
REVIEW
published: 08 December 2021

doi: 10.3389/fagro.2021.648694

Frontiers in Agronomy | www.frontiersin.org 1 December 2021 | Volume 3 | Article 648694

Edited by:

Mohammad Bagher

Hassanpouraghdam,

University of Maragheh, Iran

Reviewed by:

Andrzej Bajguz,

University of Białystok, Poland

Shah Saud,

Independent Researcher, Harbin,

China

Faheem Ahmed Khan,

Huazhong Agricultural University,

China

*Correspondence:

Ayman EL Sabagh

ayman.elsabagh@agr.kfs.edu.eg

Specialty section:

This article was submitted to

Plant-Soil Interactions,

a section of the journal

Frontiers in Agronomy

Received: 01 January 2021

Accepted: 14 September 2021

Published: 08 December 2021

Citation:

Sabagh AE, Mbarki S, Hossain A,

Iqbal MA, Islam MS, Raza A, Llanes A,

Reginato M, Rahman MA,

Mahboob W, Singhal RK, Kumari A,

Rajendran K, Wasaya A, Javed T,

Shabbir R, Rahim J, Barutçular C,

Habib Ur Rahman M, Raza MA,

Ratnasekera D, Konuskan Ö l,

Hossain MA, Meena VS, Ahmed S,

Ahmad Z, Mubeen M, Singh K,

Skalicky M, Brestic M, Sytar O,

Karademir E, Karademir C, Erman M

and Farooq M (2021) Potential Role of

Plant Growth Regulators in

Administering Crucial Processes

Against Abiotic Stresses.

Front. Agron. 3:648694.

doi: 10.3389/fagro.2021.648694

Potential Role of Plant Growth
Regulators in Administering Crucial
Processes Against Abiotic Stresses

Ayman EL Sabagh 1,2*, Sonia Mbarki 3, Akbar Hossain 4, Muhammad Aamir Iqbal 5,
Mohammad Sohidul Islam 6, Ali Raza 7, Analía Llanes 8, Mariana Reginato 8,
Md Atikur Rahman 9, Wajid Mahboob 10, Rajesh Kumar Singhal 11, Arpna Kumari 12,
Karthika Rajendran 13, Allah Wasaya 14, Talha Javed 15, Rubab Shabbir 15, Junaid Rahim 16,
Celaleddin Barutçular 17, Muhammad Habib Ur Rahman 18, Muhammad Ali Raza 19,
Disna Ratnasekera 20, Ömer Konuskan l 21, Mohammad Anwar Hossain 22,
Vijay Singh Meena 23, Sharif Ahmed 24, Zahoor Ahmad 25, Muhammad Mubeen 26,
Kulvir Singh 27, Milan Skalicky 28, Marian Brestic 28,29, Oksana Sytar 29, Emine Karademir 2,
Cetin Karademir 2, Murat Erman 2 and Muhammad Farooq 30

1Department of Agronomy, Faculty of Agriculture, Kafrelsheikh University, Kafr El-Shaikh, Egypt, 2Department of Field Crops,

Faculty of Agriculture, Siirt University, Siirt, Turkey, 3 Laboratory of Valorisation of Unconventional Waters, National Institute of

Research in Rural Engineering, Water and Forests (INRGREF), Ariana, Tunisia, 4Department of Agronomy, Bangladesh Wheat

and Maize Research Institute, Dinajpur, Bangladesh, 5Department of Agronomy, Faculty of Agriculture, University of Poonch

Rawalakot, Rawalakot, Pakistan, 6Department of Agronomy, Hajee Mohammad Danesh and Technology University, Dinajpur,

Bangladesh, 7 Fujian Provincial Key Laboratory of Crop Molecular and Cell Biology, Oil Crops Research Institute, Center of

Legume Crop Genetics and Systems Biology/College of Agriculture, Fujian Agriculture and Forestry University (FAFU),

Fuzhou, China, 8 Plant Physiology Laboratory, Universidad Nacional de Río Cuarto (UNRC)-Instituto Nacional de

Investigaciones Agrobiotecnológicas (INIAB), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Río

Cuarto, Argentina, 9Grassland and Forage Division National Institute of Animal Science Cheonan, Rural Development

Administration, Cheonan, South Korea, 10 Plant Physiology Division, Nuclear Institute of Agriculture, Tando Jam, Pakistan,
11 Indian Council of Agricultural Research-Indian Grassland and Fodder Research Institute, Jhansi, India, 12Department of

Botanical and Environmental Sciences, Guru Nanak Dev University, Amritsar, India, 13 School of Agricultural Innovations and

Advanced Learning, Vellore Institute of Technology (VIT), Vellore, India, 14College of Agriculture, Bahauddin Zakariya

University, Bahadur Sub-campus, Layyah, Pakistan, 15College of Agriculture, Fujian Agriculture and Forestry University,

Fuzhou, China, 16Department of Entomology, Faculty of Agriculture, University of Poonch Rawalakot (AJK), Rawalakot,

Pakistan, 17Department of Field Crops, Faculty of Agriculture, University of Çukurova, Adana, Turkey, 18 Institute of Crop

Science and Resource Conservation (INRES), University Bonn, Bonn, Germany, 19College of Agronomy, Sichuan Agricultural

University, Chengdu, China, 20Department of Agricultural Biology, Faculty of Agriculture, University of Ruhuna, Matara, Sri

Lanka, 21Department of Field Crops, Faculty of Agriculture, Mustafa Kemal University, Antakya, Turkey, 22Department of

Genetics and Plant Breeding, Bangladesh Agricultural University, Mymensingh, Bangladesh, 23 Indian Council of Agricultural

Research-Vivekananda Parvatiya Krishi Anusandhan Sansthan (VPKAS), Almora, India, 24 International Rice Research

Institute, Bangladesh Office, Dhaka, Bangladesh, 25University of Central Punjab, Bahawalpur, Pakistan, 26Department of

Environmental Sciences, Commission on Science and Technology for Sustainable Development in the South (COMSATS)

University Islamabad, Islamabad, Pakistan, 27 Principal Scientist (Agronomy), Punjab Agricultural University, Regional

Research Station, Faridkot, India, 28Department of Botany and Plant Physiology, Faculty of Agrobiology, Food, and Natural

Resources, Czech University of Life Sciences Prague, Prague, Czechia, 29Department of Plant Physiology, Slovak University

of Agriculture, Nitra, Slovakia, 30Department of Plant Sciences, College of Agricultural and Marine Sciences Sultan Qaboos

University, Muscat, Oman

Plant growth regulators are naturally biosynthesized chemicals in plants that influence

physiological processes. Their synthetic analogous trigger numerous biochemical and

physiological processes involved in the growth and development of plants. Nowadays,

due to changing climatic scenario, numerous biotic and abiotic stresses hamper seed

germination, seedling growth, and plant development leading to a decline in biological

and economic yields. However, plant growth regulators (PGRs) can potentially play a

fundamental role in regulating plant responses to various abiotic stresses and hence,
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contribute to plant adaptation under adverse environments. The major effects of abiotic

stresses are growth and yield disturbance, and both these effects are directly overseen

by the PGRs. Different types of PGRs such as abscisic acid (ABA), salicylic acid (SA),

ethylene (ET), and jasmonates (JAs) are connected to boosting the response of plants to

multiple stresses. In contrast, PGRs including cytokinins (CKs), gibberellins (GAs), auxin,

and relatively novel PGRs such as strigolactones (SLs), and brassinosteroids (BRs) are

involved in plant growth and development under normal and stressful environmental

conditions. Besides, polyamines and nitric oxide (NO), although not considered as

phytohormones, have been included in the current review due to their involvement in

the regulation of several plant processes and stress responses. These PGRs are crucial

for regulating stress adaptation through the modulates physiological, biochemical, and

molecular processes and activation of the defense system, upregulating of transcript

levels, transcription factors, metabolism genes, and stress proteins at cellular levels.

The current review presents an acumen of the recent progress made on different

PGRs to improve plant tolerance to abiotic stress such as heat, drought, salinity, and

flood. Moreover, it highlights the research gaps on underlying mechanisms of PGRs

biosynthesis under stressed conditions and their potential roles in imparting tolerance

against adverse effects of suboptimal growth conditions.

Keywords: abiotic stress, climate change, crosstalk, nitric oxide, polyamines, stress tolerance

INTRODUCTION

Abiotic stresses (heat, drought, salinity, waterlogging, heavy
metals toxicity, soil erosion, etc.) adversely affect the growth,
development, and yield of plants resulting in higher economic
losses at the expense of global food security (Siddiqui et al., 2019;
EL Sabagh et al., 2020b; Hossain et al., 2020). The combined
effects of different abiotic stresses on the biological and economic
yield of numerous crops are greater than individual stress (EL
Sabagh et al., 2019b; Hoque et al., 2020a; Raza et al., 2020;
Javeed et al., 2021). Plant growth regulators (PGRs) are naturally
biosynthesized by plants which modify growth (increase in
branching and rebranching, shoot and root growth, alter or
trigger fruit maturing, reproduction etc.) of crop plants and play
a significant role in mitigating abiotic stresses (Verma et al., 2016;
Takahashi et al., 2019). PGRs also have an important role during
stress conditions such as being thermoprotectants, reactive
oxygen scavengers, improving photosynthesis, accumulation of
stress proteins, and many other regulatory functions related to
metabolisms (Akram et al., 2017; Ma et al., 2017; Sharma et al.,
2020). The PGRs interrelate with complex signaling systems
to equilibrate the responses to evolve eco-friendly strains and
thereby, overcome damages caused by stress environmental
conditions (Davies, 2013; Suzuki, 2016; Ku et al., 2018; Iqbal et al.,
2019). Plants have developed complex mechanisms to detect
external signals and can trigger an optimal response against
stress conditions under the support of PGRs that mainly control
the defensive responses of plants by synergistic and antagonistic
activities (called signaling crosstalk) (Adesemoye et al., 2008;
Tuteja and Sopory, 2008; Berens et al., 2019; Raza et al., 2019a;
EL Sabagh et al., 2021a,b). In this context, PGRs crosstalk

with the various inorganic and organic compounds under stress
conditions such as nitrates, H2O2, H2S, reactive oxygen species,
and NO to balance plant growth and development under
unfavorable situations (Kolbert et al., 2019; Vega et al., 2019;
Nazir et al., 2020; Xuan et al., 2020). During the stress perception
process, there are variations in perceiving various hormonal
signals from the early phase to the ongoing phase of stresses,
allowing plants to advance to a well-organized growth. There are
various ligands and receptors, which help in the perception of
hormones. For instance, salicylic acid perceived by NPR proteins,
strigolactone perceived and activated by DWARF 14 hydrolase
receptor, ubiquitin ligase, leucine-rich receptor repeat kinase, and
many other help in the recognition, perception, and signaling of
PGRs (LRR-RK) (Chakraborty et al., 2019; Seto et al., 2019; Tal
et al., 2020; WangW. et al., 2020). To consider the above facts, in
this review study, the authors discuss PGR-induced physiological
adaptations in response to stressful environments, including the
interactive effects and cross-talks of different PGRs on plant
physiological and biochemical mechanisms under combined
abiotic stresses and the potential of exogenous applications as
remedies to overcome environmental stresses (Figure 1).

