibits
autophagy by phosphorylating components of the Unc-51-like
autophagy-activating kinases 1 (ULK1 complex), and its
inhibition by rapamycin removes this suppression and initiates
autophagosome formation (Kim et al., 2011; Park et al., 2023).
Online proponents of anti-aging interventions claim that
rapamycin-induced autophagy promotes longevity by maintaining
proteostasis and reducing “toxic burden” in post-mitotic cells which
is not based in formal geroscience and lacks precise biological
definition or clinical validation (Zimmermann et al., 2021; Szőke
et al., 2023; Healthspan, 2025). Further, while autophagy may
suppress tumor initiation by clearing damaged cellular
components, it can also support the survival and growth of
established tumors (Marsh et al., 2020). Thus, autophagy can
suppress or enhance cancer growth depending on the cellular
microenvironment and disease stage. Thus, enhancing autophagy
in aging populations with elevated cancer risks and an unknown
genetic background may inadvertently promote oncogenesis (Park
et al., 2019; Li et al., 2020).

In addition to autophagy induction, mTOR pathway inhibition
alters immune regulation through multiple mechanisms. In clinical
settings, immunosuppressive mechanisms increase infection risk
and impair wound healing- especially in otherwise healthy
individuals without clinical manifestations that outweigh the risk
of side effects (Lee et al., 2024). Indeed, both mice and humans
administered rapamycin for prevention of immunoscenescense,
developed glucose intolerance, hyperlipidemia, and testicular
atrophy (Deutsch et al., 2007; Houde et al., 2010; Wilkinson
et al., 2012). In transplant patients, long-term rapamycin caused
metabolic and hematological complications (Hudson et al., 2024).
These findings indicate that rapamycin may not be a universal anti-
aging solution. Claims of rapamycin as a broadly applicable
geroprotector should therefore be tempered by a careful
evaluation of risk, mechanism, and both clinical and genetic context.

Discussion

Preclinical and clinical data: promises and
challenges

Rapamycin administration initiated in mid-life extends lifespan
by 9%–14% in mice and is associated with delayed onset of age-
related pathologies (e.g., malignancies and neurodegeneration
(Harrison et al., 2009; Wilkinson et al., 2012). In transgenic
models predisposed to Alzheimer’s-like pathology, rapamycin
prevented memory deficits and reduced cognitive decline
(Spilman et al., 2010).

Frontiers in Aging frontiersin.org02

Roark and Iffland 10.3389/fragi.2025.1628187

https://www.frontiersin.org/journals/aging
https://www.frontiersin.org
https://doi.org/10.3389/fragi.2025.1628187


Rapamycin’s claimed benefits in animal models are not limited
to aging but extend to models of neurological disorders. In mouse
models of Tuberous Sclerosis Complex (TSC), where mTOR

pathway hyperactivation is a hallmark, rapamycin prevented
seizures, reduced mortality, and rescued neuropathology
(i.e., glial proliferation and disrupted cortical architecture).

FIGURE 1
Schematic representation of rapamycin’s effects via mTORC1 inhibition across aging and epilepsy. While some outcomes such as reduced
inflammation and suppressed protein synthesis are shared across both applications, others diverge significantly. In aging models, mTOR inhibition is
associated with increased autophagy and delayed senescence, whereas in epilepsy, therapeutic benefits include seizure suppression and reversal of
cortical hypertrophy and glial overgrowth.

FIGURE 2
Summary of translational challenges and research gaps in applying rapamycin from animal models to humans. While preclinical studies show
promising effects on lifespan and disease, translation is limited by species differences, drug interactions, poor CNS penetration, and inconsistent blood-
based surrogate biomarkers that bypass established S6 phospho-targets.
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Similar effects were observed in GATOR1-related models such as
Nprl3 knockout mice, reinforcing the potential of mTOR inhibition
to alter epileptogenesis (Zeng et al., 2008; Iffland et al., 2022).
Indeed, rapamycin can be effective at preventing seizures when
delivered in utero or postnatally (Zeng et al., 2008; Parker et al., 2013;
Iffland et al., 2022).

