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Selection of appropriate sowing density is an important yield enhancing management

decision in maize (Zea mays L.) production particularly in rainfed conditions. This study

aimed at evaluating the optimum stand densities (OSDs) of 10 recently released maize

varieties under different crop management decisions and environments. Ten maize

varieties of varying characteristics were planted in the Northern Guinea Savanna of

Nigeria across 30 farmer’s fields in the rainy seasons of 2016 and 2017 under three

stand densities: 2.6, 5.3, and 6.6 plants m−2. Grain yield and yield components were

greatest under the high density in both years across all locations. The intermediate

maturing varieties produced higher grain yields compared to the early and late maturing

varieties in both years and locations. The environmental indices from the Factor Analytic

Model showed 20% of the fields were optimal, 28.3% moderate, 31.7% poor, and 20%

were very poor environments. Increasing planting density did not significantly affect the

grain yield of the varieties in very poor environments. A linear increase in grain yield

was observed in moderate and optimum environments with every increase in stand

density for all varieties except Sammaz 32, however, optimum planting densities could

not be reached for all the varieties. Therefore, tropical maize varieties should be planted

under specific densities that account for environmental and management conditions to

maximize yield.

Keywords: sowing density, environmental index, crowding tolerance, Factor Analytic Model, row spacing

INTRODUCTION

Over the years, maize has become an important crop in Nigeria, taking over acreages from
traditional crops such as millet and sorghum (Kamara et al., 2009). In 2016, about 10.4 million
tons of maize were produced from 6.4 million hectares, making Nigeria the highest producer of
maize in Africa (FAO, 2018). The increase in maize production in Nigeria since the 1960s have
been attributed to expansion in production area not the much needed intensification (FAO, 2017).
Yield per unit area of maize is relatively low in the country, at about 2 tons per hectare, <40% of
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the yield potential of most cultivars is achieved. The low per
hectare yield of maize has been attributed to many factors,
as highlighted by Adnan et al. (2017). Research efforts by
breeders and agronomists have led to the production of many
technologies, including breeding high-yielding varieties tolerant
of drought, diseases, low nitrogen, and Striga infestation (Badu-
Apraku et al., 2009; Kamara et al., 2009; Ifie et al., 2015). Some of
these varieties are early or extra early, which led to the expansion
of maize into the drier parts of Nigeria, where production was
originally unfeasible (Badu-Apraku et al., 2011).

The increasing demand for maize in Nigeria for both human
and commercial consumption has prompted the need for
improved intensification. Furthermore, the rise in population has
prevented continuous land expansion, as land is now needed for
more non-agricultural activities (Pretty et al., 2011). It has since
been agreed that to improve maize intensification, a dynamic
change in how maize is produced must be explored. These
changes must consider making agronomic recommendations
that deviate from the current generalized and blanket advice
which do not recognize the wide variations in climatic and
edaphic conditions (NAERLS and FDAE, 2017). Firstly, the
selection of adaptable varieties with traits suitable to the
peculiarities of each production zone must be encouraged (Badu-
Apraku et al., 2009; Kamara et al., 2009). Secondly, appropriate
site-specific fertilizer management that encompasses optimal
nutrient-use must be adopted (Kamara et al., 2014; Shehu
et al., 2018). Thirdly, smart agronomic practices that incorporate
appropriate time of sowing and selection of optimal sowing
densities must be promoted (Jibrin et al., 2012).

Optimum stand density (OSD) in annual crops is the
intermediate seeding density that maximizes yield at harvest
(Deng et al., 2012). OSD selection is an agronomic practice that
determines the growth and yield of maize, and its importance
has long been established all over the world (Liu and Tollenaar,
2009; Duvick et al., 2010; Casini, 2012; Al-Naggar et al., 2015).
Optimum stand density of maize varies across environments
and management practices, although several arguments in the
literature suggest that recent cultivated varieties differ in their
OSD even if planted in similar environments (Mokhtarpour et al.,
2011; Li et al., 2015; Jia et al., 2018). In optimum environments
(neither nutrients nor water limiting), grain yields are maximized
under higher OSD due to the following: increase in LAI and
net crop assimilation (Echarte et al., 2000; Sangoi et al., 2002),
increase in the number of cobs per area, and the capacity of maize
plants to develop new reproductive structures with an increase
in available resources per plant (Lauer and Rankin, 2004). It is
accepted that greater crowding tolerance of newly released maize
cultivars allows for using higher stand densities when compared
to older ones even under sub-optimal nutrient conditions (Di
Matteo et al., 2016).