Under changing climatic conditions, numerous biotic and
abiotic stresses hamper seed germination, seedling growth, and
plant development leading to a severe decline in the biological
and economical yield of crops (Iqbal and Iqbal, 2015; Abadi and
Sepehri, 2016; EL Sabagh et al., 2021a,b; Hong et al., 2021; Shabbir
et al., 2021). The biosynthesis of PGRs including gibberellins
(GAs), auxin, cytokinin (CT) abscisic acid (ABA), ethylene (ET),
jasmonic acid (JA), brassinosteroid (BR), nitric oxide (NO),
salicylic acid (SA), and strigolactone (SL) constitutes a potent
strategy for plants to respond to stress conditions (Kreps et al.,
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FIGURE 1 | Abiotics tree conditions and their effect on the growth and development of plants.

2002; Seki et al., 2002; Raza et al., 2019b; Ahmad et al., 2021).
Typically, hormones are interdependent in action by synergistic
or antagonistic cross-talk, thereby modulating each of their
biosynthesis or responses in a complex way (Aerts et al., 2021).
The current review aims to synthesize recent advancements
about the roles of PGRs in boosting the defense systems of
plants against abiotic stresses (Basu et al., 2021). Also, gaps in
knowledge of studied PGR topics have been identified to propose
future research perspectives. Furthermore, some perspective
compounds especially polyamines have also been objectively
discussed due to their similarity of actions with PGRs against
different stresses (Chen D. et al., 2019). The article also provides
an overview of the recent advances in PGRs in boosting plants’
tolerance to various abiotic stresses (Figure 2).

PHYTOHORMONES MEDIATED ABIOTIC
STRESS TOLERANCE IN PLANTS

Auxin Induced Physiological and
Biochemical Mechanisms for Stress
Tolerance
Auxins are vital due to having multiple roles in plant
growth and development by influencing various physiological
processes including cell elongation, involved in phototropisms
and gravitropism, phyllotactic patterning, apical dominance
maintenance, and control of root development (Benkova et al.,
2003; Blancaflor and Masson, 2003; Blilou et al., 2005; Teale
et al., 2006; Holland et al., 2009; Enders and Strader, 2015;
Casanova-Sáez and Voß, 2019). Auxins can interact with other
hormones on various parameters of the growth and development
of cells (Mao et al., 2020; Xu et al., 2020). One example of it is
the regulation and transcription of several genes. Many studies

have been reported on the association of metabolism, transport,
and signaling of auxins in the growth responses of plants
under stressful conditions (Shen et al., 2010; Zhang et al., 2012;
Kazan, 2013; Remy et al., 2013; Cao et al., 2019; Casanova-Sáez
et al., 2021). Thus, more knowledge about the auxin-mediated
signaling in the plant stress adaptation responses will help to
design strategies for enlightening stress resistance in several
crop plants. Furthermore, auxin interacts with stress-responsive
signaling components, like calcium (Ca2+) and reactive oxygen
species (ROS), which are accumulated in plants during exposure
to biotic and abiotic stress conditions (Tognetti et al., 2017).
Different stressed conditions could affect the development of
stress-induced morphogenic response (SIMR) during different
stress tolerance mechanisms of plants (Potters et al., 2007). Auxin
biosynthesis in different concentrations under varying abiotic
stresses need further investigations in order to explore different
factors which tend to trigger auxin production (Figure 3).

Auxin Mediated Physiological Changes Under

Nutrient Deficiency
Auxin signaling and transport are involved in the stimulation
of growth and developmental responses of roots to improve
accessibility to nutrients in the soil solution. Primary nutrients
like nitrogen, phosphorus, and potassium supplement the crucial
role of auxins in boosting the development of lateral roots.
Nitrate accumulation and sensing procedures are reported to be
associated with alterations in the auxin transport causing rapid
changes in the architecture of roots (Krouk et al., 2010; Gojon
et al., 2011; Bouguyon et al., 2012; Zhang et al., 2020). Nitrate
Transporter1-1 (NRT1-1) protein has a high-activity nitrate
influx carrier, which allows the absorption of nitrogen in the form
of nitrate (NO−

3 ) from the soil along with acting as a nitrate
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FIGURE 2 | Overview of abiotic stress and effects on plant growth and development.

feeler and integrate N signal toward root growth (Lay-Pruitt and
Takahashi, 2020). NRT1-1 is associated with alterations in lateral
root development because NRT1-1 induces the basipetal auxin
transport, thereby, inhibiting the auxin accumulation in lateral
root and their growth under low NO−

3 concentrations in the soil
solutions. On the other hand, at elevated NO−

3 stages, NRT1-1
regulates the transport of auxins inducing their accumulation in
lateral root and promoting the growth of this organ (Krouk et al.,
2010; Gojon et al., 2011; Bouguyon et al., 2012, 2016).

Similarly, TINY ROOT HAIR 1 (TRH1) gene isolated in
roots of Arabidopsis plants encoding a KT/KUP/HAK family
protein was associated with controlling potassium (K+) and
auxin passage (Vicente-Agullo et al., 2004; Sustr et al., 2019).
Impairment of trh1 in Arabidopsis plants caused harmful effects
on root hair development, alterations in the gravitropism
responses, and a lower capacity to convey K+ (Rigas et al.,
2001; Sun et al., 2020). Auxin-linked low phosphate mediated
lateral root development was controlled by auxin receptor
genes/proteins such as SIZ1, AFB2, AFB3, and AXR3/IAA7
(Pérez-Torres et al., 2008; Kazan, 2013). Further in-depth studies
need to be conducted to explore the gene receptors which
modulate its synthesis under specific nutrients deficiency.

Other metal ions like sulfur (S), copper (Cu2+), cadmium
(Cd), aluminum (Al3+), boron (B), and iron (Fe) tend to alter
the expansion and growth of lateral roots by modifying the root
architecture of plants by hampering auxin biosynthesis, signaling,

and/or passage pathways (Dan et al., 2007; Lequeux et al., 2010;
Mattiello et al., 2010; Martín-Rejano et al., 2011; Peto et al.,
2011; Aquea et al., 2012; Giehl et al., 2012; Hu et al., 2013; Yuan
et al., 2013). Thus, it has been widely inferred that auxins tend
to modify and alter root architecture especially when plants are
exposed to nutrient deficiency.

Auxin Mediated Physiological Changes Under

Drought Stress
Modifications in root architecture are vital in coping with water
scarcity and soil salinity. Auxins regulate hydrotropism responses
through which plants roots sense and subsequently, respond to
soil moisture (Kaneyasu et al., 2007). The transition from cell
division to cell differentiation in roots of Arabidopsis thaliana
plants was auxin minima dependent (Di Mambro et al., 2017).
Auxins, in conjunction with ABA, promote root hair growth
due to the two antagonistic phenomena called gravitropism
and hydrotropism which occur concurrently in the soil. The
contribution of auxin in hydrotropism is less than gravitropism
(Cassab et al., 2013). However, the ultimate direction of root
extension in the direction of moist areas of the soil is primarily
controlled by ABA signaling, which can be overwhelmed by
the auxins mediated gravitropism (Taniguchi et al., 2010). Xu
Q. T. et al. (2013) inferred that the ABA regulates primary
root and root hair growth by mediating the auxin passage in
both Arabidopsis thaliana and Oryza sativa plants. Furthermore,
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FIGURE 3 | Role of selected PGRs on plant growth and development.

it causes an increase in the proton secretion process by the
accomplishment of plasma membrane-bounded H-ATPases and
maintains root elongation.

More studies are required to separate the complex
connections among auxin and other PGRs on modifications
in root architecture, which can be modified in plants under
stress conditions (Indu Lal et al., 2021). A hydrolase called
IAA-Ala Resistant-3 (IAR3) in Arabidopsis plants modulated
root architecture throughout osmotic conditions (Kinoshita
et al., 2012) and has a capability of producing free auxin by
hydrolyzing auxin indole acetic acid (IAA) forms in roots under
drought (Rampey et al., 2004). Thus, IAR3 is proposed to be a
bioactivator of auxin generation and thereby stimulating lateral
root development under water deficit soils to survive in such
extreme environments (Kinoshita et al., 2012).

Genome-wide expression analyses of plants confronting
water deficit conditions often indicate distinguishingly expressed
auxin-connected genes. For example, MIZU-KUSSEI (MIZ1)
protein in Arabidopsis regulates auxin levels and increases
primary and lateral root growth under water stress conditions
(Miyazawa et al., 2012). The auxin-responsive genes encoding
several associates of the ARF transcription factor (TF) family
were also differentially expressed in Glycine max roots of plants

under water deficit environments. These genes could act as
potential candidates for the breeding of water deficit tolerant
soybean cultivars (Ha et al., 2013).

In a study, Arabidopsis activation-tagged yuc7-1D mutant
showed enhanced expression of the stress-correlated genes
RD29A and COR15A, which augmented the drought resistance
of plants (Lee et al., 2012). Similarly, the Arabidopsis YUCCA
gene in the drought tolerance responses regulate the auxin
invention when it was articulated in potato plants (Kim
et al., 2013). The increased expression of YUCCA protein,
CONSTITUTIVELYWILTED1 (Woo et al., 2007), and supposed
auxin efflux transporter OsPIN3t are complicated in the
maintenance of water homeostasis in rice plants (Zhang
et al., 2012). Recently, the Arabidopsis SMALL AUXIN UP
RNA 32 (SAURs) protein regulates the drought adaptation
through modulating ABA transduction (He et al., 2021).
Likewise, INDITTO2 transposons convey auxin mediated
DEEPER ROOTING 1 (DRO1) transcription factor for drought
avoidance in rice (Zhao et al., 2021). However, auxin synthesis
with respect to crop growth stage under varying extent and
duration of drought stress must be studied to increase our
understanding regarding the ameliorative effect of auxin in
drought-stressed plants.
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Auxin Mediated Physiological Changes Under Salt

Stress
Salinity drastically affects plants by exerting physiological
drought resulting from high osmosis in soil solution and
causing ion imbalance due to high solubility of certain minerals
hampering root development (Islam et al., 2011; EL Sabagh
et al., 2019a, 2020a; Liu et al., 2020). Mild saline conditions
caused a decrease in the elongation of lateral roots and increased
lateral root sizes, while high salt conditions inhibited the root
development (Zolla et al., 2010). The salt stress could be
regulated by the synergism of many signaling molecules such as
phytohormones with auxin as a key mediator (Ribba et al., 2020).
The salt responsive auxin signaling genes, AXR1, AXR4, IAR4,
and TIR1 enhanced lateral root development in plants under
salt environments. In contrast, the lateral root development was
reduced in the mutants axr1, axr4, and tir1, iar4 and it was
impaired in the auxin invasionmutant aux1 (Wang Y. et al., 2009;
Zolla et al., 2010; Fu et al., 2019). The circulation of auxin efflux
transporters (PIN2) regulates the gravitropism responses through
the changes in basipetal auxin transport, which could be involved
in growth responses associated with decreasing the consequences
of salinity in plants (Vanneste and Friml, 2009; Galvan-Ampudia
and Testerink, 2011). The salt overly sensitive (SOS) genes, such
as SOS1-3, are obligatory for salt resistance responses in A.
thaliana (Ji et al., 2013). These genes are associated with the
auxin-mediated lateral root formation in plants under salinity
(Yang et al., 2008). Plant roots grown in highly acidic soils
exhibit vast transcriptional modifications in the expression of
some auxin-related genes, implying auxin-mediated alterations
on root architecture (Lager et al., 2010). The PIN2 maintained
buffering of extreme soils was observed in roots of plants
growing in alkaline conditions where auxin transport activity
is mediated by PIN2 followed by auxin-mediated activation of
plasma membrane H+-ATPase and photon emission in the root
tips (Xu Q. T. et al., 2013). Auxin biosynthesis and transportation
in response to specific salt stress should be further studied to
understand the underlying mechanism of auxin modulation.