In contrast, studies on rapamycin in aging are more nuanced
and context dependent. Transient, short-term rapamycin treatment
in early adulthood improved late-life health outcomes in mice,
extending lifespan in both sexes at low doses, but only in males
at higher doses (Bitto et al., 2016). Further, late-onset rapamycin
treatment in Drosophila did not increase lifespan, further
emphasizing the temporal specificity of its effects (Schinaman
et al., 2019). Interestingly, intermittent late-life administration of
rapamycin has been shown to extend lifespan in both sexes,
underscoring the importance of timing and dosing strategy
(Arriola Apelo et al., 2016; Moel et al., 2025). The recently
published PEARL trial demonstrated that low-dose intermittent
rapamycin was well tolerated over 1 year and resulted in modest
changes in biomarkers of biological aging, though long-term clinical
benefits remain to be established. These discrepancies in lifespan
extension across dosing paradigms may also depend on other factors
including genetic background, dosing regimen, and timing of
administration (Wilkinson et al., 2012; Bitto et al., 2016;
Schinaman et al., 2019). While mTOR remains a compelling
target in aging research, current animal data do not support
rapamycin as a reliable intervention for extending lifespan. Thus,
caution is warranted when extrapolating these findings to
clinical care.

Across diverse preclinical systems, rapamycin and its analogs
have some promise of delaying aging and preventing age-related
diseases. While rapamycin robustly extends lifespan in nearly all
murine studies (Mannick and Lamming, 2023), its translational
efficacy in humans remains unclear, in part, due to the absence of
standardized pharmacodynamic biomarkers. In many aging studies,
surrogate biomarkers of mTORC1 inhibition, such as
phosphorylated ribosomal protein S6, are either underreported or
inconsistently applied, making it difficult to determine if outcomes
truly reflect effective mTOR inhibition (Lee et al., 2024). Without
reliable standardized biomarkers, rapamycin’s benefits remain
speculative. Comparisons across studies are confounded by
limited known cell-type specific differences, differences in
response due to (epi)genetic background, and effects on common
geriatric diseases (Mannick et al., 2014; Saxton and Sabatini, 2017;
Reifsnyder et al., 2020).

A systematic review evaluated the effects of rapamycin and its
derivatives on aging-related physiological changes and diseases and
found improvements in the immune, cardiovascular, and
integumentary systems but not in the endocrine, muscular, or
neurological systems (Lee et al., 2024). Interestingly, this
contrasts with robust neurological effects observed in preclinical
models of epilepsy associated with mTOR pathway hyperactivating
variants (“mTORopathies”) where rapamycin prevented seizures
and corrected structural abnormalities (Zeng et al., 2008; Iffland
et al., 2022).

The success of rapamycin in mTORopathy models stems from
clearly defined molecular etiology and robust biomarkers.
Specifically, highly penetrant mutations driving mTOR

hyperactivation renders the pathway an actionable target. In
contrast, aging is a heterogeneous and multifactorial process
without a single dominant pathway, and most preclinical studies
do not incorporate genetic stratification or polygenic risk scores.
This may explain why mTOR inhibition yields robust disease-
modifying effects in monogenic epilepsy models but produces
inconsistent outcomes in aging research. Understanding
rapamycin’s efficacy in epilepsy may inform how to refine
translational models of aging.