Currently, sowing densities of up to 8.5 plants m−2 are
recommended under intensive production in North America (Li
et al., 2015). In Nigeria, the recommended sowing density for
maize is 5.3 plants m−2 irrespective of varietal characteristics,
environment, or management practice (NAERLS and FDAE,
2017). Under sole cropping, the density is usually achieved by
sowing and thinning to 1 plant hole−1 at a spacing of 75 cm inter

and 25 cm intra row while in mixed cropping, two plants ha−1

are usually sown at a spacing of 75 x 50 cm inter and intra row,
respectively. Most farmers adopt sowing densities below 50% of
the recommended rates, majorly due to lack of knowledge and
fear of yield losses associated with high-density sowing under
low fertilization and possible intermittent droughts. The low
output in smallholder farms in the Nigerian Savannas is partly
attributed to the adoption of sub-optimal sowing densities (Sani
et al., 2008). The absence of a standard OSD for maize varieties
in the Nigerian Savannas makes it necessary to undertake
research to better understand the optimum density of maize in
varying environments and management practices. Therefore, the
objective of the present investigation was to evaluate the response
of maize yield and yield components of variable maturity groups
of maize to different sowing densities in on-farm conditions of
varying management, edaphic and seasonal characteristics.

MATERIALS AND METHODS

Experimental Sites
Field trials were conducted in the rainy seasons of 2016 and
2017 across the Northern Guinea Savanna (NGS) zones of Kano
and Kaduna States, both located in North-Western Nigeria. One
Local Government Area (LGA) was selected in Kano (Doguwa)
and two selected in Kaduna (Ikara and Lere). The selection
of sites was made purposefully to cover areas with high maize
production potentials and where research for development and
extension support activities of the Sasakawa Africa Association
(SAA) are active. In each LGA, 10 farmers were selected through
stratified random sampling to cover the different groupings of
farmers in the SAA extension programs. SAA farmers were
grouped into five distinct classes based on how long they have
been in the program. Subsequently, two farmers were randomly
selected from each group in each LGA to cover all classes; a
total of 30 farmers were used for the entire research. The same
farmers and fields selected in 2016 were maintained and used in
2017, giving a total of 60 environments (30 farmers × 2 years
combinations). Detail description of the location of the LGAs,
characteristics of the experimental fields, and trial management
have described in Adnan et al. (2020).

Experimental Design
The trial involved a factorial design of 10 varieties and three
densities implemented in 30 farmers’ fields. Each field had 10
treatment combinations that were allocated using the design
of experiment (DOE) platform of JMP version 14 software
(SAS, 2018) according to the D-optimality criterion (Atkinson
and Donev, 1989) for a model that had variety, the experience
of a farmer, density, density∗density, variety∗density and
variety∗density∗density as fixed effects and farmer (=block) and
farmer nested in locations as random effects. The D-optimum
design is efficient, especially when the response variable depends
on quantitative and qualitative factors, and the qualitative factor
usually represents blocking variables (Atkinson and Donev,
1989). In generating our design, the qualitative factor, experience
of a farmer, was also used as a blocking variable and necessitated
the need to generate a D-optimum design. The above situation
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TABLE 1 | Characteristics of maize varieties used for the experiment.

S/N Original name Common name Type Maturity Features/Tolerance

1 M1026-10 SC651 Hybrid Intermediate Drought/Striga

2 IWD C2 SYN Sammaz 15 OPV¶ Intermediate Drought/Striga

3 PH-6 OBA98 Hybrid Late QPM#

4 DTSTR-Y SYN2 Sammaz 40 OPV Late Drought/Striga

5 TZECOMP3 DT C3 Narzo 22 OPV Early Drought, Rust and Blight

6 2009EVDT-WSTR Sammaz 32 OPV Early Drought

7 DTSTR-W SYN 13 Sammaz 41 OPV Late Drought/Striga

8 TZBSR Narzo21 OPV Late MSV*, Rust, Blight

9 TZL Composite 4-SR COMP 4 OPV Late Striga

10 TZL COMP1-W Sammaz 11 OPV Late Striga

¶Open pollinated variety.

*Maize streak virus.
#Quality protein maize.

generated an imbalance in the complete data since the variety
× density combinations were different in the individual farmer’s
field. In each farmer’s field, the experiment was laid out in a
randomized complete block design and each farmer represents
a replicate. In this study, the environment was defined as
the combination of farmers, densities, and the year. Here,
environments may refer to individual locations in a year or
several locations across the two years, such that environment is
condensed and commonly refers to the combination of location
(farmer, densities, and farmer’s plot) and year.