Auxin Mediated Physiological Changes Under

Flooding or Waterlogging
Different abiotic stresses such as flooding, submergence,
or waterlogging cause either hypoxia or anoxia depending
on plant species. These responses include an increase in
aerenchyma development, adventitious root development, and
shoot development along with epinastic or hyponastic growth
phenomena, among others (Jackson, 2002; Visser and Voesenek,
2004; Voesenek et al., 2006; Bailey-Serres and Voesenek,
2010; Lin et al., 2017). Ethylene trap by water would
break new ground alarming signals to the plant, indicating
waterlogging. Flooding or waterlogging-dependent adventitious
root production requires both increased auxin accumulation
and altered auxin transport, together with an enhanced ethylene
invention (Vidoz et al., 2010). Further, it was found that
ethylene induces the auxin transport through auxin flux to
the flooded portions of the tomato plants resulting in a
novel root organization, which can substitute the root system
injured during their submergence. The auxin transport is

necessary for adventitious root development in tobacco and rice
plants (McDonald and Visser, 2003; Xu et al., 2005; Yamauchi
et al., 2019). Overall, there is complex cross-talk between
stress hormones ET and auxin the modulation of growth or
development of lateral and adventitious roots under waterlogged
plants (Muday et al., 2012; Hu et al., 2018).

Auxin Mediated Physiological Changes Under

Oxidative Stress
The oxidative stress under abiotic stress alters redox status in
cells which gives rise to the biosynthesis of ROS (Fahad et al.,
2019). The controlling mechanisms of ROS biosynthesis redox
homeostasis involve key regulators like thioredoxin (TRX) and
glutathione (GSH) (Hasanuzzaman et al., 2020). These regulators
participate in the growth and developmental processes through
the modulation of auxin signaling (Bashandy et al., 2010).
Thus, lack of thioredoxin and glutaredoxin in triple mutants
of Arabidopsis (two genes encoding NTRA and NTRB) cad2
showed perturbed auxin passage (Bashandy et al., 2010). Terrile
et al. (2012) demonstrated that nitric oxide (NO) also played
a part in the optimum process of auxin signaling by inducing
the breakdown of AUX/IAAs during lateral root formation. Root
growth of rice in Cd-stressed soils has been reported to be
regulated by the interaction of H2O2 and auxin signaling where
enhanced H2O2 regulates the gene expression of auxin signaling,
showing strong links between auxin signaling pathways and ROS
synthesis under stressful conditions (Zhao et al., 2012; Zwiewka
et al., 2019).

The rapid auxin-reliant hindrance of root formation and
early stage of root gravitropism responses are regulated by the
TIR1/AFBauxin co-receptors. One of which, called AFB1, has an
essential role in these responses (Prigge et al., 2020). The loss of
function mutations of TIR1/AFB2 seedlings showed reduced salt
sensitivity. In contrast, in seedlings experiencing oxidative stress,
double receptor mutants of tir1 afb2 and tir1 afb3 showed an
augmented percentage of primary root formation and cell death
induced by H2O2. Together, the antioxidant defense enzymes
like catalase (CAT), ascorbate peroxidase (APX), and ROS-
degrading enzymes such as glutathione S-transferase 1 (GST1),
cytosolicAPX1, and a zinc finger TF (ZAT12) were in tir1 abf2
plants under saline conditions. These results suggest that the
decrease of auxin signaling pathways may be utilized by plants
to improve tolerance against oxidative stress (Iglesias et al., 2010;
Pasternak et al., 2020).

Auxin signaling interacts with shade avoidance mechanisms
and communicates with different plants in the rhizosphere (Faget
et al., 2013; Falik et al., 2013) as a sensor for detecting other roots
in close plants (Fang et al., 2013), regulating the communication
between the roots of the plant itself, or with neighboring plants
and also in the root-shoot communication (Kabouw et al., 2012).
The complex connections among auxin and other PGRs play
essential roles in stress-associated developmental modifications
in auxin biosynthesis, signaling, or carriage mutant plants
(Bielach et al., 2012; Muday et al., 2012; Rahman, 2013; Shani
et al., 2013; Sereflioglu et al., 2017). However, a comprehensive
understanding of these interactions has not yet been reported.
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Gibberellin Induced Physiological and
Biochemical Mechanisms of Stress
Tolerance
Gibberellins play key roles in plant growth and development
(Figure 3) along with their physiological (cell division, seed
dormancy, germinations, etc.) and biochemical processes
(Olszewski et al., 2002; Hedden and Thomas, 2012; Tanimoto,
2012; Vishal and Kumar, 2018; Islam et al., 2021). The inhibition
of the biosynthesis of GAs is the primary mode of action
(Rademacher, 2000), followed by retarded growth and dwarf
growth habit in plants under stress environments. Suppression
of GA signaling through alternative splicing is the common
response to abiotic stresses, which is accompanied with up-
regulation and fine tuning of GA2ox, CsGA2ox8 (encoding
GA-inactivating enzymes), and DELLA (negative controller of
GA signaling) (Achard et al., 2006, 2008a,b; Lo et al., 2008; Rieu
et al., 2008; Liu et al., 2021). Likewise, genome wide expression
analysis of GA2ox, GA3ox, and GA20ox are related to oxidase
gene under multiple stresses. However, the mechanism of GA
signaling in stress tolerance is less explored compared to the
role of GA as a growth-promoting controller (Colebrook et al.,
2014).

The GA2-oxidases (GA2ox), DELLA domain proteins, GAI
(GA insensitive), and RGL1 (repressor of ga1-3 like), are vital
in GA regulation and signaling in stress environments. GA2oxs
inhibit bioactive GAs leading to dwarfism (Lo et al., 2008;
Rieu et al., 2008). Activation of DELLA domain proteins is
essential for surviving in stress environments (Achard et al.,
2006, 2008a,b; Zhou and Underhill, 2017) as it causes inhibition
of cell proliferation and expansion (Olszewski et al., 2002;
Claeys et al., 2012). The role of GA in various physiological
processes governing growth under various abiotic stresses has
been documented. However, a detailed underlying mechanism
of GA signaling in each response is still needed to be further
explored (Colebrook et al., 2014).

Gibberellin Mediated Physiological Changes Under

Flooding or Waterlogging
The GA-mediated signaling under submergence could be best
explained using rice genotypes modified to tolerate flooding
stress (Bailey-Serres and Voesenek, 2010). The most common
strategy to escape long-term flooding is rapid inter node
elongation, allowing the shoots to out-grow the flood waters. The
internode development is mediated by ethylene due to activation
of the ERF domain proteins named SNORKEL1 and SNORKEL2
(Hattori et al., 2009), which leads to the accumulation of GA
in submerged rice plants. The expression of gene submergence
tolerance-1 (Sub1A) (Xu et al., 2006) provides an escape to
short-term deep flooding through inhibiting shoot elongation
and relates to improved levels of DELLA protein SLR1 and
the negative controller of GA signaling SLRL1 in rice (Bailey-
Serres and Voesenek, 2010; Claeys et al., 2014). The Sub1A
gene enhances leaf viability and promotes leaf growth under
submergence (Fukao et al., 2006) and similar related escape
responses such as hyponasty. Particularly, due to variance
growth of the petiole, leaf blade formation was observed in

Rumex palustris at submergence (Polko et al., 2011). Flooding
escape is controlled by two ERFs, namely, SNORKEL1 (SK1)
and SNORKEL2 (SK2) which activate internode development
through GA during flooding stress (Hattori et al., 2009).

Gibberellin Mediated Physiological Changes Under

Osmotic and Salt Stress
Gibberellin mediates osmotic adjustments in response to salt
stress (Skirycz et al., 2011; Claeys et al., 2012). GA, together
with ET and ABA, regulates cell proliferation and expansion
in Arabidopsis leaves during abiotic stresses (Skirycz et al.,
2010). In addition, ET and GA coordinately regulate the cell
cycle and cell proliferation of A. thaliana exposed to salt stress
(Skirycz et al., 2011; Claeys et al., 2012). The ethylene and GA-
arbitrated responses are related to ERF as a dominant activator
of both inhibition of leaf growth and initiation of stress tolerance
genes (Claeys et al., 2012) where DELLA acts as a conjunction
of numerous hormone signaling pathways in stress situations
(Achard et al., 2006; Fukao and Bailey-Serres, 2008).

Gibberellin Mediated Physiological Changes Under

Drought Stress
Drought stress lowers water availability and nutrients
accessibility to the roots which affects crop growth and yield.
Drought reduces GA accumulation and impaired membrane
stability resulting in cell damage in maize leaves (Wang et al.,
2008). Drought stress also reduces GA signaling, leaf area, and
transpiration rate, which enhances water use efficiency in plants.
The decreased GA2ox expression in the roots (Krugman et al.,
2011) and lateral roots elongation is linked with a cross-talk
among GA and IAA (Gou et al., 2010; Chen Z. et al., 2019) in
the roots in response to drought. Root-derived signals maintain
root growth and reallocate photo-assimilates to adjust the
growth of shoot and root. ABA-mediated root signals that cause
stomatal closure seem to be the result of crosstalk of ethylene
and GA (Coelho Filho et al., 2013). However, root-derived
signals do not regulate leaf growth and leaf metabolism. As
such, regulation is mediated by leaf/shoot GA (Kaneko et al.,
2003). In Arabidopsis, drought stress increased the expression
of DELLA and XERICO genes, which cause growth inhibition
but increase the survival of plants (Achard et al., 2006; Zentella
et al., 2007). The impaired GA activity and suppressive signaling
facilitate shoot growth under drought stress. Water deficit
conditions and short-day photoperiod prompted modulation of
a group of GA2ox and DELLA protein-encoding genes which are
downstream of diverse signal transduction ways (Zawaski and
Busov, 2014).

Cytokine-Induced Physiological and
Biochemical Mechanisms of Stress
Tolerance
Cytokinins play key roles in regulating plant cell discrepancy,
delaying leaf senescence (Sakakibara et al., 2006), and other
main developmental progressions such as governing integrate
compounds apportioning (Ronzhina and Mokronosov, 1994),
sink asset (Kuiper, 1993), and source/sink associations. The
ISOPENTENYL TRANSFERASE (IPT) encoding enzyme
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catalyzes cytokinin (CK) synthesis, increased the sink capacity,
and militarizes nutrients to the cells or tissues where they
are utilized. Altered sink/source associations were detected in
CK-lacking tobacco shoots and roots (Werner et al., 2008). The
stress-induced CK synthesis improved N and C assimilation
associated with enhanced sink in the transgenic plants during
water stress, which characterized physiological responses and
metabolic pathways connected with the CK persuaded stress
resistance in PSARK ::IPT transgenic rice plants (Reguera et al.,
2013). The CK-regulated N uptake controls the N levels in
the plant (Kiba et al., 2011) where C-N interaction regulates
CK biosynthesis in response to soil N availability (Sakakibara
et al., 2006). Transgenic PSARK ::IPT rice plants showed CK
mediated higher N assimilation in a C-N-dependent manner
(Reguera et al., 2013). It was assumed that a decrease in root
tip turgor can disturb the synthesis and passage of CKs in
the root tip and simultaneously abridged their passage along
with the accumulation of nutrients that are available in the
soil under drought stress (Davies et al., 1986; Pavlu et al.,
2018).

