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Agroforestry is a promising adaptation measure for climate change, especially for low

external inputs smallholder maize farming systems. However, due to its long-term nature

and heterogeneity across farms and landscapes, it is difficult to quantitatively evaluate

its contribution in building the resilience of farming systems to climate change over large

areas. In this study, we developed an approach to simulate and emulate the shading,

micro-climate regulation and biomass effects of multi-purpose trees agroforestry system

on maize yields using APSIM, taking Ethiopia as a case study. Applying the model to

simulate climate change impacts showed that at national level, maize yield will increase

by 7.5 and 3.1 % by 2050 under RCP2.6 and RCP8.5, respectively. This projected

increase in national-level maize yield is driven bymaize yield increases in six administrative

zones whereas yield losses are expected in other five zones (mean of −6.8% for RCP2.6

and −11.7% for RCP8.5), with yields in the other four zones remaining stable overtime.

Applying the emulated agroforestry leads to increase in maize yield under current and

future climatic conditions compared to maize monocultures, particularly in regions for

which yield losses under climate change are expected. A 10% agroforestry shade will

reduce maize yield losses by 6.9% (RCP2.6) and 4.2 % (RCP8.5) while 20% shade

will reduce maize yield losses by 11.5% (RCP2.6) and 11% (RCP8.5) for projected loss

zones. Overall, our results show quantitatively that agroforestry buffers yield losses for

areas projected to have yield losses under climate change in Ethiopia, and therefore

should be part of building climate-resilient agricultural systems.

Keywords: agroforestry, process-based model, maize, climate change, Ethiopia

INTRODUCTION

Climate change will have severe impacts on food production in many tropical areas as conditions
become marginal or highly variable (Hoegh-Guldberg et al., 2018). As such, building a resilient
agricultural system in the tropics is needed to cope up with the impacts of the changing climate yet
remaining within planetary boundaries. The capacity of a system to recover from climate-related
shocks like droughts, heavy precipitation, or floods will be crucial with ongoing climate and
global change. Such resilience of agricultural systems should be established, among others,
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through climate adaptation measures. Adaptation measures
should ideally contribute to reducing the greenhouse gases
emissions, stabilize effects on the agricultural production,
improve or stabilize agro-ecological functioning, and have local
ownership among other standards (Osbahr et al., 2010; Conway
and Schipper, 2011). Agroforestry is one of few measures that fit
into the foregoing description and criteria.

Due to its huge potential, agroforestry features in climate
change adaptation discourses especially in resource constrained
vulnerable smallholder systems in Africa and Asia. This is
because agroforestry contributes to sustainable agricultural
development through increased yields and ecosystem services
under low external inputs use, underpinning both sustainable
development and climate change resilience (Mbow et al.,
2014; Ong and Kho, 2015). Agroforestry is also important
for stabilizing slopes and reducing erosion (Keesstra et al.,
2016; Cerda et al., 2018) and increasing biodiversity of
farmlands (Pardon et al., 2019; Udawatta et al., 2019). In
addition, regenerative agroforestry is important for soil fertility,
biodiversity, carbon sequestration and crop production, which
are directly linked to the achievement of sustainable development
goals such as on poverty (SDG1), hunger (SDG2), climate action
(SDG13), and life on land (SDG15). There is a consensus
that agroforestry is important for climate resilience despite
the fact that most studies are based on discrete experimental
field studies and thus difficult to transfer or upscale. This is
especially important given the heterogeneous agro-ecological
systems under which maize is produced in many countries. In
Ethiopia for example, there is a growing realization that trees are
important and linked to many biophysical processes including
for regulating temperature and rainfall regimes (Muluneh et al.,
2017b) and for crop buffering (Kassie, 2018; Sida et al., 2018).
This is even more important with increasing risks of climate
change on crop production (Araya et al., 2017; Bedeke et al.,
2020).

Efforts to quantify agroforestry contributions to agriculture
are focused on productivity because this aspect is most easily
quantified and monetized. There is however a lack of spatially
explicit quantitative information on yield stabilizing effects of
agroforestry across heterogeneous environments (Dagar and
Tewari, 2016; Lal et al., 2016). In addition, there is paucity of
data on the spatial upscaling potential and/or uncertainty in
its functioning. There are also some limitations in modeling
future performance of agroforestry systems to provide confidence
in its stability and role under projected climatic conditions
(de Sousa et al., 2019). This lack of quantitative assessments
make it difficult to explicitly include it in the Paris Agreement’s
National Determined Contributions (NDCs) investment plans
and National Adaptation Plans (NAPs) that require such
information for local level planning (Luedeling et al., 2014; Dagar
and Tewari, 2016).

