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From bacterial quorum sensing to the signals of bees, communication is the basis of

biotic interactions. Frequently, more than two organisms can take part in the speeches,

resulting in a complex network of cross-talks. Recent advances in plant-microbe

interactions research have shown that communication, both inter-kingdom and

intra-kingdom, is shaped by a broad spectrum of factors. In this context, the rhizosphere

(i.e., the soil close to the root surface) provides a specific microhabitat where complex

interactions occur. The complex environment that makes up the rhizosphere can select

for certain microbial populations, which are adapted to this unique niche. Among them,

rhizobia have emerged as an important component of the rhizospheric microbiome. The

aim of this review is to explore the components of such a rhizospheric Talk Show in

the frame of the rhizobium-legume interactions. This symbiosis is a complex process

that involves several signals that can be shaped by plant rhizospheric exudates and

microbiome composition. The relationship established by rhizobia with other rhizospheric

organisms, together with the influence of the environmental factors, results in their

beneficial role on host plant health. Here, we resume research accounting strategies,

molecules, and organisms that influence the place of rhizobia in the rhizosphere. The

focus is on the most recent approaches for the study and subsequent exploitation of

the diversity of the organisms. Indeed, the study of plant-microbes communication and

evolution is fundamental to develop highly efficient inoculants able to reduce the use of

fertilizers in agriculture.
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THE TALK SHOW IN THE RHIZOSPHERE

Prokaryotes and eukaryotes have interacted for millions of years, evolving and refining over
time their communication systems. As proposed by Hauser in 1996 (Hauser, 1996), biological
signals and the exchange of information are part of the definition of communication, while the
signals themselves are considered as “every structure able to shape the behavior of the organisms”
(Smith and Harper, 2003; Schott-Phillips, 2008). Consequently, the signals can evolve and persist
thanks to the interaction between signals producers and receivers. Then, cooperation and fitness
improvement are the basis of biological communication (Zahavi, 2008).

In a particular environment, individuals can communicate and interact with multiple
partners, and the nature of interaction can determine variable costs and benefits to the partner,
as a biological market (Werner et al., 2015). One of the most fascinating environments

https://www.frontiersin.org/journals/agronomy
https://www.frontiersin.org/journals/agronomy#editorial-board
https://www.frontiersin.org/journals/agronomy#editorial-board
https://www.frontiersin.org/journals/agronomy#editorial-board
https://www.frontiersin.org/journals/agronomy#editorial-board
https://doi.org/10.3389/fagro.2020.591494
http://crossmark.crossref.org/dialog/?doi=10.3389/fagro.2020.591494&domain=pdf&date_stamp=2020-12-02
https://www.frontiersin.org/journals/agronomy
https://www.frontiersin.org
https://www.frontiersin.org/journals/agronomy#articles
https://creativecommons.org/licenses/by/4.0/
mailto:alice.checcucci2@unibo.it
https://doi.org/10.3389/fagro.2020.591494
https://www.frontiersin.org/articles/10.3389/fagro.2020.591494/full


Checcucci and Marchetti Rhizobia in the Rhizosphere

where complex biological interactions occur is the rhizosphere.
Indeed, a large number of signals can be exchanged involving
the plant itself, insects, fungi and microbes. This all take place
in a high-density environmental niche. Usually, communication
is the result of chemical responses of cells to signatory
molecules coming from other cells. These signals affect both
the metabolism and transcription of genes activating several
regulatory mechanisms.

Frequently, in the rhizosphere more than two organisms
(and species, across the tree of life) can take part in the
communication, resulting in a complex network of interactions
and cross-talks which can influence the fitness of all participating
partners. Thus, this environment can be considered a hot spot for
numerous inter-kingdom signals exchange, which involves plant-
associated microbial communities (rhizobiome). The microbial
community’s composition is mainly shaped and recruited by
hundreds of metabolites released in the soil by plant roots, which
normally facilitate the interactions with the biotic and abiotic
environment. Often the plant can modulate their diversity based

FIGURE 1 | Actors and interactions in the rhizosphere. Inter-kingdom and intra-kingdom communication involving plants and microbes in the rhizosphere: the

consistent role of rhizobia. VOCs, volatile organic compounds; PGP, plant growth promoting; AMF, arbuscular mycorrhizal fungi.

on the benefits in terms of growth and health (Plant Growth
Promoting, PGP) (Hartmann et al., 2009). Nevertheless, a large
number of nutrients issued by the plant can be of interest for
the pathogenic organisms, which can take advantage of plant
products for their survival in the rhizosphere (Rasmann and
Turlings, 2016).