Cytokinin Mediated Physiological Changes Under

Drought Stress
High CK concentrations (Figure 3) in plants tend to delay leaf
senescence, increase proline levels, and survival of plants under
water-stress conditions (Alvarez et al., 2008). The overexpression
of the isopentenyl transferase gene (IPT) and related promoters
such as PSAG12 (Gan and Amasino, 1995) in different plant
species showed a substantial delay in plant senescence followed
by delayed flowering and reduced yield (Ma, 2008). This is
inferred to be due to altered source/sink relationships.

Enhanced CK levels boosted the existence of plants under
water deficit environments (Rivero et al., 2007). Use of promoter
(SARK; a maturation- and stress-induced promoter) upstream
to IPT for overexpression in both monocots and dicots induced
drought tolerance (Rivero et al., 2007; Peleg et al., 2011; Qin et al.,
2011). The transgenic PSARK ::IPT rice showed altered hormone
synthesis and hormone regulatory pathways, thereby modifying
source/sink relationships, subsequently higher grain yield is
obtained under the water stress environment (Peleg et al., 2011).
Water deficit decreased photosynthetic activity and respiration
resulting in lower internal CO2 in plants (Lawlor and Tezara,
2009). However, transgenic PSARK ::IPT rice (Reguera et al., 2013)
and transgenic tobacco plants expressing PSARK ::IPT (Rivero
et al., 2009) increased internal CO2 level so that photosynthesis
continues as that of normal plants because increased biosynthesis
of CK safeguards the biochemical procedures related to
photosynthesis under water-limited conditions. Reduced CK
levels concomitantly induce ABA activity inducing stomatal
conductance and hindering photosynthesis under drought stress
(Rivero et al., 2010). Stress persuaded CK synthesis regulated by
the stress-induced promoter, protecting harmful effects on the
photosynthetic device, which allows better photosynthetic tariffs
and higher yield under drought stress in tobacco (Rivero et al.,
2009), peanut (Qin et al., 2011), and greenhouse-grown cotton
(Kuppu et al., 2013).

Cytokinin Mediated Physiological Changes Under

Nutrient Deficiency
Nutrients in growing media are detected by a complex system
of signaling pathways generated by integrating PGRs (Krapp,
2015; Bellegarde et al., 2017; Gent and Forde, 2017; Guan
et al., 2017; Awad et al., 2021). There are many genes such as
isopentenyl transferase (IPT3, IPT5), P450 (CYP735A2), auxin
response regulators (ARRs), cytokinin response factors (CRFs),
and glutaredoxin genes (GRX) that regulate the CK biosynthesis
and nitrate signaling (Pavlu et al., 2018). Long-distance shoot
and root-derived CK mediates nitrate responses and control
key characters, e.g., leaf size (Walch-Liu et al., 2000; Rahayu
et al., 2005) and meristem activity-related traits (meristem size
and organogenesis) (Müller et al., 2015). The cell cycling in
shoot and root meristems regulates the magnitude of inorganic
phosphate (Pi) that, in turn, gets mediated by CK (Schaller
et al., 2015). Potassium deficiency decreases CK level which
induced root growth affecting potassium uptake (Nam et al.,
2012). CK mediated GSH homeostasis and GSH breakdown play
a physiologically significant role in nutrient utilization, especially
during sulfur (S) deficiency (Bhargava et al., 2013). Boron (B)
deficiency impairs root meristem development by impairing
molecular machinery connecting the CK-mediated suppression
of cyclin CYCD3 (Poza-Viejo et al., 2018).

Cytokinin Mediated Physiological Changes Under

Salinity Stress
Increased CK levels enhance photosynthesis under salt stress
by stimulating the expression of genes that promote the
biosynthesis of chlorophyll (Ma et al., 2016). The overexpressed
CK-degradation enzyme (CKX) in Arabidopsis plants showed
enhanced CK biosynthesis followed by high CO2 assimilation
(Cerný et al., 2013) whereas AtCKX1mutants showed reductions
in CO2 acclimatization rates, accompanied by lower stomata
closure (Vojta et al., 2016). Further, CKs improve the potential
of antioxidant defense systems that could protect their cells from
stress-induced ROS gathering, protecting chloroplast integrity
(Rivero et al., 2007; Zavaleta-Mancera et al., 2007), dropping
electrolyte leakage and/or increasing malondialdehyde (MDA)
levels (Liao et al., 2017; Xu et al., 2017). Cytokinin affects root
and shoot development along with other agro-botanical traits
under a water-limiting environment (White and Kirkegaard,
2010). Particularly, it decreases root to shoot hypocotyl relations,
improves root growth, nutrient uptake, and enhances tolerance
to water-limiting conditions (Pospíšilová et al., 2016). Further
qualitative traits such as variation of vascular tissue and
lignification of root tissues showed CK-regulated reactions to
water-limiting environments (Pospíšilová et al., 2016).

Abscisic Acid-Induced Physiological and
Biochemical Mechanisms of Stress
Tolerance
Abscisic acid is one of the widely examined stress hormones
which are well-correlated with the intensity of stress tolerance
in crop plants. It coordinates an array of functions in plants,
enabling them to withstand a variety of abiotic stresses
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(Finkelstein, 2013; Wani and Kumar, 2015; Raza et al., 2019b). It
is well-reported that abscisic acid (ABA) accumulation increases
in response to abiotic stresses such as drought, salt, and cold
(Zhang et al., 2014; Vishwakarma et al., 2017; Malaga et al.,
2020). The elevated level of ABA enables plants to cope with
salt and drought by improving cellular dehydration and water
balance. Besides, ABA regulates key processes like leaf abscission,
inhibition of fruit ripening, and seed development (Zhang
et al., 2014). Moreover, it also regulates multiple physiological
processes by acting as signalingmediators to impart adaptation to
abiotic stresses (Sah et al., 2016). ABA-induced gene expression
is responsible for the quickest response to abiotic stress in
plants (Yamaguchi-Shinozaki and Shinozaki, 2006). The rapid
expression of short-term ABA stimulated genes facilitates plants
to endure under unfavorable growing environments (Nemhauser
et al., 2006).

The ABA-mediated stomatal closure under stress conditions
suggests that cross talks with hormones such as JA, SA, BR,
CK, NO, and ET also influence stomatal function (Acharya
and Assmann, 2009). Exogenous application and/or cold stress-
induced ABA synthesis enhances cold tolerance of plants, thus
representing the role of ABA in plant adaptations to cold
stress (Xue-Xuan et al., 2010). In addition, ABA works as a
multipurpose mediator of numerous physiological processes.
ABA plays a crucial role in stimulating seed dormancy, hindering
seed germination and shoot growth while, on the other hand,
promoting root growth, leaf senescence in plants switching from
vegetative to reproductive phase to complete life cycle under
low water potentials. Furthermore, ABA, in coordination with
auxin, can enhance root hair formation in Arabidopsis (Shibata
and Sugimoto, 2019). The gene expression analysis concluded
that ABA could control plant expansion by reducing the signal
transduction or biosynthesis of numerous growth-promoting
PGRs such as CK, GA, and BRs at the transcriptional or post-
translational levels (Zhang et al., 2009a,b; O’Brien and Benkova,
2013; Fahad et al., 2015; Sah et al., 2016).

ABA-Mediated Physiological Changes Under Drought

Stress
The moisture stress coupled with other environmental stresses,
i.e., extreme temperature and salt, promote the synthesis of
ABA in plants (Cutler et al., 2010; Kim et al., 2010). Classical
physiological alterations in plants under water deficit stress
include less root water absorption, low water potential, and
turgor in the leaves, reduced leaf elongation, stomatal closure,
modification in gene expression, and ABA-dependent adaptive
physiological responses like modulation of root architecture
(Clark et al., 2005; Harris, 2015). Plants have evolved an array
of adaptive mechanisms to withstand water scarcity such as
differential shoot and root growth. Early root growth promotion
at the expense of shoot (hypocotyl) growth inhibition is probably
mediated by ABA in Vigna radiata under mild water stress (Das
and Kar, 2018). ABA is also considered as a prime signaling cue
l for root-to-shoot stress (Schachtman and Goodger, 2008). It
plays a role in drought stress tolerance in two ways: inducing
cellular dehydration tolerance and maintaining water balance.
Dehydration tolerance proteins within plant cells are encoded

by gene expression, while guard cell regulation enables plants to
achieve water balance. Excessive ABA is produced in response
to osmotic stress resulting inactivation of ABA biosynthesis and
inhibition of ABA degradation (Zhu, 2002). The biosynthesis of
ABA in roots induced with soil drying and elated via the xylem
to the shoot (Wang et al., 2000; Dodd, 2005). Different transgenic
plants over-expressing ABA-biosynthesis genes had a greater
ability to withstand water deficit stress. Genes, namely, AtNCED3
and NCED1 in Arabidopsis, play a critical function in ABA
biosynthesis under drought. SgNCED1 overexpressed tobacco
plants showed increased leaf ABA and tolerance to drought
and salinity (Peleg and Blumwald, 2011). Overexpression of
LeNCED1 showed increased ABA accumulation and ERA1 in
transgenic canola (Brassica napus L.), which exhibited higher
yield when grown under mild drought stress. Stomatal closure
is a vital water conservation strategy in drought-tolerant plants,
which is regulated through ABA-triggered complex series of
events (Turner et al., 2001). Applied exogenous ABA and
glycine betaine (GB) alone or in combination improved drought
tolerance in all accessions of Axonopus compressus (Nawaz and
Wang, 2020).

As ABA interacts with plant hormones under drought, it
results in reducing CK levels, showing antagonistic effects
between CK and ABA (Peleg et al., 2011). High ABA and low
CK concentration facilitate the stomatal closure and decrease
water loss via transpiration under water deficit stress (Morgan,
1990). Thus, indicating the role of ABA in inducing drought
tolerance in crop plants. On the other hand, ABA and ET
work together to hamper seedling growth (Cutler et al., 2010)
but control seed growth antagonistically (Ghassemian et al.,
2000). It inhibits BR-triggered responses in plants exposed to
several abiotic stresses (Divi et al., 2010). The ABA signaling
components ABI2 (abscisic acid insensitive 2) and GSK3s co-
regulate a network of stress-responsive genes to inhibit BR
signaling in plants when exposed to abiotic stress (Wang
et al., 2017). Several aspects of plant growth or development
are controlled by BR and ABA antagonistically in a range of
environmental stresses. The ABA-associated chemical signals
that arise due to environmental stresses have a great influence
on certain physiological processes such as the rate of grain-filling
in wheat (Yang et al., 2006). On the other hand, CK and ABA
are responsible for controlling carbon remobilization and plant
senescence in wheat subjected to drought stress (Yang et al.,
2003). Short-term ABA facilitates stimulus responses, regardless
of the association of ABA to metabolic readjustments (Yang et al.,
2014).