Treatments and Trial Descriptions
Ten maize varieties of varying maturity levels (two early, two
intermediate, and six late varieties) were used in the experiment
(Table 1). The varieties were planted under three sowing density
levels: the national recommendation (5.33 plants m−2), 50%
lower (2.66 plants m−2), and 20% higher (6.66 plants m−2).
The density selection was done to capture the reality of sowing
densities currently found in farmers’ fields (2.66 and 5.33
plants m−2) and a slight increase (6.66 plants m−2) over the
recommendation. The densities were achieved by maintaining
the same inter-row spacing (75 cm) and then varying the intra-
row spacing. For 2.66 plants m−2, an intra-row spacing of 50 cm
was used; for 5.33 plants m−2, a spacing of 25 cm was used;
and for 6.66 plants m−2, a spacing of 20 cm was used. Under
all densities, two plants were sown per hole and then thinned
to 1 plant per hole at two weeks after sowing. Sowing was done
by Bayero University Kano (BUK) team on the same planting
date as the one used by the farmer in his field as soon as the
rains were established. In 2016, sowing was delayed due to the
late establishment of rains, with sowing carried out on 20th
June in Doguwa, 21st June in Ikara, and 24th June in Lere. In
2017 however, the fields in Doguwa were sown on 31st May
while Ikara and Lere were sown on 2nd and 4th June. Fertilizer
application was done according to the regional recommendation
(120N:60P2O5:60K2Okg ha−1); potassium (K) was applied in the
form ofmuriate of potash, phosphorus in the form of single super
phosphate, and nitrogen was applied in the form of Urea. While

all the P and K fertilizers were applied at sowing, only half of the
N fertilizer was applied at the time of sowing (via incorporated
band row placement), and the other half applied 21 days later.
The farmers implemented the rest of the crop management
practices while harvesting was also done by BUK. Specifically
in each location, fields were managed according to farmers
experience class to maintain the Farmers’ experience gradient
(A-E). Each farmer field was planted with 10 plots, ensuring that
all 10 varieties are sown together with random combinations of
the 3 sowing densities according to the experimental design. The
individual plot size was 30 m2 (8 ridges of 0.75 x 5m length), and
the net plot for yield assessment was 12m2 (4m× 4 inner ridges).

Plant Data Measurements
Plant measurements were carried out at harvest and post-harvest
stages. Plants from the net plot were cut at ground level; ears
were removed, leaving husks intact on the plant. Ear number
was calculated by dividing the number of all the ears by the net
plot area and extrapolated to ear number m−2. The weight of
all cobs was then taken and recorded. A sub-sample of 10 cobs
was sampled following a strategic procedure where all cobs are
laid side by side; based on the number of cobs, selections are
made at intervals. For example, in a plot with 20 cobs, even
or odd-numbered cobs are selected until the 10 needed cobs
are reached. To measure kernel number per m−2 and kernel
weight in grams, kernels are removed from the 10 sub sampled
cobs before drying, three sets of 100 kernels are counted and
weighed, the average weight was then recorded. Cob and kernel
subsamples were dried to constant weight at 70

◦
C for at least

72 h, after which the seed and cob sub samples were weighed
and logged separately. However, the remaining plant parts (stover
without ears) were separated into various components (leaf blade,
sheath, husk, and stem including tassel) and weighed separately
for above ground measurement. The various components are
then chopped separately, with each component adequately mixed
and 500 g sub-sample oven-dried to constant weight at 65

◦
C

for 72 h. Measurements of all components followed methods
proposed by Ogoshi et al. (1999).
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Soil and Weather Measurements
For soil data measurements, one composite sample was taken
from each farmer field from four sampling points collected at
0–20 cm depth using soil augers during establishment before
planting and fertilizer application. The V zig-zag random
sampling approach was adopted, and the four sampling points
were taken from each field. Collected soil samples were
thoroughly mixed and passed through a 2mm sieve. Afterward,
one disturbed composite sample representing each farmer’s
field was taken to analyze major soil characteristics using wet
chemistry. Total nitrogen (TN) was determined using the micro-
Kjeldahl digestion method (Bremner, 1996). Total soil organic
carbon (TC) was measured using a modified Walkley and Black

chromic acid wet chemical oxidation and spectrophotometric
method (Heanes, 1984). Soil pH in water (soil to water ratio
of 1:1) was measured using a glass electrode pH meter and
the particle size distribution was determined following the
hydrometer method (Gee, 2002). Available phosphorus (avail.
P) was analyzed based on the Mehlich-3 extraction procedure
(Mehlich, 1984) preceding inductively coupled plasma optical
emission spectroscopy (ICP-OEC, Optima 800, Winlab 5.5,
PerkinElmer Inc., Waltham, MA, USA). One undisturbed core
sample was also taken near the four auger points in each
field. These undisturbed core samples were used for bulk
density (BD) analysis using the thermo-gravimetric core method
(Blake and Hartge, 1986); the results were averaged to have

TABLE 2 | Mean 100 kernel weight, kernels number, grain yield, aboveground biomass, harvest index, and number of days to anthesis and to physiological maturity of

maize as affected by year, variety, stand density, farmer and farmer experience.