As a result of the demand for more information about
agroforestry, there is a growing interest to incorporate
agroforestry dynamics in climate risk assessment tools such
as crop models. For example, Lott et al. (2009) reported
significant changes in maize yield under an agroforestry system
attributed to thermal and radiation amelioration. In another

study, Smethurst et al. (2017) analyzed the field-level maize
growth and yield effects of crop-tree interactions in two
contrasting environments in a dynamic crop simulation model
with satisfactory skill. Many field-level studies on the impact of
agroforestry on crop production potential under climate change
have also been reported. For example, Dilla et al. (2018) showed
that it is possible to use APSIM to simulate maize total above-
ground biomass, leaf area index and grain yield at various levels
of shading. Similarly, Sida et al. (2018) observed that agroforestry
systems with Faidherbia albida trees have increased soil mineral
N, water use efficiency and reduced heat stress, increasing
wheat yield significantly. In another study Pardon et al. (2018)
concluded that in adult tree agroforestry systems, summer
crops (maize and potato) are impaired when planted too close
to the tree because of reduced of radiation, with these effects
less in young and middle-aged systems. There are generally
three principal ways through which agroforestry contributes to
agricultural adaptation. These are: (i) soil and water conservation
through reduced evapotranspiration, enhanced water-use
efficiency and increased soil moisture retention (Cannavo et al.,
2011; Zhao et al., 2012), (ii) microclimate regulation where it
prevents extremes of temperature (Lott et al., 2009; Moreno
et al., 2018; Qiao et al., 2019), and (iii) provision of biomass that
supplements and recycles nutrients for crops from tree residuals
or deeper soil layers (Mafongoya and Dzowela, 1999; Partey et al.,
2011; Singh and Singh, 2016). These mechanisms represent the
most significant ways in which trees influence crop production
by altering the balance of resource availabilities to the crop (Ong
and Kho, 2015).

There are currently no clear approaches to integrate
agroforestry tree-crop interactions in process-based crop
simulation models to understand the large-scale and long-term
benefits of agroforestry systems such as multi-purpose trees
at national level. This is because many crop models do not
explicitly represent crop-tree interactions (Smethurst et al.,
2017; Dilla et al., 2018; Holzworth et al., 2020). This restricts
quantitative assessment of agroforestry potential; and hampers
further understanding of its potential role and limits, especially
in smallholder farming systems. Realizing this, the process-
based crop model Agricultural Production System sIMulator
Next Generation (APSIM2020) implemented individual tree
simulation of agroforestry (Holzworth et al., 2020). Current
simulation of agroforestry, however, is limited in numbers and
arrangement of trees in fields and cannot therefore be used for
modeling multi-purpose agroforestry systems.

We, therefore, developed an approach for analyzing multi-
purpose trees agroforestry in a dynamic crop simulation model
by representing the three ways of tree-crop interactions in
agroforestry. We implemented agroforestry in APSIM in three
ways: (i) through representation of radiation interception, (ii)
microclimate temperature regulation, and (iii) the fertilization
effect of biomass from agroforestry trees to the maize field.
Overall, the aim of this study was to evaluate the potential of
multi-purpose trees agroforestry to stabilize maize yields under
climate change in Ethiopia, and examine if these effects are
the same across different geographic areas. The study results
will provide a framework for multi-purpose trees agroforestry
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representation in process-based crop models while providing
spatially-disaggregated quantitative assessments for the potential
contributions of agroforestry in maize production systems in
Ethiopia. The later can further be used in national adaptation
planning and in designing resilient agricultural systems under
climate change risks without the risk of maladaptation.

MATERIALS AND METHODS

Study Zones and Data
We focused this study on simulating maize production in
Ethiopia. Maize is among the most important cereals in Ethiopia
as it ranks first in total national production (∼3.3 million tons)
and yield per hectare (2.95 t/ha) and second after teff in area
dedicated to crops (Taffesse et al., 2012; CSA, 2015). Observed
maize yield data is obtained from Annual Agricultural Sample
Surveys (2006 to 2008; and 2010 to 2016) by the Central Statistical
Agency (CSA) of Ethiopia. Although maize is one of the staple
crops in Ethiopia growing in many parts of the country, we
found only 14 administrative zones (equivalent to districts) out
of more than 85 zones to have sufficient data on maize yields
and farm management to necessary for the modeling exercise.
These are Asosa Kemashi, andMetekel zones (from Benishangul-
Gumuz region), Guraghe, Hadiya, and Sidama zones (from the
Southern Nations, Nationalities, and Peoples—SNNP hereafter),
Illubabor, and Jimma zones (from Oromia region), North
Gonder, South Gonder, North Wollo, West Gojjam, and North
Shewa zones (from Amhara region) and Western Tigray
zone (from Tigray region) (Supplementary Material 1). The
selected administrative zones not only represent the four main
agricultural regions of Ethiopia (Tigray, Amhara, Oromia, and
SNNP) but also the four main agro-ecological zones (cereal-
based moisture-reliable highlands, enset-based moisture reliable
highlands, drought-prone highlands, moisture-reliable humid-
lowlands). The fifth agro-ecological zone which is pastoralist
agro-ecological zone is not represented as there is no significant
maize production (Supplementary Material 2). Besides, in this
study, we only focused and simulated the Mehr season (long
rains) maize yield as it contributes over 90–95% percent of the
nation’s total cereals output (Cochrane and Bekele, 2018).