Among major abiotic stress factors, drought or moisture
deficient conditions affect the root system of plants to a
greater extent. Therefore, drought-induced ABA accumulation
may be attributed to maintaining root development and shoot
progress as a substitute for reduced growth (Farooq et al., 2009).
Relative growth alters in response to ABA, like inhibition of
leaf area development, higher root-shoot dry weight ratio, and
production of deeper roots. Consequently, modulations in the
root environment exhibit both systemic and local consequences
on ABA-mediated responses (Farooq et al., 2009; Puertolas et al.,
2015; Vishwakarma et al., 2017; Afzal et al., 2020).

Frontiers in Agronomy | www.frontiersin.org 9 December 2021 | Volume 3 | Article 648694

https://www.frontiersin.org/journals/agronomy
https://www.frontiersin.org
https://www.frontiersin.org/journals/agronomy#articles


Sabagh et al. Plant Growth Regulators in Administrating Stresses

ABA-Mediated Physiological Changes Under Salinity

Stress
Abcisic acid plays a critical role in plant adaptation responses
to stress (Sharma et al., 2005). Plants experience osmotic stress
and water deficit under salinity stress and respond by inducing
ABA biosynthesis in roots and shoots (Cramer and Quarrie,
2002; Cabot et al., 2009). Accumulation of Ca2+, K+, and other
compatible solutes such as sugars and proline are responsible
for ABA-induced salinity tolerance (Gurmani et al., 2011). The
ABA modulated salt responsive genes play a fundamental role in
cellular signaling under salinity stress. ABA-induced expressions
of HvVHA-A for subunit A (the catalytic subunit) of vacuolar
H+-ATPase, HVP1, and HVP10 for vacuolar H+ inorganic
pyrophosphatase have been observed in Hordeum vulgare under
saline conditions (Fukuda and Tanaka, 2006). Similarly, ABA-
mediated MAPK4-like, TIP 1, and GLP 1 gene expression have
been reported under salinity in wheat crops (Keskin et al.,
2010). In addition, ABA has been regarded as a key signaling
molecule that stimulates the suppression of lateral root growth
when plants are exposed to salt stress (Duan et al., 2013).
ABA level elevates absolutely in lateral root cells under salinity
stress, which provokes a dormant period in post-emergence
lateral roots. A well-developed and thick casparian strip is
formed in lateral roots during the dormant period acting as a
barrier to minimize Na+ ions diffusion via the endodermis. ABA
signaling is activated within endodermal cells in the presence
of Na+ ions that seize growth, thereby restricting elongation
of lateral roots under elevated salinity conditions (Fernando
and Schroeder, 2016). PYL8/RCAR3 ABA receptor has been
described to function in ABA-mediated restriction of primary
root growth and improvement of lateral root growth when
exposed to ABA (Zhao et al., 2014). Furthermore, it shows
differential responses toward the plant antioxidant system under
abiotic stresses. The up-regulation of antioxidant activity in callus
cells of the cotton crop is attributed to the ABA-mediated signal
transduction pathway (Bellaire et al., 2000). Higher activity of
antioxidant enzymes in bermuda grass (Lu et al., 2009) and wheat
(Agarwal et al., 2005) has been linked to ABA synthesis under
salinity stress. ABA synthesis and accumulation of ROS occur
under salinity stress. Thus, calcium and/or H2O2 act as second
messengers of ABA-induced stomatal closure and expression of
genes in response to several abiotic stresses (Zhu, 2002; Asad
et al., 2019). A comparative rise in ABA concentration is generally
connected with soil water or leaf potential in plants exposed to
salt stress (Zhang et al., 2006). The expression of salt-associated
genes is usually controlled by ABA-mediated signaling, which
enables plants to survive salinity stress (Keskin et al., 2010).
Likewise, plant water status through guard cells and growth is
regulated by ABA-induced expression of genes (Zhu, 2002).

Under a saline environment, ABA triggers plant protective
mechanisms that regulate the expression of genes persuaded by
salt stress (Shakirova et al., 2003; Parida and Das, 2005; Sah
et al., 2016). A significant concentration of ABA accumulates
in the leaves of salt-tolerant maize hybrids under salt stress.
As a growth pre-requisite, an increase in ABA is necessary
for acidifying the apoplast (Zorb et al., 2014). Mediating leaf

expansion and restricting Na and Cl in leaves is a well-
reported facilitating role of salt-induced ABA (Cabot et al.,
2009). The ABA synthesis improves stomatal conductance which
gets disturbed under salt stress. The ABA regulates stomatal
closure resulting in reduced water loss through transpiration
(Wilkinson and Davies, 2010; Sah et al., 2016). The stomatal
closure in plants growing under salinity might be attributed
to ABA-induced higher Ca concentration in the cytoplasm.
ABA-induced augmentation of H2O2 production activates ion
channels present in plasma lemma and regulates turgor losses
through guard cells (Kim and Wang, 2010). The ABA plays
a vital role in the synthesis of osmoprotectants (Sah et al.,
2016) like proline (Iqbal et al., 2014; Fahad et al., 2015) and
dehydrins in response to ROS production under salt-stress-
induced dehydration (Javed et al., 2020). Expression of the
OsP5CS1 gene stimulated by salinity is associated with a rise
in endogenous ABA concentration. The exogenous supply of
100µMABA in rice seedlings had an ameliorated survival degree
by 20% and elicit proline uptake by triggering the expression
of OsP5CS1 gene in rice (Sripinyowanich et al., 2013). Thus,
a positive correlation between ABA accumulation and salinity
resistance was revealed in terms of synthesis and accumulation
of compatible solutes, including proline and sugars, and K+

and Ca2+ in vacuoles of root cells, which counteract with Na+

and Cl− uptake (Gurmani et al., 2011). Moreover, mitogen-
activated protein kinase (MAPK) is triggered due to NO
generation because of ABA-mediated H2O2 accumulation. Thus,
up-regulating genes for ROS scavenging antioxidant defense
enzymes (Lu et al., 2009). ABA also plays a fundamental role
in osmotic stress tolerance, as reported in ABA biosynthesis
mutants of Arabidopsis (Koornneef et al., 1998) and other crops
(Liotenberg et al., 1999) that wilt and die under prolonged
exposure to drought and salt stress.

ABA-Mediated Physiological Changes Under

Flooding
Flooding results in waterlogging or submergence conditions
which inhibit plant growth and development. Under such
unfavorable circumstances, plants always struggle to acclimatize
by adapting several physiological mechanisms, including
hormonal homeostasis. Change in leaf ABA concentrations in
several species has been reported under waterlogged conditions
(Bai et al., 2011; Salazar et al., 2015; Bashar, 2018; Cao et al.,
2020). The response of ABA to waterlogging may vary among
roots and leaves depending on the duration and plant species.
For example, Malus sieversii showed more ABA concentration
in the roots and leaves as compared to Malus hupehensis under
hypoxic stress (Bai et al., 2011). According to Rodriguez-Gamir
et al. (2011), the ABA level in citrus increased after 3 weeks
of flooding. It was observed that the synthesis of ABA in
older leaves increased and translocated to young leaves instead
of ABA transportation from roots to shoots under flooding.
The plant root system is severely damaged postwater logging
normally in susceptible plants. Production of ROS in response
to reoxygenation stress results in oxidative damage to functional
tissues hampering normal physiological processes. However, a
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balance between CK and ABA is necessary for regulating both
leaf senescence and stomatal closure under reoxygenation stages
(Bashar, 2018). ABA plays a key role in modifying root hydraulic
characteristics induced by asynchrony in root water uptake and
leaf transpiration (Aroca et al., 2012).

The keypart of ABA is regulating the plant water balance both
under flooding (Olivella et al., 2000) and drought stress (Nan
et al., 2002), as detected in wheat plants. ABA concentration
temporarily enhances with leaves and roots growth and then
declines under water-logging conditions (Nan et al., 2002).
Prolonged flooding also provokes shoot elongation, permitting
the restoration of gas exchange among submerged marsh
dock plant tissues and the atmosphere (Benschop et al.,
2005, 2006). This adaptation procedure needs ABA-dependent
biosynthesis of GA. Primarily, ethylene accumulation inhibits
the expression of 9-cis-epoxycarotenoid dioxygenase, involved in
downregulating ABA levels and/or activates ABA breakdown to
phaseic acid (Salazar et al., 2015). The reduction in endogenous
ABA is a prerequisite to stimulate gibberellin (GA) 3-oxidase
expression, which is involved in translation to bioactive GA1.
Downregulation of GA induced several genes encoding proteins
involved in cell wall untying, during the cell cycle, interruption
of starch, and other genes involved in internode development
(Benschop et al., 2006). A similar response was also reported by
Bailey-Serres and Voesenek (2008) in rice.

Photosynthetic capacity and carbohydrate synthesis reduced
drastically due to stomatal closure resulting from enhanced ABA
contents in rice leaves (Bai et al., 2013). Such kind of inhibition
may also take place because of relatively greater cellular oxidative
damage. Besides, ABA plays a significant role in rice adaptation
to hypoxic conditions, suggesting that rice growth is tightly
regulated through proline and ABA-mediated response in roots
(Cao et al., 2020). Some authors also documented that the
function and regulation of proline metabolism are dependent
on ABA accumulation (Abraham et al., 2003). The expression
of the genes involved in proline metabolism is tightly controlled
by ABA-driven proline accumulation under hypoxic stress (Cao
et al., 2020). Therefore, variations in gene expression linked with
proline metabolism are regulated through ABA signaling, which
is closely related to higher ABA-mediated antioxidant capacity
in the rice roots. Under flooding stress, ABA accumulation is
associated with an increase in ROS.Moreover, high ABA contents
under flooding stress trigger stomatal closure and alter H2O2

concentration tracked by escalated antioxidant defense enzyme
actions in Arabidopsis (Liu et al., 2012; Das and Kar, 2018).
More importantly, ABA also acts as a connection between the
oxidase injury of cellular structure and signal molecules under
abiotic stresses through leaf senescence. However, the potential
of ABA in boosting plant tolerance against waterlogging is not
fully understood yet.

Ethylene Induced Physiological and
Biochemical Mechanisms of Stress
Tolerance
Ethylene which is a gaseous phytohormone plays a vital role
in regulating numerous physiological processes including fruit

ripening, flower and fruit senescence, leaf, and petal abscission
(Abeles et al., 1992). Also, plants typically form increased levels
of ET as a result of multiple abiotic stresses such as heat
stress, waterlogging, drought, salinity, biotic stresses, organic
and inorganic toxic compounds, and extreme pH. The elevated
ethylene concentrations are detrimental to the plants as it
triggers senescence, chlorosis, and abscission. Moreover, it has a
crucial role during cell signaling for stress tolerance in several
plant species. The biosynthesis and sources of ET production,
interaction with other signaling molecules, and its exogenous
application under different abiotic stresses have been discussed
(Hussain et al., 2020).