Factor 100 Kernel weight Kernels number Grain yield Biomass Harvest index Days to anthesis Days to maturity

grams # ‘000 sq. meter−1 Mg ha−1 Mg ha−1 # #

Year (Y)

2017 24.56 2.35 4.51 9.26 0.49 61.4 113.9

2016 21.76 1.84 2.73 5.13 0.45 61.1 113.6

SED± 0.183 0.054 0.122 0.237 0.007 0.23 0.42

Variety (V)

SC651 23.84 2.44 5.18 7.03 0.46 60.7 110.2

Sammaz 41 21.42 1.39 3.48 4.75 0.44 60.1 109

Narzo 21 21.36 1.41 3.86 4.81 0.45 63.8 120

COMP 4 21.52 1.47 3.48 4.66 0.53 63.4 119

Sammaz 15 23.18 2.42 4.61 6.55 0.53 60.5 109.3

Narzo 22 21.74 1.48 3.26 4.92 0.44 59.8 109

Sammaz 32 19.71 1.46 2.95 4.4 0.48 64 119.3

Sammaz 40 20.79 1.28 3 5.1 0.46 64.2 119.9

Sammaz 11 21.06 1.36 3.26 5.63 0.44 64.6 120.1

Oba super 9 21.26 1.95 3.21 4.89 0.46 64.8 121.1

SED± 0.393 0.119 0.212 0.668 0.015 0.26 0.39

Stand density (SD, plants m−2 )

6.66 26.07 3.25 4.48 7.06 0.51 61.3 113.6

5.33 22.96 2.45 3.52 5.94 0.46 62.8 114.1

2.66 21.76 1.84 2.79 5.13 0.43 61.1 113.5

SED± 0.184 0.055 0.105 0.238 0.009 0.115 0.127

Experience (E)

Class A 22.91 1.98 3.49 6.88 0.49 60.3 112.2

Class B 21.78 1.94 3.09 5.95 0.49 60.9 112.6

Class C 21.58 1.7 2.66 4.85 0.46 62.2 115

Class D 21.14 1.79 2.3 4.14 0.47 62.4 115.2

Class E 21.35 1.8 2.4 3.83 0.44 61.4 113.7

SED± 0.347 0.103 0.203 0.545 0.011 0.12 0.21

Interactions

Y x V *** ns *** ns ns ns ns

Y x SD *** ns *** ** ns ns ns

Y x E *** ns *** *** ns ns ns

V x SD *** *** *** * ns ns ns

V x E ns ns ns ns ns ns ns

SD x E ns ns ns ns ns ns ns
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one bulk density value per field. Bulk density values ranged
between 1.73 and 1.40 g cm−3, with wide variation across farmer
fields (Supplementary Table S1). The soils are categorized as
moderately acidic (5.6–6.0) to slightly acidic (6.1–6.5). There was
a wide variation in the soil TC contents, with all locations in
Lere and Ikara having TC contents below 10 g kg−1. Across all
locations, TN contents were low although moderate variability
existed across the different farmer fields based on rating
suggested by Møberg and Esu (1991). High variability existed
in the available phosphorus contents, although all the soils were
largely poor in available P. Most of fields had sandy clay loam
texture, with only a few having sandy loam textures.

Statistical Analyses
All measured variables were subjected to analysis of variance. A
linear mixed model was adopted, farmer fields nested in both
LGAs and years ([Field|LGA] and [Field|Year]) were random
effects. The main effects of year, sowing density, variety and
farmer experience, and individual second-order interactions
were estimated as fixed effects. We used standard simplification
procedures to eliminate non-significant terms in the model; we
started with a null model with only random effect only and
added the main effects of year, sowing density, variety and farmer
experience, and individual second-order interactions. The model
with the lowest corrected Akaike′s Information Criterion (AICc)
was selected as the best-fitting model that minimize risks of
overparametization (Bozdogan, 1987). The result of grain yield,
harvest biomass, kernels number per square meter, and 100
kernel weights from the design ANOVA are shown in Table 2.

A Factor Analytic Model (FAM) (Meyer, 2009) was adopted
for analyzing the multi-environment effects of farmer fields and
year variations on the grain yields of the different maize varieties
as recommended by Piepho (1999) and Smith et al. (2001).
For this analysis, an environmental index (EI) was first created
by dividing the individual model estimate of each variety in a
particular farmer field by the overall estimate of that farmer for
a particular year. It is commonly assumed that environments
are considered random effects to make inferences to other
unobserved environments (Piepho, 1997). Piepho (1999) showed
that the predictive accuracy of best linear unbiased prediction
(BLUP) from a two-way ANOVA model has slight differences,
which mainly depends on whether varieties, location, or both,
are considered as random; however, the most vital assumption is
for the interactions to be random. Based on these assertions, the
FA model can be expressed as mixed models with FA variance-
covariance structure as follows:

Y = Xβ + Zµ + e (1)

