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Hot and dry Mediterranean ecoregions are characterized by low soil organic carbon

content and large potential to become carbon sink when appropriately managed. Soil

carbon sequestration may also play an important role in improving the resilience of these

vulnerable agroecosystems to increasingly drastic impacts of global climate change.

One agricultural practice that aims to increase soil organic carbon stocks, among other

beneficial outcomes, is the use of cover crops. Although cover crops can increase

soil organic carbon content, recent studies have observed that cover crops may lead

to lower soil carbon stocks when considering co-management strategies, especially

at greater soil depths. In this review, we outline the current paradigm of soil organic

carbon dynamics and aim to apply our current understanding of soil carbon sequestration

processes to cover crop management. We review how cover crop practices such as

cover crop species selection, growth duration, and termination methodologies may

impact soil organic matter sequestration and stabilization processes and provide insights

to direct future research and inform cover crop management for C sequestration in

Mediterranean agroecosystems.

Keywords: cover crops, deep soil, stabilization, destabilization, rhizosphere, particulate organic matter (POM),

mineral-associated organic matter (MAOM), management

INTRODUCTION

The world’s attention is gaining focus on possible ways for agriculture to offset the impacts of global
climate change (Lal, 2016). Soils have the unique capacity to sequester large amounts of carbon (C).
Soils contain ∼75% of the terrestrial carbon pool, which corresponds to two to three times the
amount of C in both the atmosphere and vegetation (Fontaine et al., 2007; Schmidt et al., 2011;
Scharlemann et al., 2014). Thus, with about half of habitable land-use being allocated to agriculture
(Ellis et al., 2010), agricultural soils play a key role inmaintaining a balanced global carbon cycle and
provide mitigation and adaptation strategies to address global climate change (Gross and Harrison,
2019; Tautges et al., 2019; Lavallee et al., 2020).

Occupying nearly 15% of the global land area, soils forming in Mediterranean climates have the
potential to be significant carbon sinks (Safriel et al., 2005). Having cool moist winters and warm
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dry growing seasons (Aguilera et al., 2013), these soils are
typically low in soil organic carbon (SOC) due to limited
primary productivity and conditions that favor rapid microbial
decomposition of plant residue (Van-Camp et al., 2004; Chiti
et al., 2012; Wiesmeier et al., 2013). However, agricultural
practices remove some of these limitations by increasing biomass
inputs and therefore C storage potential if managed adequately.

Soils of Mediterranean environments are also highly
biodiverse (Underwood et al., 2009) and provide natural
resources to support some of themost productive agroecosystems
in the world (Guan et al., 2009) in regions of California, central
Chile, southwest Australia, southwest South Africa, and land
around the Mediterranean Sea (Aschmann, 1984; Aguilera et al.,
2013). In fact, the state of California supports the production of
more than half of the US fruits, nuts, and vegetables (Johnston
and Carter, 2000). Adoption of irrigated agriculture in these
designed landscapes impact many of the processes regulating
carbon deposition and cycling, such as enhancing biomass inputs
into the soil ecosystem. However, intensification, simplified
rotations, and soil disturbances have hampered this potential
despite the recognized benefits of conservation practices for SOC
accumulation (Lal, 2020). Given the C sequestration potential
of Mediterranean soils and the potential for widespread soil
degradation in these agroecosystems, there is an urgent need
to identify effective management approaches that optimize
soil organic carbon sequestration and stabilization in these
unique agroecosystems.

Cover cropping has been recognized as an effective practice to
promote soil conservation with co-benefits for sustainability and
resilience of agriculture (Duval et al., 2016; Novara et al., 2021)
through erosion control, and nutrient and water conservation
(Shroder, 2020). Cover crops can be grown as grazed or exported
forage, nutrient catch crops, ground cover to reduce losses, and
green manure when used as a source of nutrients (Shackelford
et al., 2019). As such, cover crops are widely promoted through
EU Common Agricultural Policy (Shackelford et al., 2019) and
federal and state incentive programs in the US. Cover cropping
is also increasingly recognized as a practice that increases
SOC (Gristina et al., 2020). However, uncertainties and high
variability in the impacts of cover crops on SOC stocks remain.
While various meta-analyses have indicated that cover crops
can increase SOC content (Aguilera et al., 2013; Poeplau and
Don, 2015), other studies show no effects (Kaspar et al., 2006;
Celette et al., 2009; Steele et al., 2012; Oliveira et al., 2016)
and even loss of soil organic carbon in the deep soil horizons
of some agroecosystems (Tautges et al., 2019; Camarotto et al.,
2020). The effectiveness of cover cropping is therefore site-
specific and varies with soil properties, climate, and management
practices (García-Orenes et al., 2010; Peregrina et al., 2010;
Ramos et al., 2010; Gómez, 2017). Recent understanding of
carbon and nutrient flows in soil ecosystems also point to
the importance of cycling through microbial communities for
long term carbon sequestration (Lehmann and Kleber, 2015;
Kallenbach et al., 2016). Thus, the emerging complexities of SOC
cycling and stabilization and destabilization mechanism must
inform cover crop management to maximize C sequestration

(Harden et al., 2018) and more accurately predict cover crop
management outcome (Dijkstra et al., 2021).