However, long-term mTOR inhibition is accompanied by
significant side effects. In epilepsy cohorts and transplant
populations, chronic rapamycin or everolimus use is associated
with mucosal ulcers, impaired wound healing, delayed tissue
repair, and increased infection risk (Crino, 2016; Peterson et al.,
2016; Hudson et al., 2024). Metabolic disturbances are also common,
including elevated cholesterol and triglyceride levels (French et al.,
2016; Lee et al., 2024). These effects are mechanistically attributed
not only tomTORC1 inhibition but also the unintended suppression
of mTORC2. Rapamycin induced mTORC2 inhibition has been
shown to induce insulin resistance, highlighting a mechanistic trade-
off between metabolic side effects and longevity benefits (Lamming
et al., 2012). In female patients, hormonal side effects such as
dysmenorrhea, menstrual irregularities, and ovarian dysfunction
have been reported (Canpolat et al., 2018). These findings are
largely derived from populations using rapamycin chronically at
immunosuppressive doses. However, emerging data suggest that
low-dose or intermittent rapamycin regimens may be more readily
tolerated and are currently under investigation in multiple clinical
trials (Kaeberlein et al., 2023; Konopka and Lamming, 2023;
Mannick and Lamming, 2023; Hudson et al., 2024). Nonetheless,
until long-term data are available, caution is warranted–particularly
when considering the use of rapamycin in otherwise healthy
individuals. The ethical implications of exposing such
populations to even low levels of immunosuppression remain
unresolved and merit careful deliberation and scrutiny.

Drug interactions and systemic tolerability represent key
barriers to translating rapamycin’s preclinical success into routine
clinical use. Rapamycin and its analogs are metabolized by
cytochrome P450 enzyme CYP3A and are sensitive to
pharmacokinetic interactions. Interestingly, cannabidiol (CBD) is
a potent CYP3A inhibitor that increases circulating levels of mTOR
inhibitors, raising the risk of toxicity (Ebrahimi-Fakhari et al., 2020;
Wray et al., 2023). Given the widespread use of CBD and other
cannabis products, it may be beneficial to study the interaction of
these two drugs in the context of anti-aging therapy.

The clinical relevance of the above concerns was illustrated in
the EXIST-3 trial, a multicenter phase III study evaluating
adjunctive everolimus in patients with treatment resistant
epilepsy due to TSC. Everolimus significantly reduced seizure
frequency, with approximately 40% of patients in the high-dose
group achieving a ≥50% reduction in seizures compared to only 15%
in the placebo group (French et al., 2016). This outcome led to
regulatory approval of everolimus for TSC-associated seizures.
However, the EXIST-III trial also exposed the limitations of
rapamycin therapy. Complete seizure freedom was rare and
withdrawal of therapy frequently led to seizure recurrence
indicating that mTOR inhibition is suppressive rather than
curative (Sadowski et al., 2022). Importantly, adverse events
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including stomatitis, infections, hyperlipidemia, and cytopenias
were common in the EXIST-III and other trials (Krueger et al.,
2013; French et al., 2016). While these side effects were classified as
“manageable” in trial settings, they may be less tolerable in
individuals without overt disease who are taking rapamycin for
aesthetic or anti-aging purposes. These findings offer valuable
lessons for aging research: successful translation depends not
only on targeting a relevant pathway but on doing so in
populations where that pathway plays a central, actionable role.

Ethical considerations regarding off-label
accessibility of rapamycin

As rapamycin gains popularity for its anti-aging potential,
online longevity clinics have emerged offering access to the drug
with minimal medical oversight. This semi-regulated availability
raises ethical concerns regarding patient safety, misinformation, and
the potential for serious harm. This is best illustrated by the widely
publicized case of tech entrepreneur Bryan Johnson, who undertook
an elaborate self-directed anti-aging regimen involving rapamycin,
metformin, and over 100 daily supplements. Despite extensive
physiological tracking, Johnson ultimately discontinued
rapamycin and expressed regret over its use citing side effects
such as elevated blood glucose, susceptibility to infection, and
impaired healing (The Economic Times, 2025). This case
highlights the risks of bypassing peer-reviewed science in favor of
anecdotal “biohacking” culture. Clinical literature has long
documented rapamycin-associated toxicities that mirror the
complaints reported by Johnson and others (Peterson et al., 2016;
Hudson et al., 2024; Lee et al., 2024). The use of such a powerful
immunosuppressant outside established indications, especially in
otherwise healthy individuals, demands stronger ethical scrutiny
and public education.