Where, X is the incidence matrix for the fixed effects of SD, and Z
is the incidence matrices for the random effects of environments
that combine the main effects of genotypes and G × E. Vector β

is the fixed effect of SD and vectorsµ and e are the random effects
of environments and residuals within environments, respectively,
and are assumed to be random and normally distributed with
zero mean vectors and variance-covariance matrices. Similar

to Crossa et al. (2016), a representation of these matrices is
as follows:
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(2)

A different approach was adopted for a detailed analysis
of grain yield across environments, i.e. the farmers’ fields
× year combinations. Genotype-environment interactions are
best described with multiplicative terms. As the environments
are best considered as random, this gives rise to a mixed
model with factor-analytic covariance structures (Piepho, 1997).
The experimental data were described with the following
mixed model:

yijk =
(

β1i + u1j
)

+
(

β2i + u2j
)

dens+
(

β3i + u3j
)

dens2 + εk (3)

where yijk is the grain yield for the ith variety sown at a given

density jth environment in a field plot k, where the fixed effects
parameters βi, β2i, and β3i describe the (non-linear) response
of variety i to sowing density, and d1ij, d2ij and d3ij are random
effect parameters that describe the interaction between variety i
and environment j in the variety’s response to sowing density.

In this study, we used the FA structure for modeling variety
in terms of a few hypothetical (unobservable) factors. The
unobservable factor effect of the ith variety in the jthenvironment
can be expressed as

∑t
k=1 δik Xjk + dij, where δik is the kth

random regression coefficient of the ith variety (loading or
genotypic sensitivity) to the kth unobserved (latent) variable
related to the jth environment (environmental potentiality),
xjk, and dij are the residuals interaction term. The score of

the ith variety in the kth factor component is estimated as a
covariance parameter; thus, the model has a random regression
coefficient form.

Therefore, the factor-analytic structure with q ≤ e factors or
components [FA(q)] is of the form 11’ + D, where 1 is an
e × qmatrix of δ’s and D is an e × e diagonal matrix with e non-
negative parameters on the diagonal. Each column of 1 contains
the varieties scores for one of the multiplicative terms. For q =

1, the model denoted as FA (1) has one multiplicative term and
2e parameters to be estimated, for q = 2, i.e., model FA (2), the
model has 3e parameters to be estimated, and so on for FA (3), etc.

A simple multiplicative model for the random effect
parameters is given by Piepho (1997):

d1ij = u1iwj, d2ij = u2iwj, d3ij = u3iwj (4)

Where; u1i, u2i and u3i being the 3 parameters for variety i, and
wj being an underlying (unobserved) environmental factor or
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index that represents some gradient (e.g., the inherent fertility of
a field and how well the rainfall was distributed at that location
in that year). Equation 4 means that the covariance structure of
the random effects corresponds to the Eberhart-Russell stability
model (Eberhart and Russell, 1966), a factor analytic model
noted as FA (1) in SAS (Piepho, 1999). According to Piepho
(1999), FA with one factor together with equal or unequal specific
variances for the treatments are usually of the Finlay–Wilkinson
(FA1) (Finlay andWilkinson, 1963) or the Eberhart–Russell (FA)
(Eberhart and Russell, 1966) model groups.

Using the MIXED procedure in SAS version 14.3 (SAS,
2018), the FA structures were specified with the TYPE option
in the RANDOM statement. Parameters of variance-covariance
were estimated by restricted maximum likelihood (REML) with
Newton–Raphson iteration solutions in the MIXED procedure.
Since the Kenward-Roger method (Kenward and Roger, 1997) is
superior for the analysis of unbalanced data sets (Spilke et al.,
2005), we used this method for the calculation of degrees of
freedom for the contrast test of variety effects because our design
was also unbalanced.

RESULTS

Weather Conditions
Figure 1 shows the climatic conditions of the 3 LGAs in 2016
and 2017. Lere had the highest cumulative rainfall for both years,
although the variation between the LGAs was higher in 2016
than in 2017. In 2016, Lere LGA had 78.1mm more rainfall than

Ikara and 148.1mm more rainfall than Doguwa, while in 2017,
the difference was 58.7 and 106.7mm, respectively. Due to early
establishment and late cessation of rainfall, the trials were sown
earlier and harvested later in 2017 than in 2016 across all 3 LGAs.
In 2016, Lere had the least number of rainy days and the highest
cumulative rainfall, while Doguwa had the highest number of
rainy days and the lowest amount of cumulative rainfall. In 2017
however, Lere had the greatest number of rainy days and the
highest amount of cumulative rainfall, while Doguwa had more
rainy days but lower cumulative rainfall than Ikara. Overall, 2017
was a better year than 2016 across all 3 LGAs, as evidenced
by higher cumulative rainfall and a more significant number of
rainy days.