Ethylene Mediated Physiological Changes Under

Salinity
Salt-induced effects in plants are moderately attributed to the
production of ET hormone (Blumwald, 2000; Mayak et al.,
2004a,b; Shibli et al., 2007). This enhanced ET was detected
in several plant species, like tomato (Lycopersicon esculentum)
and Arabidopsis (Richard and El-Abd, 1989; Hall and Smith,
1995). Similarly, elevated ethylene, ACC content, and action of
the enzyme ACC oxidase in chickpea (Cicer arietinum) were
monitored when plants were exposed to salinity stress (Kukreja
et al., 2005). The ethylene accumulation under salt stress caused
physiological and biochemical modifications in hybrid tomatoes
such as increased leaf epinasty, reduced growth, increased
cell sap osmolarity in leaves, diminished leaf tissue viability,
macro and micronutrients reduced, and altered shoot soluble
protein content. However, the electrolyte leakage, membrane
damage, raffinose, and total sugars were concurrently augmented
(Shibli et al., 2007). Though ET inhibitors reduced ethylene
accumulation and prevented epinasty, such inhibitors were
unable to eradicate the negative influences on growth and other
physiological limitations caused by salt stress, inferring that ET is
not the major factor contributing to detrimental consequences
on tomato plant development and physiology (Shibli et al.,
2007). Ethylene serves as a master regulator during salinity stress
and stabilizes the cell redox homeostasis, alleviating nitrate and
sulfate assimilations, defense against ROS, and crosstalk with
other PGRs to maintain cell signaling integrity (Riyazuddin et al.,
2020). Metabolic engineering found that ethylene is an important
component of phytohormone signaling and can potentially
impart salinity tolerance in plants (Atia et al., 2018). Moreover,
miR319 crosstalk with ET positively regulates the ET synthesis
in a dose-dependent manner in switchgrass and enhances salt
tolerance by downregulation of key genes of the methionine cycle
(Liu Q. et al., 2019; Liu Y. et al., 2019). Therefore, several earlier
findings and research suggested the role of ET in salt tolerance
in many crop species by crosstalk mechanism, altering the
methionine cycle, regulating the enzymes, and gene expressions.

Ethylene Mediated Physiological Changes Under

Flooding
Flooding is confined to gas exchange under stagnant water,
which causes expeditious assemblage of the volatile ET in all
flooded plant cells. Likewise, in water-logged plants, the root
is a primary organ to respond to stress and further affects the
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normal physiological, biochemical, and molecular functioning
at the whole-plant level. Ethylene biosynthesis, signaling, and
its perception under flood conditions in plants represent a step
forward to develop flood resilient crop plants (Khan et al., 2020).
During ethylene accumulation, the previously stored reserves are
commonly used as the aerobic metabolism partly or completely
stopped under flooding. This impaired the membrane integrity
and the reckoning of cytotoxic compounds from the flooded soil
leading to the retardation of root growth and functions. The
absorption and transport of water and nutrients impaired by
malfunctioned roots affect the above soil organ function, which
results in wilting, senescence, and, ultimately, death of the plant.
Thus, plants use some adaptive measures and/or traits such as
the formation of a suberin/lignin wall (primary barrier) in the
roots that keep radially of oxygen to raise its efficiency to the root
tip (Shiono et al., 2011; Afzal et al., 2021), developed aerenchyma
that enhances tissue absorbance and aeration of roots (Takahashi
et al., 2014), and establishment of aerenchyma-rich adventitious
roots (Sauter, 2013) to improve the aeration, uphold root activity
and whole-plant endurance under waterlogging.

Immediate accumulation of ET is an early flooding signal
and a master regulator of various waterlogging-adaptive plant
measures. ACC synthase (ACS) plays a substantial role in
producing ET under flooding because of hypoxia in flooded
roots (Drew, 1997). The cellular fluctuations of oxygen and
ET are said to be the main signals activating plant-adaptive
measures to excess water, thus, the progression of distinct
temporal and spatial dynamics (Voesenek and Sasidharan,
2013). The ET biosynthesis pathway is stimulated by activation
of key enzymes ACC oxidase and ACS under waterlogging
(Van Der Straeten et al., 2001; Lee et al., 2011; Van Veen et al.,
2013). The ET biosynthesis is directly or indirectly linked to
the ROS, nitrous oxide (NO), and ET cross-talk signaling and
many gene expressions such as ALCOHOL DEHYDROGENASE
(ADH), HYPOXIA RESPONSIVE UNIVERSAL STRESS
PROTEIN (HRU1), and ROP GUANOSINE TRIPHOSPHATASE-
ACTIVATING PROTEIN4 (ROPGAP4), that regulates the
hypoxia condition (Sasidharan et al., 2018). Additionally,
a different subclass of ERF (ethylene response factor) is
synthesized in response to multiple abiotic stress conditions. For
instance, group ERF provides tolerance against flooding stress
by activating hypoxia-inducible genes and regulated oxidative
stress (Klay et al., 2018). Similarly, group V11 ERF ZmEREB180
regulates flooding stress in maize (Yu F. et al., 2019; Yu W. et al.,
2019) and HRE2 in Arabidopsis (Eysholdt-Derzsó and Sauter,
2019) by promoting the emergence of adventitious roots under
hypoxia conditions.

ET precursor, ACC is synthesized primarily in the roots
under excess water and transported to the above-ground plant
parts. There in the oxygen-mediated translation of ACC to
ET occurs which results in the stimulation of the adaptive
modifications via nastic activities and aerenchyma development
in shoots (Jackson, 2002). Aerenchyma formation is species
and environment-dependent and can be seen both in root
and shoot organs (Colmer and Pedersen, 2008; Parlanti et al.,
2011; Steffens et al., 2011), enabling plants to protrude
the water surface and facilitating aeration to flooded parts.

Ethylene-mediated aerenchyma formation in wheat is controlled
by ROS biosynthesis by NADPH oxidases (Yamauchi et al.,
2014), whereas in rice and aerenchyma, develops during normal
plant life cycle exposed to a stressful environment through
ET dependent manner (Takahashi et al., 2014; Yukiyoshi
and Karahara, 2014). ROS is an important intermediary in
the ET-mediated signaling system. For example, ET-induced
development of stem aerenchyma elaborated improved levels
of superoxide radicals and H2O2 in pre-aerenchyma cells
in submerged rice internodes (Steffens et al., 2011). ROS-
mediated apoptosis is the final lethal stage in the formation
of aerenchyma, where the cell wall breaks down and includes
ET-mediated upsurges in cellulases, pectinases, and xylanases
enzymes (Bragina et al., 2003; Xu Q. T. et al., 2013). Ethylene-
induced aerenchyma improves the gas diffusion between shoot
and root. Although, it can entirely substitute the water-logged-
roots, signaling of ET can be conflict subjected to the type of
species or genotype (McDonald and Visser, 2003; Steffens et al.,
2006; Vidoz et al., 2010). Ethylene-mediated aerenchyma-rich
(AR) formation triggers the mechanical incentives provided by
the primary root primordia that also need ethylene-mediated
ROS formation (Steffens et al., 2012).

The ET-mediated hyponasty is an adaptive measure to cope
with water-logged conditions with a different growth frequency
of the cells that occur on the lower and upper sides of the
pretentious organ (Cox et al., 2004; Polko et al., 2012). For
instance, ET governs hyponasty of shoots which has been
detected in Rumex spp. and A. thaliana under water-logged
conditions (Cox et al., 2003; Lee et al., 2011; Rauf et al., 2013).
The cross-talks between ABA, auxin, and GA with ET have been
reported in response to rapid hyponasty under submergence
stress (Cox et al., 2004; Benschop et al., 2006). For instance,
ET-dependent elongation of the shoot is altered by combining
possessions of ABA and GA under submerged conditions
(Fukao and Bailey-Serres, 2008). ET regulated shoot elongation
characteristics to hydrological niches and displayed two separate
growth responses like escape and dormancy (Voesenek and
Bailey-Serres, 2015). Flood-induced ET production is crucial
for inter-nodal elongation in deepwater rice (DWR), enabling
the stem to keep above the water and facilitating aeration to
the whole plant (Hattori et al., 2009). It may be inferred that
ET regulates the water-logging tolerance in plants by alteration
in physiological, biochemical, and molecular processes and as
cross-talk with other signaling components.

Ethylene Mediated Physiological Changes Under

Drought
Water deficit has been connected with extended distance
signaling of ACC where the elevated amount of ACC produced
high levels of endogenous ET in the plants (Mayak et al., 2004a;
Sobeih et al., 2004), causing growth hindrance, early senescence,
abscission, and ultimately, yield penalty in important crops
(Dodd, 2005). Recent molecular investigations have exposed
that ABA-dependent and independent drought-inducible gene
expression (Shinozaki et al., 2007). The hormone signaling
pathways cross-talk under drought conditions between ABA
and ethylene act antagonistically among yield-attributing
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components (Wilkinson et al., 2012). Ethylene is responsible
for leaf abscission in plants and subsequently, checks the water
loss or enhanced water use efficiency under drought situations.
Aside from these, ET production leads to a subsequent drop in
ACC, suggesting the rate-dependent enzyme along the pathway
of ET biosynthesis (feed-back inhibition) (Apelbaum and Yang,
1981). The transport of ACC from roots to shoots in the xylem
vessels demonstrates the ET evolution in leaves (Liu H. Y. et al.,
2006, 2007; Liu J. et al., 2006; Liu J. H. et al., 2006). However, in
such leaves, ET changes do not affect the leaf elongation inmaize
under drought (Liu H. Y. et al., 2007). This implies that long-
distance sink-source signals and leaf growth inhibition under
drought are associated with ET and ACC activity (Schachtman
and Goodger, 2008). The ethylene inhibitor (1-MCP) induced
stomatal closure showed chemically driven stomatal closure
instead of hydraulic signals dependency (Sharipova et al.,
2012). Increasing levels of ABA and diminishing ET levels
reveals in G. jamesonii under water deficit, and consequently,
re-watering causes the reduction in transpiration rate (Tr)
and water probable of leaves (Olivella et al., 2000). Likewise,
the ABA-mediated elongation of primary roots at low water
potentials restricted ET production in maize (Spollen et al.,
2000). Further, the ET production is antagonistically biased by
endogenous ABA concentration during drought, controlling
some drought responses in plants, e.g., root and leaf development
(Tan and Thimann, 1989; Chaves et al., 2003). For instance, ABA-
induced stomatal closure could antagonistically be potentially
modulated by ET under drought (Wilkinson and Davies, 2009).
Ethylene-induced leaf abscission in water-stressed Citrus plants
is accompanied by ABA in roots. Thereby, providing new
insights into the understanding of the mechanism of ABA
and ET as primary signals under water deficit and regulation
of leaf abscission (Wilkinson et al., 2012). A comprehensive
understanding via a study of Arabidopsis mutant acs7 with a
lack of ET function showed the increased tolerance to multiple
stresses linked to higher ABA accumulation (Dong et al., 2011).
Thus, these findings suggest that the ratios of ET, ACC, and ABA
regulate plant responses under water deficit conditions (Acharya
and Assmann, 2009; Wilkinson and Davies, 2010; Wilkinson
et al., 2012).