APSIM Model
The Agricultural Production System sIMulator (APSIM)
(Keating et al., 2003; Holzworth et al., 2014) is used to simulate
current and future maize yields in the study zones. APSIM
is a crop model with a proven track record in modeling
the performance of diverse cropping systems, rotations,
intercropping, fallowing, crop and environmental dynamics
by representing essential resource dynamics. It is especially
distinctive in being able to capture crop resource demands
as influenced by weather and management, and how these
demands affect the soil after every successive cropping, and
therefore skillful for both short and long term time scales
(Gaydon et al., 2017). In APSIM model, there is a central
interface engine that allows individual modules to be used and
that controls communication among biological, environmental,
and management modules. The generic crop growth model

simulates growth based on the physiological determinants
framework for growth and development of cereals and simulates
growth of individual organs based on the supply-demand
balance for available resources (carbon, water and nitrogen
etc) within the crop (Soufizadeh et al., 2018). In particular,
The APSIM-Maize module simulates several key underpinning
physiological processes and operates on a daily time step in
response to daily inputs of weather data, soil characteristics and
crop management practices. In particular, the maize module
has been shown to adequately simulate a number of processes,
including phenological development, biomass accumulation,
and yield formation, soil moisture and nutrient status, and
agricultural management practices (Sun et al., 2016; Soufizadeh
et al., 2018). Consequently, APSIM is widely used for climate
change impact studies at site (Zhang et al., 2013; Hailesilassie,
2015; Pembleton et al., 2016; Deihimfard et al., 2018) and
landscape (Tachie-Obeng et al., 2013; Liu et al., 2018) scales.
APSIM version 7.10 was run under R environment with the
apsimr (Stanfill, 2015) and the APSIM (Fainges, 2017) libraries.

Model Calibration
Daily Weather Data
The minimum data requirements for APSIM are daily rainfall,
maximum temperature, minimum temperature and solar
radiation. The Climate Hazards Group InfraRed Precipitation
with Station data (CHIRPS) rainfall data at 0.05 degrees (Funk
et al., 2015) is used to derive daily precipitation data from 2006
to 2016 for Ethiopia. The gridded daily precipitation values were
summarized over croplands for each zone using a crop mask
from the Global GCE 1 km Cropland Dominance for the year
2015 developed with satellite data (Teluguntla et al., 2015). This
was done to ensure that the rainfall values corresponded with
cultivation areas where maize is grown. Daily maximum and
minimum temperature was obtained from the WFDEI Near
Surface Temperature data for the same period at 0.5 degrees
resolution (Weedon et al., 2014). Since temperature values are
not highly variable over space, the resolution was considered
reasonable for temperature data. Radiation values were derived
from the maximum and minimum temperature values, latitude,
day of the year and derived temperature amplitude values using
the sirad package of R (Bojanowski et al., 2016) using the method
developed by Mahmood and Hubbard (2002).

Soil Data
For soil profiles, we used the International Soil Reference and
Information Center’s (ISRIC) gridded soil data (Han et al., 2015;
Hengl et al., 2017). This database has soil properties such as bulk
density, organic carbon, percentage of clay and silt, soil pH and
cation exchange capacity while other properties were calculated
by us using pedo-transfer functions (Han et al., 2015, 2019). The
soil parameters were then averaged over the zone to produce
a representative soil profile for croplands of the zones after
ensuring that the values were reasonable by cross checking with
local profiles available in literature (Supplementary Material 3).
To ensure that the soil profiles corresponded with crop lands,
only profiles whose center coordinates corresponded to the
Global GCE 1 km Cropland Dominance crop mask were
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used. The key parameters for the soil profiles are given in
(Supplementary Material 4).

Crop Management Data
Fertilizer rates, planting windows, maize varieties and planting
density were the key management inputs that varied for each
zone. Data on fertilizer application rates for each zone was
obtained with the crop yield data (Supplementary Material 5).
This data was on amount on total amount of fertilizer used and
area fertilized, pesticides quantities and area, organic fertilizer
quantities and area applied for each zone. Each year, the
simulated crop was planted after sufficient first rains in a
planting window, which was determined by the climatic profile
of each respective zone. A maize-fallow system was employed
in all simulations. Information on tillage, planting windows,
planting density, residues, growing season and other parameters
was collected from published papers, national and regional
research reports, and other secondary databases with agronomic
information on maize production in Ethiopia (Global Yield Gaps
Atlas, 2013; Araya et al., 2015; Dimes et al., 2015; Kassie et al.,
2015; Smethurst et al., 2017; Seyoum et al., 2018). Local and
regional maize varieties were calibrated and used for each zone
(see section Model input data). The final model parameters
that remained constant across all zones and all years are listed
in Table 1.

Model Input Data
A model calibration was conducted because some model
parameters are not available as directly measured or observed
values (e.g., split between top dressing and basal fertilizer) or are
difficult to assign at zone level (e.g., crop varieties). Therefore, the
best initial estimates for those input parameters were calibrated
for each zone based on the agreement with the observed yield.
Two input parameters were of calibration interest. These are
fertilizer split and maize varieties. To ensure that the calibration
was independent, a leave-one-out cross validation where the
model was iteratively calibrated with 9 years of data and evaluated
on the 10th data point iteratively was used to produce the
validation metrics (see also section Model evaluation).

Varietal Allocation
There are many maize varieties planted in Ethiopia. However,
only a few varieties dominate mainly determined by altitude.
Since no information about the dominant varieties is available
on zone level, the information on maize varieties was obtained
through iterative allocation using five local and regional varieties
in Ethiopia. The dominant maize varieties are BH540, BH660,
Katumeni, Melkasa-2 and MH19 whose genetic coefficients were
already inbuilt in APSIM or were created into the model from
literature (given in Table 2 and Supplementary Material 6).