Yield Components
The effects of sowing density, variety, year, farmer’s experience,
and their interactions on 100-kernel weight (g), sink size (kernel
number m−2), grain yield (Mg ha−1), aboveground biomass
(Mg ha−1), flowering and maturity dates (days) were presented
in Table 2. The grain yield and aboveground biomass were
significantly (P < 0.05) higher in 2017 (4.51 and 9.26Mg
ha−1, respectively) compared to 2016 (2.73 and 5.13Mg ha−1,
respectively). The variety SC651 had the highest grain yield
(5.18Mg ha−1) and aboveground biomass (7.03Mg ha−1). Both
grain yield and aboveground biomass were higher in class A
farmer’s field while the lowest grain yield was in class D farmer’s
experience even though it was statistically at par with class C
and E. Interactions of year, variety, sowing density and farmer’s

FIGURE 1 | Cumulative rainfall (solid lines with markers), number of rainy days (lines with markers), and monthly rainfall (bars) for the study areas in 2016 and 2017.

Arrows indicate sowing and harvest dates for the individual locations in 2016 and 2017.
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experience did not significantly affect numbers of days to anthesis
and physiological maturity. Harvest index increased from 0.43 to
0.51 with increased sowing density.

Environmental Indices and Factor Analytic
Model Parameters
Figure 2 shows the result of the environmental index calculated
in 2016 and 2017, together with the cumulative probabilities
for both years combined. Across both years, the environmental
indices ranged between +2.23 to −1.55 (Figure 2). A higher
value of an environment index indicates optimum conditions
for the growth and development of maize with respect to
soil, management, and weather conditions. Out of the 60
environments, 12 environments (20%) had index values between
1.07 and 2.23 and were classified as optimum environments,
17 environments (28.3%) have indices between 0.006 and 0.89
and are classified as moderate environments, 19 environments
(31.7%) have index values <0 but >-1 and are classified as
poor environments, while 12 environments (20%) have index
values between −1 and −1.5 and were classified as very poor
environments.

Table 3 shows the estimated probability values of the fixed
effect (intercept, density, and density2) parameter estimates of
the 10 maize varieties modeled using the Eberhart-Russell (FA)
model combined across all environments. The intercept was
statistically significant for all the varieties except Sammaz 40 and
Sammaz 32. The highest estimate for the intercept was observed
for Sammaz 15, while the lowest was observed for Sammaz 40.
The effect of density was significant only for SC651, Sammaz 11
and OBA98 with Narzo 22 having a P-value slightly higher than
0.05. However, for the quadratic effect of density, P-value was
significant for SC651, Narzo 22, and OBA98.

Estimated Grain Yields
Figure 3 shows the estimated grain yield of the different maize
varieties under varying sowing densities. In good environments

(Environment index = 1.5) linear increase in grain yield was
observed with every increase in planting density for all the
varieties except for Sammaz 32, although the magnitude of
yield increase was variety specific. In the moderate environment
(Environment index = 0.5), a linear increase in grain yield
was observed with every increase in planting density up to the
highest density tested for Sammaz 15, SC651, OBA98, Narzo 21
and Sammaz 11. For Sammaz 32 and Sammaz 41 however, an
increase in planting density from 2.66 to 5.33 plants m−2 led
to a significant increase in yield, but the further increase did
not produce any significant yield increase. In poor environments
(Environment index = −0.5), a linear increase in grain yield
was observed with an increase in planting density for Sammaz
32, Sammaz 15, Sammaz 11, Oba 98, and Narzo 21. Sammaz
40 and Narzo 21 did not respond to increasing density, while
for COMP 4 and SC 651, increasing planting density from 2.66
to 5.33 plants m−2 did not lead to a significant increase in
grain yield, but further increase to 6.66 plants m−2 resulted in a
significant yield increase. Increasing planting density from 2.66
plants to 5.33 plants m−2 did not significantly affect the grain
yield of all the varieties in very poor environments (Environment
index=−1.5).

The response of individual varieties to increase in planting

density across different environments was shown in Figure 4.

The highest grain yields were recorded for variety SC 651

irrespective of the environment. Grain yields of 9.6, 7.5, 5.4

and 3.4Mg Ha−1 were recorded under the highest planting

density (6.6 plants m−2) in the good (EI = 1), moderate
(EI = 0.5), poor (EI = −0.5) and very poor (−1) environments

respectively. When the variety was planted under 5.3 plants m−2,
a yield of 6.95, 5.72, 4.48, and 3.25Mg Ha−1 was recorded for
good, moderate, poor, and very poor environments. The variety
produced grain yields of 5.12, 4.39, 3.66, and 2.94Mg Ha−1

for good, moderate, poor, and very poor environments when
planted under the lowest sowing density. For the high-density
planting, a yield difference of 44.2% was observed between

FIGURE 2 | (A) Cumulative Probability of environmental indices and (B) actual environmental indices in 2016 and 2017.
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SC 651 and the lowest yielding variety (Sammaz 32) when
planted in good environments, while the difference was 86.6%
in very poor environments. A yield difference of 61.7 and 65.5%
was observed between the good environments and the poor
environments for the medium-density planting. However, for the
low-density planting, the difference in yield between SC 651 and
Sammaz 32 was 34.4 and 67.8% under the very poor and good
environments, respectively.