Ethylene Mediated Physiological Changes Under

Unfavorable Environmental Variables
The ETmediates an array of physiological changes under salinity,
drought, flooding, and other adverse environmental variables
such as high temperature, heavy metal toxicity, etc. During
heat stress, exogenous application of ethephon (C2H6ClO3P)
regulates protein metabolism, antioxidant defense, enhances
pollen thermos-tolerance in tomato (Jegadeesan et al., 2018),
and heat shock factor expressions in rice (Wu and Yang, 2019).
Moreover, it also provides thermo-tolerance in tomato seedlings
under elevated CO2-induced heat stress via strengthening
antioxidant defense and altering the expression of ERF1 and heat
shock factors (Pan et al., 2019). Besides, ET plays a significant
part under cold stress tolerance via stimulating proteins related
to protein metabolism, lipid stability, and antioxidant defense
(Hu et al., 2017). Moreover, the ERF057 in grapevine (Sun et al.,

2016), VaERF080, and VaERF087 in Arabidopsis (Sun et al.,
2019) and SICBF1 in tomato (Yu F. et al., 2019) help in chilling
stress tolerance. ET has a crucial role in improving the root
architecture (Abozeid et al., 2017), root-shoot communications
(Alves et al., 2017), regulating oxidative stress and biosynthesis,
and transportation of antioxidants under oxidative stress in
plants (Wang Y. et al., 2020). ET plays a key role under
unfavorable environmental fluctuations and provides tolerance
to plants via strengthening antioxidant defense, reducing
oxidative stress, improved root-shoot communications, cross-
talk with phytohormones, and signaling components, altering
expressions of stress enzymes, genes, and proteins.

Brassinosteroids, Salicylic Acid, Nitric
Oxide, Jasmonic Acid, and Strigolactones
Induced Physiological and Biochemical
Mechanisms of Stress Tolerance
Brassinosteroids
Brassinosteroids are a group of naturally occurring plant
steroidal compounds with wide-ranging biological activity that
have been given the stature of a phytohormone that offer
the unique possibility of increasing crop yields through both
changing plant metabolism and protecting plants from different
environmental stresses (Figure 3). The brassinosteroids (BRs)
regulate the growth and different developmental processes
of plants (Yang et al., 2011; Iqbal et al., 2015). Initially, it
was supposed that the BRs are physiologically related to the
stimulation of stem elongation in plants (Mitchell et al., 1970;
Fàbregas et al., 2018). Recently, numerous studies suggested
BRs role as mediators of physiological, cellular, and molecular
processes (i.e., development of anther, pollen production, stem
elongation, vascular differentiation, root development, and
cellulose biosynthesis) (Fàbregas et al., 2018; Javed et al., 2020). In
addition, BR regulates cell division and promotes differentiation
at the cellular level. Moreover, it regulates hypocotyl elongation
and development of root, shoot, and leaf along with delaying
senescence and reducing male sterility (Iqbal, 2015). Hence,
mutants with BR impairment are observed to show short
hypocotyl and petiole, delayed flowering, dark green colored
leaves, reduced male fertility, dwarfism, etc. (Ye et al., 2010).
There was impairment in the cell elongation with reduced parallel
microtubule organization in Arabidopsis BR-deficient mutant,
bull-I (Javed et al., 2020). Likewise, anomalous association and
polar development of leaf and stem cells are observed in a
rice mutant (BR-deficient dwarf1) that adversely affected the
development of different organs (Hong et al., 2002). It was
reported that BR effects largely depend onmany factors including
kinds of stress, plant species, growth stage, growth conditions
(with or without stress), duration of stress, dose and its crosstalk
with other hormones, growth regulators, and signaling molecules
(Nolan et al., 2019; Yin et al., 2019).

The operation of the BR is regulated by BRASSINOSTEROID-
INSENSITIVE1 (BRI1), a serine-threonine kinase plasma
membrane receptor, and the inhibition of the BRI1 receptor is
mediated by its C-terminal tail and inhibitor of the BRI1 kinase 1
(Wang et al., 2005; Wang and Chory, 2006). The BIN2 protein
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kinase is involved in the phosphorylation of the BES1/BZR1
transcription factor. It has also been found to be downstream of
the BR signaling pathway (Wang et al., 2002; Yin et al., 2002).
The 14-3-3 proteins are reported to hold the phosphorylated
long-form of BES1 (i.e., BES1-L), BSU1, BIN2, and BES1/BZR1,
and participate in the signaling of BR (Tang et al., 2008; Jiang
et al., 2015). In plants, HXK1 (HEXOKINASE1) is the first known
glucose sensor that induces hypocotyl elongation in darkness,
mediated by BRs-dependent sugar. Thus, BR can potentially
function downstream of HXK1 to regulate glucose-induced
hypocotyl elongation (Zhang and He, 2015).

Brassinosteroids Related to Tolerance to Abiotic Stress

Brassinosteroid connects with other plant hormones related to
stress tolerance conferring the ability of BR to play crucial roles
in plant development and also advances tolerance in plants to a
wide range of stresses (Ikekawa and Zhao, 1991; Ahammed et al.,
2020), including heat, cold, drought, and salinity. This increase
in stresses is generally correlated with higher expression of stress
marker genes.

The increased expression of stress-responsive genes can be
responsible for the higher stress tolerance in BR-treated plants.
Several studies have confirmed the role of BRs in plant stress
responses (Divi et al., 2010). The mechanisms by which BR
controls plant stress responses and regulates the expression of
stress response genes are not known. Fàbregas et al. (2018)
showed that drought resistance is under the control of cell-type-
specific BR signaling and that BRL3 overexpression activates an
alternative pathway of BR signaling.

Salt Stress. The mitigation BRs of negative effects of salt stress
have been shown to a wide range of plants (Ahammed et al.,
2020). A study conducted by Anuradha and Rao (2001) reported
that BR treated in rice seeds reduced the inhibitory effect of
salt on germination. They reported the promotion of growth by
BR under salt stress conditions was associated with enhanced
levels of nucleic acids and soluble proteins. Although plants
subjected to saline stress exhibited a reduction in all the morpho-
physiological and enzymatic attributes (NRA and NiRA), proline
contents and enzymatic activities of antioxidants were enhanced
in response to NaCl stress. However, deleterious effects induced
by salinity were reduced if seeds were treated with epibrassinolide
(EBL) before or after NaCl inhibitions (Shahid et al., 2011).

In eggplants, EBR treatment-induced enhanced tolerance to
salt stress is manifested by the increased activity of antioxidant
enzymes, decreased Na+ and Cl− concentrations, and increased
K+ and Ca2+ concentrations. Similarly, EBR application can
reduce the concentration of NO−

3 and NH+

4 in cucumber plants
under salt stress (Yuan et al., 2012). Salt stress at level 150mM
enhanced seeds germination of Eucalyptus camaldulensis but
when seedling was grown hydroponically in salt, BR uptake
through roots caused more damage (Sasse, 1999). Under salinity
stress, exogenous EBR application in black locust reduced
leaf Na+ content and membrane leakage and improves the
net photosynthetic rate, chlorophyll content, transpiration rate,
stomatal conductance, and maximum quantum efficiency of PSII
(Yue et al., 2018). When applied to a suitable concentration,

brassinosteroid had a positive impact on secondary metabolite
production in salt-treated peppermint (Çoban and Baydar, 2016).
Ali et al. (2008) reported that EBR (1µM) can alleviate combined
stress induced by NaCl and NiCl2 in Brassica juncea BR
suggesting effective BRs in mitigating combined stress effects on
plants. EBR applied in seed priming improves salt tolerance and
induces total methylation, suggesting a role for BR in epigenetic
modification under salt stress (Amraee et al., 2019).

Drought. Drought is an environmentally drastic stress that
reduces crop productivity, especially in the semi-arid and arid
region. In a study with cucumber plants, it was also demonstrated
that BR treatment improves resistance to desiccation and
high-temperature stress (Pustovoitova et al., 2001). Drought
tolerance is closely associated with the accumulation of abscisic
acid (ABA). Wang W. et al. (2019) showed that exogenous
BR application can enhance the ABA level and mitigate the
deleterious effects of drought on grapevine (Vitis vinifera
L.) plants. In Chorispora bungeana, exogenous BR (0.1µM
EBR) application can enhance tolerance to drought caused by
polyethene glycol (PEG) treatment (Li et al., 2011). Even Brassica
juncea plants that experience weeklong drought stress at the
early growth stage show reduced growth and photosynthetic
rate even after 60 days. However, post-drought treatment with
28-homobrassinolide (HBL, 0.01µM) at 30 days after sowing
could remarkably improve both growth and photosynthesis after
60 days of sowing (Fariduddin et al., 2009). BR treatment can
remarkably reduce the levels of ROS and lipid peroxidation
under drought stress (Yuan et al., 2010). Although BR had a
stimulatory growth effect under stress conditions when applied
either as a seed treatment or foliar spray to drought-tolerant and
drought-susceptible wheat varieties, overall, the drought-tolerant
variety showed a higher response to BR application under water
stress conditions. Increased water uptake andmembrane stability
and higher carbon dioxide and nitrogen assimilation rates in
BR-treated plants under stress were correlated with BR-induced
drought tolerance (Sairam, 1994).

Cold Stress. Low temperatures which induced chilling or freezing
are considered as a handicap for plant production (Zhang
et al., 2019). Cold stress-induced impairments in plants include
decreased osmotic potential in the cells membrane, alterations
in macromolecules activities, fluidity modifications, and also,
mechanical constraints (Xiong and Zhu, 2002). In tomato
(Solanum lycopersicum L.), mutants of BRs biosynthesis (dwf)
show sensitivity to chilling stress, whereas overexpression of
DWF results in an increased cold tolerance (Fang et al., 2019).

Cold stress also affects plant photosynthetic processes which
are manifested by the reduction in the CO2 assimilation rate,
photoinhibition at PSI and PSII, and decreased enzyme activity
(Zhang et al., 2019). Similar to heat stress, ROS can also act
as signal in mediating BR-regulated responses to cold stress
tolerance (Cui et al., 2011).

Cross-Talk Between BRs and Different Hormones.
Brassinosteroids can increase plant resistance to a range of
stresses that lies in the complex interactions of BRs with

Frontiers in Agronomy | www.frontiersin.org 14 December 2021 | Volume 3 | Article 648694

https://www.frontiersin.org/journals/agronomy
https://www.frontiersin.org
https://www.frontiersin.org/journals/agronomy#articles


Sabagh et al. Plant Growth Regulators in Administrating Stresses

other hormones. Since different plant hormones can regulate
similar physiological processes, and cross-talk between different
hormones can occur at the level of hormone biosynthesis,
signal transduction or gene expression, it was proposed that
BR regulates plant stress responses via cross-talk with other
hormones (Wang Y. et al., 2020). BR and ABA signaling
pathways emphasize the specific regulatory mechanisms
between ABA and BR responses and harmonize plant growth
and development under stress. BR signaling is essential for
plant development, while ABA signaling is activated to ensure
plants survive stress (Bulgakov and Avramenko, 2020). BRs
regulates stress adaptation through the remodeling of cell wall,
induce antioxidant defense, control adventitious, and lateral
root developments in plants (Rao and Dixon, 2017; Kaya
et al., 2019; Betti et al., 2021). Wang Y. et al. (2020) reported
that in terms of modulating plant development and stress
adaptation the crosstalk between BR and ABA, especially protein
phosphorylation, protein stability control and downstream
transcription control of key components of both pathways.

Cross-talk between BRs and auxins, GA, ABA, ethylene, and
JA includes alteration in the expression of hormone biosynthetic
genes and/or signaling intermediates (Finkelstein, 2013). The
roles of ABA in cold, salt, and drought stresses (Zhu, 2002), and
those of JA and ethylene in plant defense responses (Wang et al.,
2002) are well-documented, the involvement of these hormones
in BR-mediated stress tolerance with their crosstalk.