It stands to reason that the plants play a fundamental role
in the rhizosphere scene (Bending, 2017) (Figure 1). Indeed,
because of the chemical signals conveyed by nutrient-rich
exudates released by the plant roots, a large variety of microbes
can first colonize the rhizosphere and then gradually penetrate
the root and the overall plant tissue (endophytes) (Hardoim et al.,
2008). Otherwise, they can colonize the host plant establishing a
lasting and beneficial symbiotic relationship (Chi et al., 2005). To
date, numerous investigations on root exudates composition have
been performed (Hartmann et al., 2009; Bulgarelli et al., 2013;
Venturi and Keel, 2016).

The most known plant-microbe dialogue on the rhizosphere
scene, which determine direct and indirect advantages to the
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partners, was properly addressed as early as 1904 when Hiltner
described the symbiotic interaction among legumes and rhizobia
(Hartmann et al., 2008). This symbiosis is a highly specific
process in which the genetic and chemical communication
signals are strictly plant-bacterium specific. In this mutualistic
interaction, rhizobia positively influence the host’s growth thanks
to the nitrogen fixation process and at the same time can benefit
from the nutrients provided by the plant.

This symbiosis has been extensively studied over the last
few decades, and many studies on the communication and
the signaling between the two partners at different steps of
the symbiosis (from root infection to nodules development)
have been elucidated (Oldroyd et al., 2011; Oldroyd, 2013).
However, the knowledge about the earlier steps of rhizosphere
colonization, namely the opening line at the root surface, remains
poorly characterized. Nonetheless, increasing data have shown
the importance of intraspecies and multispecies communications
among rhizospheric biotic components for the improvement of
rhizobia–legumes interaction. In addition, it has been shown
that rhizobia are part of the rhizosphere of a wide variety
of non-legume plants where they can play a role as PGP
components, recovering a central role in plant core microbiome
(Yeoh et al., 2016).

This review provides an outline of the most studied intra-
and inter-kingdom communication strategies in the rhizobium-
legume cross talk, defining the most relevant mechanisms of
rhizospheric communication. We conceived the exchange of
signals between plants and microorganisms as an intricate Talk
Show discussion, in which a large variety of dialogues can take
place, regulated and coordinated by a defined line-up, but at the
same time, free to influence each other.

THE PLACE OF RHIZOBIA: SETTING UP
THE SCENE

Rhizosphere complexity makes it difficult to identify and
analyze the microbiome components and in particular, the
laws governing the dynamics and the maintenance of plant
associated microbial communities. Among factors able to
influence those microbial communities, nutrients availability and
soil composition have a strong influence (Naylor and Coleman-
Derr, 2018). At this level, the root soil interface is rich in exudates
that can differently alter gas and soil composition, thus selecting
for certain microbial populations adapted to this unique niche.
Root exudates contain a large variety of secondary metabolites,
such as organic acids, amino acids and sugars, which are mainly
used to attract microbes (PGP or pathogenic microorganisms)
through chemotaxis process, and phenolic compounds such as
flavonoids, fundamental for the signalingmechanism that allowst
the symbiotic interaction with rhizobia and mycorrhizal fungi
to start. Interestingly, several phytormones and antimicrobial
compounds (phenolics and terpenoids) are secreted by roots and
used by plant as defense weapons against soil-born pathogens,
to select among beneficial microbes (Baetz and Martinoia,
2014). Additionally, roots are able to produce volatile organic
compounds (VOCs), which fullfill the role of rhizosphere
microbial growth regulator (as antimicrobial compounds) or as

significant carbon source (Peñuelas et al., 2014). Therefore, the
rhizodeposition makes microbial composition of the rhizophere
significantly different from that found in bulk soil (de Oliveira
et al., 2017).