TABLE 3 | Fixed effect parameter estimates, and their corresponding probability

values averaged across environments for the 10 varieties used in the study.

Variety #β1 β2 β3

SC651 <0.0001** <0.0001** <0.0001**

Sammaz 15 <0.0001** 0.2057 0.127

COMP 4 <0.0001** 0.2984 0.478

Narzo 22 0.0001** 0.4252 0.025*

Sammaz 32 0.0566 0.7433 0.145

Narzo 21 <0.0001** 0.9599 0.948

Sammaz 11 0.0092** 0.0268* 0.077

Sammaz 41 <0.0001** 0.062 0.386

Sammaz 40 0.1056 0.4252 0.545

OBA super 9 0.0175 0.0079** 0.005**

β1, Intercept; β2, Density effect; β3, Quadratic effect of density.
#Parameters set at the point of experimental design.

**Significant at 1% level of significance.

*Significant at 5% level of significance.

DISCUSSION

Generally, the response of maize yield and yield components
to increasing stand density was asymptotic irrespective of
the environment. Similarly, our results showed that OSD is
environment-dependent (climate and crop management) as we
found that the biomass and grain yield of all varieties were higher
in years with less variable and greater cumulative precipitation.
The yield and yield components were also higher with class
A farmers’ group with timely weeding, and N fertilization and
proper adherence to extension services. Several authors reported
variation in maize OSDs across diverse environments in the
literature (Echarte et al., 2000; Sangoi et al., 2002; Tollenaar
and Lee, 2002; Boomsma et al., 2009; Liu and Tollenaar, 2009;
Hernández et al., 2014). Yield increases with elevated sowing
densities have been reported all over the world. In Egypt, for
example, Al-Naggar et al. (2015) reported a yield increase with
increasing planting density up to 9.5 plants per meter square
under high nitrogen applications. Historical yield gains for
maize in the United States have been attributed to increased
planting density (Tokatlidis and Koutroubas, 2004). Dramatic
increases in grain yield due to elevated density have been reported
in Brazil, Argentina, Canada, and France (Duvick, 2005). In
Nigeria, Kamara et al. (2006) and Adeniyan (2014) reported
grain yield gains with an increase in planting density. Although
optimum stand density of maize has been shown to be variety
dependent (Widdicombe and Thelen, 2002; Sarlangue et al.,

FIGURE 3 | Grain yield of ten maize under different environments. Panels represent: very good environment (A), moderate environment (B), poor environment (C),

and very poor environment (D).
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FIGURE 4 | Grain yield of different maize varieties under varying sowing densities across environments. X-axis, Sowing Density (plants m−2); Y-axis, Grain Yield (Mg

Ha−1); Z-axis, Environmental index (Negative values indicate poor environments).

2007), even the best hybrids will produce low yields when
agronomic management is not optimum (Boomsma et al., 2009).
This is because maize varieties interact with the environment and
crop management in producing grain yields (Mastrodomenico
et al., 2018). Therefore, maximizing the yield potential of a
variety under elevated planting density requires an adequate
understanding of the dynamics between plant genetics and
agronomic management (Tollenaar and Lee, 2002).

Recently, researchers have suggested using FA mixed models
for analyzing multi-environment trials (METs) data (Malosetti
et al., 2013; Smith et al., 2015; Crossa et al., 2016; Tang et al.,
2018; Hoefler et al., 2020). The use of FA variance-covariance
structures for variety effects has been demonstrated to produced
better predictors than the normal assumption that variety effects
are independent (Piepho, 1997; Thompson and Resende, 2004).
Since the FA is a linear mixed model, it also has the advantages
of accommodation of error variance modeling (in particular,
heterogeneity of block and error variance between environments
and within-environment spatial correlation) and easy handling
of incomplete data (Crossa et al., 2010). In the current study also,
which was a MET, the use of the FA mixed model resulted in the
identification of varietal response under varying environments.