Fertilizer Split
The actual fertilizer applications for the period were available and
used in the modeling. However, the information on zone level
fertilizer applied to maize systems did not distinguish between
sowing and top dressing fertilizers. Yet, the APSIM requires
these separately. To determine the split for each zone, four split
ratios (20:80, 30:70, 40:60, and 50:50) between sowing basal and

top dressing fertilizer were evaluated and the rates with the
best match to observed yields were selected for that zone. The
amounts were converted to equivalent per unit area for DAP
(basal with 18%N and 46% P2O5) and Urea (top dressing with
46%N) applications with the later applied from 36 days after
planting. After identifying the split ratio with the best accuracy
for each zone, the splits were allocated for each zone accordingly.

Model Evaluation
Zone level data (2006–2016) were used to calibrate the models as
well as validate the model. The final parameterized and calibrated
model was applied to simulate independently the maize yield.
The correlation coefficient (r) and coefficient of determination
(R2) was used to assess the goodness of fit between simulated
and observed zone level yields for individual zones, regions and
all data. In addition, mean absolute error (MAE, Equation 1),
root mean square error (RMSE, Equation 2), percent bias [pBias
(%), Equation 3] and index of agreement (d, Equation 4) were
used to assess the model performance. For MAE, RMSE, and
pBias values of 0 indicate a perfect fit between observed and
simulated values. MAE is the average of the absolute values of
the differences between simulated and observed values. RMSE is
one of the commonly used error index statistics and the lower
the RMSE the better the model performance. pBias measures
the average tendency of the simulated yields to be larger or
smaller than their observed counterparts and positive values
indicate scale of overestimation whereas negative values indicate
scale of model underestimation. d measures the additive and
proportional differences in the observed and simulated means
and variances for long term data and a d of 0.5 is considered
satisfactory model performance (Araya et al., 2015).

MAE =

(

1

n

∑

|yi − ŷi|

)

(1)

RMSE =

√

1

n

∑

(yi − ŷ)
2

(2)

pBias =

(

∑
(

yi − ŷi
)

∗ 100
∑

yi

)

(3)

d = 1 −

[

∑n
i=1

(

ŷi − yi
)2

∑n
i=1

(
∣

∣ŷi − y
∣

∣+ |yi − y|
)2

]

(4)

Where for all cases n is the number of data points, yi and ŷi
denote the observed and simulated yield, and y is the mean of
the observed yield (Moriasi et al., 2007).

Climate Change Impact Assessment
The impacts of climate change on maize for each zone were
determined by simulating maize growth under both the baseline
and future climates. This was done after the model was
satisfactorily setup for the period 2006–2016. The baseline period
for was 1997 to 2016 while the 2050s was represented by projected
climate data from 2041–2060 for each of the 14 zones from three
different general circulation models (GCMs). The daily climate
data from the Inter-Sectoral Impact Model Inter-comparison
Project (ISIMIP) was used for the study. ISIMIP provided bias
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adjusted climate projections following the method of Lange
(2016) andWeedon et al. (2014) where the model data is adjusted
to EWEMBI data. This approach applies quantile mapping to
adjust target distributions as empirically estimated from source
distribution in the form of cumulative distribution functions. We
choose three available GCMs for our climate projections. The
three GCMs are GFDL-ESM2M (Dunne et al., 2013), HadGEM-
ES2 (Jones et al., 2011), and MIROC-ESM-CHEM (Watanabe
et al., 2011) were used. For future projections, two representative
concentration pathways (RCP)–RCP2.6 and RCP8.5—were used
as emission scenarios. The RCPs were chosen to represent the
“well below 2 ◦C” target (of the Paris Agreement) and a scenario
without climate policy, respectively, to capture the possible future
range of climatic possibilities. Climate change impacts are then
calculated as the difference between the future simulated maize
yields and historical simulation for each zone following a method
suggested by Lobell (2014).

Emulating Agroforestry Systems
We sought to simulate the general farm effect of multi-
purpose trees agroforestry system in which farms have various

TABLE 1 | Universal parameters used in APSIM for maize yield simulation.

Parameter Value

Sowing depth 6 cm

Amount of rain for sowing 30mm over 3 days

Minimum allowable soil water 30 mm

Initial water 50% from the top

Plant density 5.3 plants/m2

Row spacing 0.8 m

Type of fertilizer Urea and DAP

Stover removed 0.95

Prior crop residue 500 kg/ha

Irrigation None

Tillage type Blade

Tillage depth 15cm

multipurpose tree species. The system is based on at least
12 mature multiple-species trees per hectare with an average
radius of influence of 10m scattered haphazardly or according
to some systematic patterns within fields, on bunds, terraces
or plot/field boundaries. The multi-purpose trees agroforestry
system is the most common agroforestry system in smallholder
farms in Ethiopia, and it has multiple functions of production
of various tree products and ecosystem services. We derived
biomass production and Nmineralization from 27 common trees
(17 N-fixing) as agroforestry tree species vary greatly between
fields and farms, and across the landscape. To represent multi-
purpose trees agroforestry effects on maize yield, 3 aspects were
concurrently implemented in the model.