The plant acts as a mediator in the rhizospheric stage,
consistently contributing to the balance of soil microbiome
composition (Hartmann et al., 2009). On the other hand, the soil
microbial community actively participates in the composition of
the rhizospheric environment, taking part in degradation and
production of organic compounds, for its own benefit (Paterson
et al., 2007).

Among bacteria living in the rhizosphere and in association
with plants, rhizobia can impact on surrounding microbial
population by affecting legumes rhizosphere’s composition and
structure of the soil microbiome (Nwoke et al., 2008; Fan et al.,
2018). The role of rhizobia as the main actor is mediated by a
plethora of chemical and molecular signals that regulate bacterial
invasion and intracellular colonization, modulate host plant
defense response and nutrient exchange (Gibson et al., 2008).

Furthermore, water deficiency, salinity, heavy metals, acidity,
as well as low nutrients levels are all abiotic factor that frequently
can interfere with the role of rhizobia in the rhizosphere scene
(Fagorzi et al., 2018; Bellabarba et al., 2019).

In addition, recent data have revealed that under identical soil
conditions, the plant genotype, through its phenotypic features,
can filter and modulate the microbial community structure and
function, as well as the diversity of root associated bacteria (el
Zahar Haichar et al., 2008; Berg and Smalla, 2009) carrying out a
partner choice in rhizobia mutualism (Simms and Taylor, 2002).

Increasing field studies including large-scale rhizosphere
samplings are now emerging with the aim to better understand
the rhizospheric microbiome rules, focusing on the structure, the
preservation and on the importance of communication occurring
among the plants. In every case, the abiotic environmental
factors (positive or negative), together with the communication
among plants and rhizobial/non-rhizobial species are able to
influence the rhizosphere Talk Show, giving order to the existing
messy scenario.

SYNERGIC EFFECTS OF INTRA-KINGDOM
BACTERIAL INTERACTION

The communication of microorganisms in the rhizosphere is
mediated by a large diversity of microbial metabolites and
physical signals, as happens in a noisy Talk Show, in which
every dialogue can influence the success of the performance.
The soil bacteria attracted by root exudates (Figure 1), root
cell lysates and mucilages, profusely colonize the rhizosphere,
thus starting the rhizosphere dialogue. Quorum sensing (QS),
the bacterial population-dependent regulatory mechanism, is
involved in bacterial cell aggregation and in the first phases
of rhizosphere colonization through biofilm formation (Ng and
Bassler, 2009). Indeed, rhizobia typically produce and release
into the surrounding environment diffusible N-acyl homoserine
lactone (AHL) molecules, which are used as signals for the
control of plant- microbe interaction. The recognition of AHL
molecules by bacterial cells starts and controls several processes
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as the biofilm formation, Extracellular Polymeric Substances
(EPS) production, bacterial motility and expression of bacterial
genes relevant for symbiosis and nitrogen fixation (Loh et al.,
2002; Sanchez-Contreras et al., 2007; Yang et al., 2009).

The rhizobial QS is based on the LuxR – LuxI type regulatory
system. It is dependent on the threshold level of AHL which
allows to induce expression of specific target genes (Veliz-Vallejos
et al., 2020).

Actually, at least three LuxRI-type QS regulatory systems have
been identified (Zheng et al., 2015b), and their role in interspecies
communication also in co-inoculation experiments has been well
demonstrated (Miao et al., 2018). Since several decades, extensive
investigations of the role of the QS in rhizobial biofilms all along
the root surface and inside the plants (i.e., endophytes) have
been performed. Thus, strains with an effective roots colonizing
ability through biofilm formation (Velmourougane et al., 2017)
and flagellar-dependent chemotaxis ability (Zheng et al., 2015a)
are always more advantaged than those strains without biofilm
formation capabilities. Furthermore, a large variety of strategies
are important for rhizobial roots colonization, such as the
secretion of antibiotics and/or cell-wall degrading enzymes,
which have been reported to be important for the protection
against root phytopathogens (Siddiqui et al., 2000; Chandra et al.,
2007) (Figure 1).

A wide spectrum of other physiological traits plays an
important role in the rhizosphere by contributing to the
complex phenomenon of nodulation competitiveness (Triplett
and Sadowsky, 1992). These traits include swarming motility,
type III secretion system, plasmid transfer, cell division,
metabolism and transport (Calatrava-Morales et al., 2018). It is
of note that their occurrence varies among species.