In our experiments, farmers with varying characteristics
were selected such that some groups (A and B) are known to
follow all recommended agronomic practices, have good soils
due to history of proper residue management and manure
application, and have for long belonged to farmer groups

where they frequently access extension services. The second
groups of farmers (C, D, and E) follow their own practices
that entail non-optimal nutrient management, inadequate weed
control, and often lack access to extension services. Additionally,
the amount and distribution of rainfall in the two years of
experimentation were very different, leading to variations in
the observed environmental indices. Since the environmental
indices were created by combining the soil characteristics in
different farmer fields, location and year; a tremendous variability
among the test environments was observed. About 20% of the
environments were very good and are the most optimum for
maize production. About 30% of the environments are moderate
environments and could be used for maize production but are
not optimal. The remaining environments are not appropriate
for maize production, basically due to poor soils and improper
agronomic management coinciding with low and improperly
distributed rainfall. Since agronomic decisions are blanket in
Nigeria, farmers have been consistently advised to increase
their planting densities, especially under sole and strip cropping
systems, without considering the variation among farmers, soil
types, and weather conditions (Adeniyan, 2014; Gilbert, 2016;
NAERLS and FDAE, 2017). The higher yields recorded in
the optimum environments are attributed to better agronomic
management, good soils, and higher rainfall amounts. Ruffo
et al. (2015) suggested that increased planting density must be
synergistic with other optimal management factors, including
weed control and better soil fertility management. Grain yield
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responses showed a convex shape in the poor environments
where increasing planting density from 2.6 to 5.3 plants m−2

did not affect grain yield but further increase to 6.6 plants m−2

resulted in yield increases. This response is typical in weed-
infested maize fields (Tollenaar et al., 1994; Page et al., 2012).
Maize suffers competition from early weeds, but the competitive
ability is improved by increasing planting density (Tollenaar and
Lee, 2002).

Results from the present research showed an apparent
variation in yield responses due to elevated planting densities
across the test varieties. All the varieties responded to increasing
planting density in the optimum environments, although all
the responses were linear with no evidence of attainment of
optimum density. Higher grain yields were recorded for the
highest planting density for all the varieties in the optimum
environments except for Sammaz 32. This is an unexpected result
as the variety is early maturing, and previous reports by Edwards
et al. (2005) suggested that higher planting densities are expected
for early maturing varieties than full season varieties. This is
because early varieties usually have smaller leaves, meaning
more plants are needed per area to reach the same amount of
cumulative intercepted radiation (Tollenaar et al., 2006).

The intermediate varieties (SC 651 and Sammaz 15) produced
higher yields than the early and late varieties under all tested
planting densities and across all environments, although the
variation in yield was greater in elevated planting densities. Even
though the early varieties mature earlier than the intermediates
and share similarmorphological characteristics, their lower yields
are clearly due to low genetic yield potentials and shorter
grain fill duration. The intermediate varieties had low biomass
plasticity and low reproductive partitioning, which provided
them the ability to respond to increasing population densities
due to: (i) reduction of sink limitation, which resulted in
increased harvest index and (ii) increase in their ability to
explore resource and tolerate biotic stresses which leads higher
biomass production (Sarlangue et al., 2007). In addition, all
the intermediate varieties were drought and Striga tolerant, and
because breeding for Striga is done under low soil Nitrogen
(Ifie et al., 2015), they had the added advantage of utilizing
the available nitrogen even under high density. It is interesting
to note that the early maturing varieties produced grain yields
that were statistically similar to the late varieties that have been
reported in the literature to have relatively higher potential
yields. The late-maturing varieties produced grain yields that
were significantly lower under high density. This could be
due to the high shading ability caused by vigorous vegetative
structures that lowered harvest index. The lower grain yields
could also be attributed to the longer time it takes for the
late varieties to end juvenility and reach full grain filling (van
Roekel and Coulter, 2011). This research demonstrated that the
response of grain yield of maize to plant density was dependent
on varietal characteristics and environmental conditions in
the Nigerian Savannas. Furthermore, under elevated planting
densities, varieties with the ability to tolerate the crowding
stress and, to some extent, drought and low nitrogen should
be adopted. While the selection of appropriate varieties with
good tolerance to both environment-specific biotic and abiotic

stresses may result in increased grain yield, Adnan et al.
(2020) reported that under elevated density beyond the current
recommendation in the Guinea Savannah, economic gains are
possible in environments there is concomitant increase in N
fertilizer application rates. This necessitates additional research
to determine the “best-fit” stand density that maximizes maize
yield and economic returns to provide farmers with a better
understanding of the economic risks associated with adoption
high stand density.

CONCLUSION

Sowing density recommendations all over Nigeria have been
blanket without consideration for varietal characteristics,
soil type, climatic conditions, and or management decisions.
We conducted experiments in farmer fields with different
management skills using maize varieties of different
characteristics planted under different stand densities. Yields
of tested varieties were different under both low and high
stand densities indicating a difference in both potential
yield and tolerance to crowding. The intermediate maturing
varieties which have both high yield potentials and tolerance
to crowding, drought, and low nitrogen, produced the highest
grain yields under all the tested stand densities. The study
shows that the planting density of maize can be increased,
leading to a corresponding increase in grain yield under suitable
environmental conditions.
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