Shading and Microclimate Regulation Agroforestry

Effect
Shading was implemented by reducing the radiation parameters
in the weather files by 10 and 20% as done by Dilla et al.
(2018). To represent microclimate regulation of agroforestry, we
modeled, for each zone, the corresponding effects of reducing
daily radiation values by 10 and 20% in the weather file on
maximum and minimum temperature. Some approaches to
model effect of shading on temperature are available, for e.g.,
Dumas et al. (2015), Ziter et al. (2019), Speak et al. (2020),
and Sida et al. (2018). These approaches are problematic for
crop agroforestry simulation because they are (i) only for
effects of tree shading average daily temperature, which is not
directly translatable to effects on daily maximum and minimum
temperature, (ii) tree species specific for general agroforestry
application, and (iii) mostly from urban surfaces whose thermal
responses are different from agricultural soils. Therefore, we
developed a machine learning random forest regression model
between radiation and temperature parameters in unmodified
data that we then applied on the reduced radiation values
(Supplementary Material 7). This is because we considered that
there is a non-linear cooling effect of radiation interception on
minimum and maximum temperature (Figure 1). This approach
is more robust because an individual model is developed for
each study area dealing with problems from differential radiation
reception cause by, for example, altitude. It is also tree species

TABLE 2 | The genetic parameters of each of the five maize varieties that were used for calibration.

APSIM Parameters Full description Units BH540 BH660 Katumeni Melkasa-2 MH19

tt_emerg_to_endjuv Thermal time accumulation from seedling

emergence to end of juvenile phase

◦C days 220 285 150 230 280

tt_endjuv_to_init Thermal time accumulation from end of juvenile

to floral initiation

◦C days 21 20 0 20 20

photoperiod_crit1 Photoperiod factor hours 12.3 12.5 12.5 10 12.5

photoperiod_slope Photoperiod slope ◦C hour 10 10 15 10 23

tt_flag_to_flower Thermal time accumulation from flag stage to

flowering

◦C days 10 10 10 10 10

tt_flower_to_start _grain Thermal time accumulation from flowering to

start of grain filling

◦C days 120 190 120 160 170

tt_flower_to_maturity Thermal time accumulation from flowering to

maturity

◦C days 760 990 660 710 740
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agnostic as the effects of 10 and 20% shading can be achieved with
any species depending on planting arrangements. Finally, it can
also be applied for projected climatic data.

Nutrient Cycling and Fertilization Effect of

Agroforestry
To implement the fertilization effects of multi-purpose trees
agroforestry system, we reviewed literature on average plant
biomass addition and the resultant N contribution. A mature
agroforestry tree (older than 6 years) that provides 10% shading
produces an average ∼500 kg/ha-1/year of litter biomass,
with 20% shading producing ∼1,000 kg/ha-1/year (Palm, 1995;
Mafongoya and Dzowela, 1999; Dagar and Tewari, 2016; Nair
and Toth, 2016). Accordingly, biomass was added as manure
input at planting (60%) and 45 days after planting (40%) with
the manure application module with an average C:N ratio of
16, which is the average of multiple purposes agroforestry trees
in smallholder farming systems (Mafongoya et al., 1998). We
considered that the agroforestry trees would not have significant
competitive water demand with the maize crop as they have
matured with sufficiently deeper rooting system, and thus do
not rely on rainfall but are able to access deeper water reserves
(Ong et al., 2000; Lott et al., 2003, 2009; Smethurst et al.,
2017).

We used the 10 and 20% reduced solar radiation and
fertilization effect representation in APSIM as the effects can
be achieved by different species or tree mixes (Figure 1). Our
multi-purpose trees agroforestry emulation allows covering a
realistic representation of agroforestry systems in a crop model
for evaluating its role and contribution to a resilient agricultural
system in the face of climate change.

Statistical Analysis
We performed a sensitivity analysis to separate the yield effect
of photo active radiation (PAR) and fertilization of multi-
purpose trees agroforestry shading systems. This was is necessary
because fertilizer use in Ethiopia is comparatively low compared
that of other significant maize producing countries especially
in some zones. Some studies have shown that while majority
of the farmers use some fertilizers, the rates are far below
the recommended or the required rates (Tefera et al., 2020).
To separate the influence of added nitrogen (N) fertilization
on agroforestry, we did a Pearson correlation between the
yield effect of agroforestry under current and projected climate
scenarios and the average fertilizer applied in each zone. We
hypothesized that if the correlation is negative and significant,
then, it means that zones with current low levels of fertilizer
application will have higher response from fertilization effect
compared to those that are currently having relatively high levels
of fertilizer use. This correlation shows if the yield change is
caused by N supply since this depends on current levels of N
supply for the zone. If a positive yield effect of agroforestry
is mainly the effect of N, there are other ways to supply
N directly.

RESULTS

Distribution and Tends Observed Maize
Yield in Calibrated Zones in Ethiopia
The temporal (year-to-year) and spatial (zone-to-zone)
variability in maize grain yield anomalies from 2006 to 2016
is shown in Figure 6. The data shows that there is significant
year-to-year variation in maize yield, with magnitude of change
being different across zones. There is also potential for a higher
production as the highest mean yield (West Gojjam, 3.3 t/ha)
is twice as high as the lowest mean yield (North Wollo, 1.7
t/ha) for the period (Figure 2). Generally, most of the zones
are producing approximately the national average yield (2.8
t/ha), with West Gojjam having consistently high maize yield
(its minimum yield of 2.6 t/ha) is higher than the average of
other five zones). The similarity in maize yields between zones
and years is shown in Supplementary Material 2. These zones
with high inter-annual variability in maize yield (e.g., Kemashi,
Western Tigray, Illubabor, Hadiya and Guraghe) represent areas
of high volatility and production risk under current climatic
conditions (Figure 2).