Microbial communities in the rhizosphere can compete for
nutrients and for the plant roots colonization. Several rhizobia
are able to interfere with the infecting capability of other
stains through the production of bacteriocins, antimicrobial
compounds that act on relative close phylogenetic species
(Oresnik et al., 1999; Venter et al., 2001). Sinorhizobiummeliloti,
one of themost studied symbiotic species, is able to produce high-
affinity siderophores which deprive antagonists of the available
iron, thus limiting their plant growth (Arora et al., 2001).

Contrarily, in some cases, soil microbial communities can
improve the infection capabilities of particular rhizobia and their
communication with the host plant (Mehboob et al., 2013). The
recent work by Miao et al. (2018) highlighted that strains of
Rhizobium fabae are able to improve Rhizobium etli nodulation
capabilities through a particular intra-species QS mechanism.

In this context, rhizosphere actors can participate in setting
up the Talk Show by improving their performance. Synergic
effects of specific co-inocula formulations should include
a fair combination of PGP bacteria and rhizobia (Remans
et al., 2008). Indeed, a range of PGP microbes can be used
with rhizobia for the improvement of legumes growth and
rhizobial mutalistic efficiency. The free - living diazotrophs
Azospirillum, Azotobacter, Bacillus, Pseudomonas, Serratia, and
Enterobacter are some of the genera that were successfully
used with rhizobia as co-inoculants, potentiating growth and
yield of several leguminous crops through different strategies,
such as the production of phytohormones or biocontrol agents

against rhizosphere phytopathogens (Tchebotar et al., 1998;
Tilak et al., 2006; Remans et al., 2008). Presence of Azospirillum
species can increase the size of the rhizobial infection site,
providing space for infection and facilitating the nodulation
ability of rhizobia (Tchebotar et al., 1998). Although there
are many combinations of bacteria co-inoculation that have
been explored for the improvement of rhizobia-legumes
symbiosis, there is still the need for advanced comprehensive
research in their communication systems. Indeed, a selection
of the most appropriate and performing panels of PGP
strains, might be used in the near future as inoculants
replacing fertilizers by a more environmentally friendly
agricultural practice.

THE MOST ACCLAIMED RHIZOSPHERIC
INTER-KINGDOM COMMUNICATIONS

A large part of the rhizobia-host communication strategies in
the rhizosphere influences the highly regulated and ongoing
rhizobial interactions in the root tissue. In compatible legume
cultivars, after the establishment in the rhizosphere, rhizobia
detect plant-derived flavonoids inducing nod genes, which are
involved in Nod factors (lipochitooligosaccharides) production
(Poole et al., 2018).

Then, rhizobia gradually adhere to roots surfaces, penetrate
the plant root tissues and address their lifestyle inside
the newly formed root organ, the nodule. Here, rhizobia
differentiate into bacteroids, the N2 fixing form of rhizobia,
thus reducing atmospheric nitrogen to ammonia benefiting,
in return, of protection and availability of nutrients from the
plant (Kereszt et al., 2011). In this scenario, the accessibility
to the symbiotic niche is naturally regulated and limited
by the host plant to respond to nitrogen needs and by
competition among rhizobial strains present in the neighboring
soil (Triplett and Sadowsky, 1992).

The bi-directional inter-kingdom interaction between
rhizobia and the compatible legume host involves a large
panel of molecular signals as well as the exchange of metabolic
resources, largely explored by scientist for decades (Oldroyd,
2013; Udvardi and Poole, 2013; Poole et al., 2018). The inter-
kingdom molecular communication of these social interactions
includes the volatile organic compounds (VOCs) and flavonoids
issued by the plant and the bacterial Nod factors responsible
for the nodulation signaling pathway. Bacteria cheaters among
rhizospheric populations can profit of the plant permission state
to escape plant sanctions and infect the plant tissue (Kiers et al.,
2003; Sachs et al., 2010; Checcucci et al., 2016; diCenzo et al.,
2018).