Lastly, while the FDA does not recognize aging as a disease, there
is growing interest in approving therapeutics that enhance
healthspan, or delay aging-related decline. However, FDA
approvals are structured around specific, diagnosable indications,
rather than generalized syndromes. Should rapamycin or related
compounds demonstrate efficacy, they would be approved for
specific indicatons (e.g., Alzhiemer’s) rather than aging per se
under the current approval standards. Nonetheless, even within
this evolving framework, it is important to note that most off-label
prescribing–despite it being common clinical practice–rarely
achieves FDA approval, as only about 30% of off-label
prescribing is supported by adequate scientific evidence despite
any clinically observed positive outcomes (Gupta and Nayak,
2014). These regulatory and evidentiary constraints must be
considered when evaluating rapamycin’s future clinical and
research trajectory.

Equity, access, and ethical use in research

The rise of online rapamycin clinics has also introduced serious
equity concerns. These services are often inaccessible to lower-
income individuals, exacerbating existing disparities in health and
longevity. While some clinics offer rapamycin for as little as $64 per

month, that figure excludes substantial additional
costs—membership fees typically range from $124/month to over
$700 per six-month cycle, limiting access to affluent consumers
(author observations). As a result, the promise of rapamycin may be
disproportionately realized by wealthier populations, further
entrenching health inequities.

Another concern is the potential diversion of limited drug
supply away from populations with approved, medically
necessary, indications such as organ transplant recipients and
individuals with epilepsy, TSC, and other mTORopathies. The
emergence of online private pharmacies dispensing rapamycin
mirrors the dynamics seen with GLP-1 agonists like semaglutide,
where surging off-label use prompted both shortages and
regulatory intervention. The FDA has already cracked
down on unauthorized compounding and distribution of GLP-
1 analogs, which may foreshadow tighter oversight of
rapamycin dispensing in the future (U.S.Food and Drug
Administration, 2025).

Rapamycin has been in therapeutic use for over a decade to
treat seizures in individuals with variants in genes coding
regulators of the mTOR pathway (Parker et al., 2013; French
et al., 2016; Moloney et al., 2023). These findings underscore that
rapamycin’s benefits are effective in monogenic disorders where
mTOR hyperactivation is the dominant underlying pathology
(Krueger et al., 2013; Iffland and Crino, 2017). These trials were
predicated on pre-clinical data where phospho-S6 levels were
used as a surrogate marker of mTORC1 activation to assay
resected brain tissue specimens and experimental models for
mTOR pathway hyperactivation (Meikle et al., 2008; Crino, 2015;
Levitin et al., 2023). Unfortunately, phospho-S6 has not proven
to be a consistent clinical biomarker, making it difficult to
ascertain how the extent of mTOR inhibition, rapamycin
blood levels, and reduction in seizures correlate. Thus, in an
even more complex and dynamic biological process like aging,
biomarkers will be even more challenging to deploy clinically. To
begin addressing this, standard guidelines should be
implemented to ensure consistency of reported data across
studies. Indeed, while some studies include pharmacokinetic
measurements (Mannick et al., 2014), these data are often not
reported with the results, and many other studies looking at the
impact of rapamycin on aging/longevity omit measurements of
rapamycin levels, degree of mTOR inhibition, or other mTOR
signaling-related biomarkers (Kraig et al., 2018; Mannick et al.,
2018; Chung et al., 2019; Kaeberlein et al., 2023).

Another useful approach includes cross-species
pharmacokinetic/pharmacodynamic (PK/PD) studies and the use
of large-animal aging models to bridge the gap between murine data
and human physiology. Further, trials should incorporate genetic
stratification and population-specific endpoints, identifying
subgroups (e.g., elderly adults with metabolic risk) most likely to
benefit from intervention. Lastly, clinical trials must move beyond
lifespan alone to assess validated healthspan outcomes such as
immune resilience, frailty indices, and neurocognitive
performance that many reveal the usefulness of rapamycin for
aging-related diseases. Without these strategies, rapamycin’s
promise will remain confined to experimental models, unable to
meet the ethical, clinical, and scientific standards required for
widespread human use.
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