Varietal Allocation and Fertilizer Split
The calibration process allocated the maize varieties to each
of the zones depending on the fit. The most allocated maize
variety was MH19 (6 (43%) zones) followed by BH660 that
was allocated to four (29%) zones. The regional maize variety
Katumani was allocated to only two zones (Jimma and Metekel)
while BH540 (Guraghe) and Melkasa-2 (North Gonder) had
one zone each. The allocation of the maize varieties showed
that the BH660 variety fit the yield trends in three zones
in the south central Ethiopian highlands while Katumani was
distributed in the zones in the drought prone areas (see
more in Supplementary Material 8). In terms of fertilizer split
calibration, the 40:60 and 50:50 splits were most common
calibrated split ratio for fertilizers in the zones.

Statistical Model Evaluation
Themodel performance varied among zones and the relationship
between the observed and simulated maize yield for all the zones
are shown in Table 3 with a overall d of 0.64, and RMSE of 0.53.
The RMSE values for all zones was acceptable with a slightly over-
estimated maize yield. This overall match between the long-term
observed and simulated maize yields is shown on the probability
of exceedance plot which confirm this slight overestimation of
the model for lower maize yields compared to yields above
3.5t/ha (Figure 3).

Table 3 shows the model performance for each zone. Zone-
wise model performance showed that four zones (Illubabor,
Sidama, West Gojjam, and Western Tigray) had excellent model
performance (d > 0.8 and R2 > 0.7). The least performance in
terms of accuracy was observed for simulation of maize yields in
South Gonder and Jimma (R2 < 0.3) (Table 3). Metekel had a low
overall fit (R2 = 0.26) but the results show that the model was
able to capture the yields trends as shown by the high index of
agreement (d = 0.70), indicating that there is a specific year that
the model was not able to simulate correctly while the other years
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FIGURE 1 | Emulation of agroforestry radiation interceptions and its effects on understory temperature of maize. The base year is 2006.

FIGURE 2 | Similarity analysis of observed maize yield anomalies in Ethiopia

between 2006 and 2016. The solid line represents the national mean yield.

were well-simulated (Table 3). There was therefore confidence to
apply the model for climate impact assessment and adaptation
evaluation as it was able to capture the current production levels
and trends (Table 3).

TABLE 3 | Model performance evaluation for each zone from the observed versus

simulated maize grain yield from 2006 to 2016 with APSIM.

Zone MAE RMSE PBIAS % NSE d r R2

Asosa 0.33 0.42 3.90 −15.01 0.70 0.65 0.42

Guraghe 0.41 0.53 −4.80 0.38 0.81 0.67 0.46

Hadiya 1.67 1.73 63.80 −5.00 0.46 0.78 0.61

Illubabor 0.39 0.47 −5.30 0.57 0.91 0.87 0.75

Jimma 0.98 1.13 11.70 −2.68 0.58 0.48 0.23

Kemashi 1.20 1.32 37.80 −1.30 0.61 0.76 0.58

Metekel 0.55 0.81 −6.00 −0.92 0.70 0.51 0.26

North Gonder 0.67 0.79 18.40 −2.98 0.58 0.58 0.33

North

Shewa(Amhara)

0.71 0.99 −14.00 −3.49 0.59 0.62 0.38

North.Wollo 1.50 1.80 73.10 −26.84 0.29 0.64 0.41

Sidama 0.49 0.67 −1.50 −0.48 0.82 0.87 0.76

South Gonder 0.97 1.21 32.90 −5.67 0.53 0.54 0.29

West Gojam 1.23 1.34 37.00 −3.39 0.60 0.85 0.72

Western.Tigray 0.65 0.76 24.40 −0.13 0.78 0.86 0.74

All districts 0.92 1.19 19.70 −1.59 0.64 0.53 0.28

Projected Maize Yields Under Climate
Change
The climate change-attributable yield changes are shown in
Figures 4, 5. To assess climate change impacts on maize yield,
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FIGURE 3 | Probability of exceedance for the observed versus simulated

maize yield in study zones in Ethiopia using the calibrated model for 2006 to

2016. Note that observed data had one missing data point.

the weather variables for each of the sample zones were replaced
by the projected climate data for the 2050s under RCP2.6
(Figure 4A) and RCP8.5 (Figure 4B). For all of the zones, we
project a mean maize yield increase of 7.5% under RCP2.6 and
3.1% under RCP8.5 in Ethiopia. This national level increase is
manly driven by simulated maize yield increases in six zones
under climate change which includeWest Gojjam, South Gonder,
Sidama, Jimma, Hadiya, and Asosa) (Figures 4, 5). Five zones
have projected maize yield losses with the highest changes
projected for Western Tigray (25.7% under RCP2.6 and 22.1%
for RCP8.5).

While higher yield losses are projected under RCP8.5 than
under RCP2.6 for most zones, positive effects of climate change
on maize yield were higher for RCP2.6 (Figure 5). The results
also show only small changes with no clear positive or negative
signal of maize yield changes in North Wollo, Kemashi, and
Illubabor zones. Overall, the result show that the impact of
climate change on maize yields in Ethiopia to depend on the
geography (zones in our case), the climate model (GCMs), and
the climate scenario (RCPs). For instance, the MIROC5 GCM
projectedmore severe impacts of climate change compared to the
other two models.