Representing more than 70% of all lands plants, legumes
are able to interact with arbuscular mycorrhizal fungi (AMF)
through the recognition of the mycorrhizal oligosaccharides’
factors (Myc factors). Plant-fungi association allows the fungal
elongation into the root cortex, where AMF can benefit the host
mediating the nutrient uptake. It is largely demonstrated that in
legumes, the Talk Show dialogue between fungi and rhizobia can
take place at the root level (Barea and Pozo, 2005; Meghvansi
et al., 2008; Kaschuk et al., 2010).
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To our knowledge, Crush was the first researcher who
observed that the presence of mycorrhizas stimulated nodulation
and consequently plant growth (Crush, 1974). Then, many others
reported additional effects produced by the tripartite interaction
of Arbuscular Mycorrhizal Fungi – Rhizobia - Plant (ARP):
it enhances symbiotic nitrogen fixation and effectiveness in
drought soils (Hao et al., 2019; Laouane et al., 2019), increases
number and dry weight of nodules (Antunes and Goss, 2005) and
root soluble sugar contents (Hao et al., 2019; Tang et al., 2019).
For more literature on the arguments, we refers to Anandakumar
et al. (2019), Sakamoto et al. (2019), Sui et al. (2019) and Zhang
et al. (2020).

Besides positive effects, fungi can act as antagonistic plant
pathogens, which rhizobia can counteract as biocontrol agents
for multiple plant species (Deshwal et al., 2013). Furthermore, it
was demonstrated that the multiple inoculations of fungi, PGP
bacteria can improve symbiotic behavior and plant nutrients
availability, as was shown in semi-arid and alkaline soils
(Requena et al., 1997; Abd-Alla et al., 2014).

It seems that communication which rhizobia can establish
with the other components of the stage, can be a potential reserve
for the improvement of rhizosphere interactions, and primarily
those that contribute to host plant growth (Artursson et al.,
2006). Recently, transcriptomic analysis in the presence of fungal
exudates has shown their positive role in the transcription of
rhizobial genes associated with the chemosensory (Zhang et al.,
2020). In the future, further research should be addressed to the
development of new technologies and applications to enable the
optimization and the subsequent exploitation of ARP tripartite
interactions. In particular, the monitoring of expression profiles
of genes associated with communication mechanisms, the
development of microcosm systems which simulate the natural
condition, the analysis of the metabolic potential of microbial
(and fungal) consortia in association with host plants, might be
good starting points to better understand the multi-organism’s
rhizosphere communication. The most recent metagenomic
approaches for the study of rhizobial microbial communities,
as well as the determination of the role of each actor in the
rhizosphere scene, will be essential for the understanding and
the subsequent exploitation of organism diversity for sustainable
agriculture (Faure et al., 2009; Arora et al., 2020).

CONCLUDING REMARKS

The current understanding of the rhizosphere is highlighting the
complexity of the communication strategies taking place in this

model environmental scenario. Increasing evidence is pointing
out how in this scenario rhizobia occupy an important place that
extends to non-legume plants. This niche is a consequence of the
influence of several factors (biotic and abiotic), at different levels
(intra- and inter-kingdom) and different degrees (competition
and cooperation).

Every interaction and exchange of signals taking place in one
of the most known complex environments cannot be conceived
as uni or bidirectional reactions, but it can be imagined as
a complex network of dialogues, a model of noisy discussion

while remaining inexplicably tidy and regulated by the partners
themselves. Therefore, the recent studies, focused on microbial
community networks models (Melke et al., 2010; Barto et al.,
2012; Succurro and Ebenhöh, 2018; Mai et al., 2019), have
to be adapted to the complexity of the rhizosphere. The
dissection of such rhizospheric communication is essential for
the improvement of the benefic aspects of such communication
(Mueller and Sachs, 2015; Checcucci et al., 2017; Mueller et al.,
2019) with a view to agricultural applications.

The rhizosphere scene can be considered as a highly
suitable model for the application of a system biology
study approach, including the large number of plants and
microorganisms sequenced genomes, the studies on partners
metabolic functionalities (Korenblum et al., 2020) and on the
transcriptomic changes related to different partners interaction
(Pathan et al., 2020). It is expected that future studies will
continue to explore the selective forces that shape rhizosphere
microbiome further elucidate the potential of the communication
among the different rhizospheric partners.
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