Salicylic Acid
Salicylic acid alleviates the adverse impacts of numerous abiotic
stresses. For instance, the activities and levels of enzymes
involved in the biosynthesis of SA are observed to be enhanced
under salt stress in rice plants (Sawada et al., 2006; Hoque
et al., 2020a,b). SA, itself, facilitated the restoration of membrane
potential and averted the salinity stress persuaded K+ loss via
GORK channel in A. thaliana (Jayakannan et al., 2013). The
SA enhanced salinity resistance in barley via an increase in the
Chl and carotenoid contents and sustained membrane integrity
by accumulating K+ and soluble sugars (El-Tayeb, 2005). The
SA regulated the photosynthetic process under salinity stress in
mung bean cultivars by increasing the assimilation of nitrogen
and sulfur, along with antioxidant metabolism (Nazar et al.,
2011). Thus, both BRs and SA are well-avowed to advance stress
tolerance by mitigating the harmful effects of abiotic stresses,
especially salinity stress in plants (Ashraf et al., 2010; Bali et al.,
2017).

Nitric Oxide
It is a volatile gasotransmitter having key functions as a regulator
of vital plant growth processes viz., seed germination, root
growth, floral transition, pollen tube growth, fruit ripening,
photosynthesis, mitochondrial functionality, senescence, seed
dormancy, gravitropism, stomatal movements, etc. (Siddiqui
et al., 2011; Manai et al., 2014; Mostofa et al., 2015). Recently
studies suggested that has crucial role during regulation
of signaling network under normal and stress conditions,
post-translational modifications, and regulation of oxidative
stress through activation of antioxidant defense system (Sami

et al., 2018; Sharma et al., 2020). NO cross-talk with other
PGRs and regulate the fundamental processes under stress
situations (Kumar and Pathak, 2018). Under drought stress, NO
mediates the water status and associated enzymes to inhibit
nutrient balance, oxidative defense, and primary and secondary
metabolism, (Akram et al., 2017; Majeed et al., 2020; Wang
X. et al., 2020). Under salinity stress, the endogenous supply
of NO improved plant growth and increased osmotic pressure
and cytoplasmic viscosity of plant cells (Dong et al., 2014). NO
alleviates stress effects by mediating plant responses through
upregulation of antioxidant defense system mediated by SA and
H2O2 (Klessig et al., 2000; Mostofa et al., 2015; Singh et al., 2015).

Jasmonic Acid
Jasmonic acid and methyl jasmonates (MeJA) play a key part
in improving plant stress tolerance via improving plant growth
and physiological activities (i.e., reproductive processes, sex
determination, fruit ripening, the formation of storage organ,
senescence, interaction with other hormones, etc.) (Avanci
et al., 2010; Cipollini, 2010; Nafie et al., 2011). Furthermore,
being involved in chlorosis, antioxidant enzyme upregulation,
senescence, seed and flower growth, and systemic resistance
leads to protection against environmental stresses (Creelman and
Mullet, 1997; Seltmann et al., 2010; Soares et al., 2010; Pieterse
et al., 2012; Wasternack et al., 2012).

Strigolactones
Strigolactones are carotenoid-derived phytohormones that were
first identified as germination stimulant in parasitic weeds and
creating plant-microbe symbiotic relationship (Xie et al., 2010).
Subsequently, strigolactone (SL) role in regulating the hyphal
branching in the symbiotic association between plants and
arbuscular mycorrhizal fungi (AMF) has also been reported
(Akiyama et al., 2005). Furthermore, characterization of SLs
have showed functional roles in root and shoot development,
photomorphogenesis, leaf senescence, flower development, and
suppression of shoot branching (Gomez-Roldan et al., 2008;
Waters et al., 2017). The SLs have drawn special attention due
to their physiological and molecular regulatory processes against
various abiotic stresses. SL modulated stress responses through
ABA was reported in Arabidopsis, where SL positively regulate
stomatal closure (Ha et al., 2013). Contrary, cytokinin was found
to negatively regulate the same process (Nishiyama et al., 2011).
SL-loss of function mutants showed dense lateral root growth
and inhibit adventitious root formation in many plant species
(Arite et al., 2012; Rasmussen et al., 2013; Urquhart et al., 2015).
Moreover, SL-deficient mutants are susceptible to water deficit
and salt stresses inferring positive regulatory mechanisms in
stress acclimatization (Cardinale et al., 2018). The SL modulated
biological processes against environmental stresses are complex.
This complexity is clearly reflected by the collective functions of
abscisic acid, cytokinin, and SL in stomatal regulation and leaf
senescence for plant adaptation to adverse environments (Lim
et al., 2007; Czarnecki et al., 2013). Thus, these studies provide
evidence to cross talks between SL and other phytohormones in
response to adverse environments.
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EXOGENOUS APPLICATION OF PLANT
HORMONES TO SUPPORT STRESS
RESISTANCE IN PLANTS

Through exogenous supplementation of natural and synthetic
PGRs, negative consequences of abiotic stress can be mitigated
to a greater extent, although not completely. The PGRs like GA,
ABA, and CK are applied solely or in combination to improve
plant stress tolerance. The application of these hormones (GA3,
ABA, and CK) showed a higher grain yield when applied by
foliar spraying to dry seeded rice genotypes. They also increased
the number of filled grains per panicle, thereby improved the
harvest index. Moreover, GA3, ABA, and CK also increased the
activities of antioxidative enzymes (superoxide dismutase:SOD,
and peroxide dismutase:POD) as a defense strategy against
different altered soil moisture regimes (Rajinder et al., 2020).
According to the report of Leshem et al. (1981), senescence can be
delayed by the supplementation of GA3 at the grain filling stage.
Whereas, the exogenous supply of ABA is observed to enhance
themoisture stress resistance in plants (Wang et al., 2003; Li et al.,
2004).

A reboot of drought-induced low plant growth could be
achieved through the exogenous application of CK via improving
photosynthesis, water use efficiency, and antioxidant metabolism
of shoots (Kudoyarova et al., 2007; Ghanem et al., 2011; Merewitz
et al., 2011; Nishiyama et al., 2011). CK protects plants under
stressed environments from oxidative damage vis modulating
the actions of antioxidants, particularly of CAT, SOD, and POD
(Synkova et al., 2006; Zavaleta-Mancera et al., 2007; Zhang
et al., 2008). An enhancement in the tiller production of cereals
(barley, oat, and wheat) was observed in response to foliar
application of SS-ethephon chlormequat chloride (CCC), a form
of ethylene and trinexapac-ethyl and (TE) under stress. However,
they remained ineffective in boosting shoot growth (Rajala and
Peltonen-Sainio, 2001).

Exogenous SA application is reported to be positively
connected with enhanced tolerance of plants to different abiotic
stresses via stimulating the activity of antioxidant defense
enzymes (Kaydan et al., 2007; Ashraf et al., 2010). Furthermore,
SA plays numerous essential roles in photosynthetic rate,
stomatal conductance, transpiration, switching antioxidative
defense system and inhibiting Na+, and Cl− accumulation
(Arfan et al., 2007; Gunes et al., 2007; Xu et al., 2008; Fayez
and Bazaid, 2014). In the work of Jafar et al. (2012), the supply
of SA improved the overall yield of two wheat cultivars grown
under salinity stress. Foliar application of SA can decrease
the contrary effects of salt stress by helping seedling growth,
reinstating plant growth, and supporting the uptake of proline,
ABA, indole IAA, and CKs. Foliar application of phytohormones
like auxin, IAA, CK, and BR showed stress alleviated stress by
improving the antioxidant enzymes activities (SOD, POX, APX,
and GPX) and accumulating the non-enzymatic antioxidants
(tocopherol, ascorbate, and reduced GSH) (El-Mashad and
Mohamed, 2012). The exogenous application of BRs and SA
regulated different biochemical and physiological procedures to
increase salt resistance in crop plants (Ashraf et al., 2010).

Exogenous applications of JA and MeJA created resilience in
plants against stressful growth factors and adverse environments.
For example, JA protected Zucchini against chilling stress,
whereas in Mangifera indica, the treatment of MeJA enhanced
fruit quality and improved chilling tolerance (Wang and Buta,
1994; Gonzalez-Aguilar et al., 2000). In other edible plants,
the treatment of MeJA reduced the fungal development in
grapefruit and upheld the post-harvest quality of papayas (Droby
et al., 1999; Gonzalez-Aguilar et al., 2003). In addition, JA
and MeJA, when supplemented exogenously to raspberry, have
improved fruit quality via switching the antioxidant system
(Ghasemnezhad and Javaherdashti, 2008; Wang K. et al., 2009).
The process of germination was observed to be kindled in the
dormant seeds with the exogenous applications of MeJA and JA
(Ranjan and Lewak, 1992; Norastehnia et al., 2007; Dave et al.,
2011). The application of MeJA and JA promoted essential oil
biosynthesis in various oil crops (Rodriguez-Saona et al., 2001;
Zhang et al., 2005). Thus, NO, ROS, calcium, ABA, ET, and SA
together act as vital mediators of plant growth and development
during JA signal transduction and synthesis.

CONCLUSION

Globally, the individual or combined effect of different abiotic
stresses is seriously reducing the biological and economical
yields of numerous crops which necessitates the development
of biologically viable strategies to cope with these stresses.
Endogenous biosynthesis of PGRs and their exogenous
application as seed priming or foliar agents have the potential
to mitigate the adverse impacts of abiotic stresses. The various
types of PGRs interrelate with complex signaling systems to
equilibrate the responses and thereby overcome damages caused
by stress environmental conditions. Plants have developed
complex mechanisms governed by multiple receptors to receive
external signals and subsequently trigger an optimal response
against stress conditions via PGRs that mainly control the
defensive responses of plants by synergistic and antagonistic
activities which has been referred to as signaling cross-talk. The
interaction of phytohormones and stress is a well-known event
in plant stress management. The list of these candidates involves
both the classical and newly discovered phytohormones, and
the list is continually growing with the advent of novel growth
stimulatory phytochemicals. However, there is a dire need to
investigate various factors which trigger the biosynthesis of PGRs
in crop plants along their transportation receptors to increase
our understanding of PGRs ameliorative role in stressed plants.
Moreover, PGRs play a key role in association with crop growth
stage, along with intensity and duration of abiotic stress, and
need to be investigated in different crop species. PGRs signaling
is very complex and at multilevel, affects the plant growth and
developments. Therefore, the deep molecular understanding of
plant hormone receptors, and ligands under multiple stresses
can help to develop multiple stress tolerant crops. Likewise,
the responses of plant hormone are modulated according to
situations as singular stress or multiple stress. Therefore, the
hormonal response under various stages and various stress
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factors are very crucial to understand the complex mechanism
of abiotic stress tolerance. Moreover, the novel plant growth
regulators such as salicylic acid, nitric oxide, strigolactones,
and other signaling compounds have fundamental roles in
regulating the stress and hormone response, which could be
more focused in the near future to understand the crosstalk
network of cell signaling. Consequently, in the recent years,
various transcription factors such as MYB, MADS, WRKY, and

NAC had crucial roles in plant growth and development and also
respond to multiple abiotic stresses regulated by PGRs, having
future hopes to develop stress tolerant transgenics.
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