Effect of Agroforestry Systems on Maize
Yield Changes
We further evaluated the impact of our multi-purpose trees
agroforestry in APSIM on maize yield in the study zones under
current and projected climatic conditions. The results show
that implementing agroforestry did not increase maize yield in
most of the zones under current climate conditions. However,

when the contribution of the agroforestry was assessed under
projected climatic conditions, the results showed that the effect
was positive for eight zones, and resulting in small changes
(<5%) for a further three zones under both RCP2.6 and RCP8.5
(Figure 6). The adaptation benefits were especially higher under
RCP8.5 and when 20% shade was applied. Positive multi-purpose
trees agroforestry contribution was notable for zones that were
projected to have maize grain yield losses as those projected to
have yield gains had negative response of agroforestry shading.
10% agroforestry shade will reduce maize yield losses by 6.9%
(RCP2.6) and 4.2 % (RCP8.5) while 20% shade will reduce
maize yield losses by 11.5% (RCP2.6) and 11% (RCP8.5) for
projected loss zones. Overall, the results indicate that changing
the crop micro-climate alone may not provide yield increases
but can reduce the yield losses by ensuring that yields remain
stable in the face of changing climate conditions (Figure 7,
Supplementary Material 9).

The sensitivity test showed that there was no association
between current levels of fertilization and response to
agroforestry systems for both 10 and 20% shading and climate
scenarios (Table 4). This shows that the combined fertilization
and climate regulation effect of agroforestry are responsible
for climate change resilience, especially, under expected severe
climate conditions such as under RCP8.5.

DISCUSSION

We observed significant year-to-year variability in maize
production and also variation between the zones in Ethiopia in
terms of maize yield levels. These results also reveal that there
is a large risk of maize production to projected climate change
as yield levels are generally very low and also dependent on
annual weather patterns (Abate et al., 2015; Alemu andMengistu,
2019) reflecting the country’s heavy reliance on rain-fed maize
production (Lemi, 2005; Bewket, 2009; Alemayehu and Bewket,
2016) with low level of bio-technology adoption and low fertilizer
use (Abdulkadir et al., 2017). Both of these reduce productivity
gains from crop variety developments over the years (Abate et al.,
2015).

The key findings of this study are that the impacts of climate
change on maize production in Ethiopia are uneven across
geographic areas. The maize yield are projected to increase in
some areas but decrease in others. The findings at country level
that maize yield will increase under climate change corroborate
with previous studies (Thornton et al., 2009; Araya et al., 2015;
Muluneh et al., 2015; Alemayehu and Bewket, 2016; Thomas
et al., 2019). We showed these positive climate change effects on
maize yields are explained by strong increases in rainfall in parts
of the country, which will increase the agronomic conditions
for maize cultivation compared to current levels, especially in
the highlands. In contrast, some area specific case studies in the
country have projected decreases in maize yield of Ethiopia such
as in Bako (Mamo et al., 2011), Melkassa (Abera et al., 2018)
and the Central Rift Valley (Kassie et al., 2015). The previous
studies are all indicative of the impacts of climate change on
maize in yields in Ethiopia driven especially by limited water for
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FIGURE 4 | Projected maize yield changes in Ethiopia under climate change scenarios of (A) RCP2.6 and (B) RCP8.5.
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FIGURE 5 | Projected climate change impacts on maize yield in Ethiopia by

2050 under RCP2.6 and RCP8.5 climate change scenarios.

FIGURE 6 | Adaptation effect of simulated multi-purpose trees agroforestry

shading on maize yield changes in Ethiopia. The current is the yield change

while the scenario is the difference between the projected changes with

agroforestry and current condition with agroforestry.

the crops from higher evaporative demand with climate change
(Kassie et al., 2015) and also increased rainfall variability for
some areas particularly in the mehr season (Brown et al., 2017).
The projected impacts of climate change on maize yields in
Ethiopia pose risks in food availability in future for some regions,
with its related impacts on livelihoods, health and general well-
being. In this study, we provide spatially disaggregated impacts
of climate change which show some areas as increasing in yields

while others will become marginal, substantiating the findings
of studies at national that show increases in yields and those
local levels that show decreases in some areas. Therefore, the
study results are relevant for national-level adaptation planning
as adaptation measures such as cropping systems, irrigation,
improved varieties and extension services and farmers’ training
can be proactively prepared for zones expecting yield losses.
Concurrently, strengthening maize market value chains and
transfer mechanisms between gain and loss zones can be planned
to ensure that those zones projected to have increased yield will
benefit economically by trading surplus while lose impacted will
remain food secure by receiving from those projected to have
positive effects.Whether and how the households in the impacted
zones will afford to buy from the other gain zones requires further
consideration beyond the scope of this study.

The study further provides quantitative assessments on the
role ofmulti-purpose trees agroforestry to underpin the resilience
of agricultural systems under climate change in Ethiopia.
The results also show that agroforestry contribution to yield
increases is surpassed by its ability to stabilize yields under
limiting climatic conditions is significant in designing resilient
agricultural systems in Ethiopia. Significant yield stabilization
(as indicator for system resilience) of up to 30% is observed for
Sidama, Jimma, and South Gonder in which climate change-
related yield losses in the future have been projected. We,
therefore, conclude that radiation interception andmicroclimatic
temperature stabilization is more important that additional
nitrogen from agroforestry for climate resilience. This implies
that various agroforestry species which are planted or from
natural regeneration are able to provide crop yield benefits
under climate change, although leguminous nitrogen fixing trees
provide additional nutrient benefits. Interestingly, we find that
multi-purpose trees agroforestry implementation may reduce
maize yield under current climate change but increase under
projected climate conditions for some zones. This is explained
by the fact that reducing radiation in high yield zones will
obviously result in reduced maize biomass and yields especially
with higher levels of shading (Dilla et al., 2018). Given the
projected warming, the PAR reduction may maintain the crop
production potential at required levels as radiation is not a
limiting factor for tropical areas such as Ethiopia. It is therefore
imperative that the agroforestry systems be designed according to
not over-shade the crops and result in reduce yields as observed
in some areas where the measure had a negative effect.

The results of multi-purpose trees agroforestry on maize
yields show spatially variable effects in some zones, meaning
that recommendations for climate change adaptation should
be region sensitive. For example, our results indicate that 10%
shading agroforestry system will increase yield in North Wollo
by 39% under current climatic conditions but reduce it under
climate change by 30% under RCP8.5 while for North Shewa it
will decrease yields by 23% under current conditions and increase
maize yield potential under both scenarios. While these regional
disparities are directly explained by differences in altitude and
resultant radiation levels, we demonstrate that multi-purpose
trees agroforestry contribution under climate change may not
be positive for all areas in Ethiopia at the modeling density
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FIGURE 7 | Effect of climate change on maize yields and with climate change and multi-purpose trees agroforestry as adaptation measure on national level in Ethiopia.

TABLE 4 | Correlation between multi-purpose trees agroforestry response and

baseline average zone level fertilizer use for the sample zones in Ethiopia.

Shading Scenario r R2 p Significance

10% Current 0.47 0.22 0.088 ns

RCP26 0.13 0.02 0.653 ns

RCP85 −0.11 0.01 0.720 ns

20% Current 0.37 0.13 0.199 ns

RCP26 −0.04 0.00 0.889 ns

RCP85 −0.29 0.09 0.310 ns

of our study. Therefore, recommendations on effectiveness of
agroforestry systems in climate buffering should not all be based
on site-specific experimental studies as effects may be different
elsewhere. Therefore, agroforestry systems in terms of choice
and density of species should be carefully planned taking into
consideration local conditions and responses. Otherwise, they
may have maladaptive outcomes. Thus, the study findings adds
on recommendations outlined by Alemu and Mengistu (2019),
Ong and Kho (2015), and Nair and Toth (2016) to consider the
potential drawbacks of agroforestry systems in sustainable rural
development and food security. However, it is also important
to mention that multi-purpose trees agroforestry has an effect
on the entire agro-ecological system and that it has a high
potential to provide added economic co-benefits from the use
of the trees and tree products. Besides, agroforestry has non-
pecuniary positive environmental externalities which contribute
to the overall sustainable development of a given area. It is also
imperative to note that agroforestry is not a panacea to climate
change problems in maize systems but can be part of a basket
of options that include adjustment of sowing dates, conservation
agriculture, supplementary irrigation among others (Araya et al.,
2015; Kassie et al., 2015; Muluneh et al., 2017a).

We report satisfactorymodel agreement between the observed
and simulated maize yields for the sample zones, which is
comparable to those obtained from experimental sites (see, for
e.g., Smethurst et al., 2017). In addition, with a time series data
of 10 years, we consider our modeling approach to be very
skillful for assessing both climate change impacts and adaptation
measures. Due to lack of data, only grain yield was considered
for the model calibration and validation. Model calibration and
evaluation would benefit from more data on phenology and
biomass growth. The lack of calibration of model for simulating
accurately the phenology and biomass growth before grain yield
under current conditions could likely affects the growth response
and thus yield predictions under future climate conditions.While
our focus was not on crop physiological responses to multi-
purpose trees agroforestry and climate change, we believe that
warming and elevated CO2 conditions may result in more rapid
accumulation of biomass and enhanced water use that generally
lead to earlier onset of stress and likely reduced yield and WUE.
This implication becomes stronger when considering crop-tree
interactions under future climate and yet is not captured in this
modeling. In addition, our agroforestry emulation and impacts
assessment is based on the assumption that if the model is
correctly parameterized and able to reproduce trends and ranges
of maize yields, and yet its skill remains uncertain when non-
calibration parameters are changed. This is largely true but the
model performance was not consistent among themodeled zones
which introduces levels of uncertainty that need to be considered
in interpretation of the results.

CONCLUSIONS

We find that it is possible to simulate maize yields at zone level
in Ethiopia with sufficient confidence for climate change impact
assessment and adaptation evaluation. Three main conclusions

Frontiers in Agronomy | www.frontiersin.org 11 February 2021 | Volume 3 | Article 609536

https://www.frontiersin.org/journals/agronomy
https://www.frontiersin.org
https://www.frontiersin.org/journals/agronomy#articles


Chemura et al. Agroforestry for Maize Yield Buffering

can be drawn from the study results. First, the impacts of
climate change are dependent on the zone (some losses and
gains) with a projected national maize yield increase by 2050s.
Second, multi-purpose trees agroforestry has huge potential in
building resilience inmaize systems threatened by climate change
although its benefits are not even across the country. Third,
a multi-purpose trees agroforestry emulation protocol such as
the one presented in this study, is important in providing
quantitative evaluation of the contribution to climate change
resilience of agroforestry in agricultural systems. Therefore,
the appraisal of agroforestry as adaptation measure to climate
change, shall take into account region-specific environmental
conditions and the potential of other adaptation measures.
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