The goal of this review is to apply our current understanding
of SOC pools and fluxes to guide cover crop management
strategies that prioritize SOC sequestration. To contextualize
this discussion, we constrained this review to studies of cover
cropping in systems with Mediterranean-type climates. These
agroecosystems are complex and include a wide range of
commodities (perennial and annual crops) and large variability
in agricultural practices that affect cover crop management
and SOC dynamics. Cover crop management goals are also
diverse in these settings—including a source of crop nutrients,
to control erosion, improve soil health, promote biodiversity,
and offset greenhouse gas emissions—with each objective
influencing how cover crops are selected and managed. We
first review a set of grounding principles to appraise SOC
stabilization and destabilization mechanisms in these systems
based on three influencing factors: (1) SOC cycling; and influence
of (2) soil depth; and (3) plant residue quality. We then
discuss how considering SOC pools and storage mechanisms
across depths and for various biomass inputs can provide
insight into cover crop management (i.e., species selection,
growth duration, and termination methodology) for increased
SOC sequestration.

Considering SOC as Complex Pools and
Dynamic Fluxes of Carbon
Understanding SOC dynamics in response to land-use changes,
soil management practices, and global climate change will
help identify opportunities to optimize SOC sequestration and
ensure its long-term persistence. Scientific research has well-
established the drawbacks associated with considering soil
organic matter (SOM) as a single uniform entity (Parton
et al., 1988; Jenkinson, 1990; Trumbore, 2009). More recent
conceptual frameworks have developed upon our understanding
of SOM dynamics, specifically the physicochemical complexity
of SOC and its continuum as pools (storage) and fluxes
(inflow and outflow rate) components across a spectrum of
decomposition stages, each with contrasting properties (Six et al.,
2002; Cotrufo et al., 2013; Lehmann and Kleber, 2015; Basile-
Doelsch et al., 2020; Lavallee et al., 2020; Zhu et al., 2020).
Nevertheless, our understanding of the specific determinants
underlying the long-term persistence of SOC are currently
under contention. Recent conceptual frameworks are broadly
moving away from models based on chemical recalcitrance
mechanisms, such as humic substances with degradative
resistance, toward models based on chemical stabilization and
physical protection mechanisms of SOM via mineral sorption
and aggregate occlusion (Figure 1; Six et al., 2002; Lehmann
and Kleber, 2015; Basile-Doelsch et al., 2020; Witzgall et al.,
2021). Ultimately, the most significant challenge remains in
categorizing and measuring this dynamic SOC continuum;
especially when considering that the formation of stable and
long-term sequestered SOC requires continual flux and turnover
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FIGURE 1 | Summary of the main mechanisms of soil organic carbon stabilization/destabilization. (1) Physical protection, (2) Physicochemical protection, (3) DOC

deep percolation.

(Six et al., 2002; Janzen, 2006; Kallenbach et al., 2016; Dynarski
et al., 2020).

Recently developed SOC cycling theories propose that,
upon deposition into the soil ecosystem, plant and animal-
derived organic material of diverse sizes, quality, and molecular
complexity are continuously processed by the soil decomposer
community, through fragmentation and depolymerization,
eventually resulting in the lower molecular-weight and labile
substrates that are utilized during microbial assimilation
(Cotrufo et al., 2013; Lehmann and Kleber, 2015; Liang et al.,
2017; Basile-Doelsch et al., 2020).

Compared to larger organic fragments, these simple and
labile biopolymers and monomers have both a higher oxidation
state and increased solubility in water, thus increasing their
transport and reactivity within the soil solution. In turn, this
dissolved organic matter (DOM) is generally more spatially
accessible (Erktan et al., 2020) with a higher capacity for
assimilation into microbial biomass due to its smaller size and

lower molecular weight (Weiss et al., 1991; Kallenbach et al.,
2015). Simultaneously, the solubility and heightened oxidation
state of these labile carbon substrates are thought to facilitate
more sorption interactions withmineral surfaces, increasing their
protection and persistence through stabilization within the soil
matrix and/or incorporation within aggregates (Cotrufo et al.,
2013; Robertson et al., 2019). While this microbial metabolic
processing of substrates results in some loss of SOC through
respiration, it also facilitates the flux of C through the soil
ecosystem via production of microbially-derived substrates and
turnover of microbial necromass—a concept known as the
microbial carbon pump (MCP; Liang et al., 2017; Liang, 2020;
Zhu et al., 2020). Thus, under this concept, C inputs have
several possible pathways: (1) continual flux through the MCP;
(2) escape from the MCP through microbial respiration; or
(3) escape from the MCP via physicochemical protection of
microbial necromass within the soil matrix and/or occlusion
within aggregates.
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Importantly, organic substrates exist along a thermodynamic
gradient whereby the transformation of large molecular weight,
recalcitrant, and energy-rich compounds into smaller molecular
weight, labile, and energy-poor compounds release energy
and reduce the activation energy required to depolymerize
subsequent stages (Malik et al., 2016). This has functional
relevance since the enzymatic investment requirements of the soil
microbial community to process soluble, labile substrates is much
less than for processing recalcitrant, high-energy compounds
such as cellulose and lignin. As such, alterations in the quality
of C inputs into the soil ecosystem may cause shifts in the
microbial community’s energy investment strategies (Schimel
et al., 2007; Kallenbach et al., 2015; Kravchenko et al., 2019; Malik
et al., 2020), as well as their Carbon Use Efficiency (CUE) and
thus the fate of C inputs (Manzoni et al., 2012; Cotrufo et al.,
2013; Kirkby et al., 2013; Kallenbach et al., 2015). Extracellular
enzyme production and increased metabolic costs associated
with breakdown of complex biopolymers have been shown
to reduce CUE when compared to labile DOM compounds,
which may be assimilated into microbial biomass with minimal
depolymerization (Lekkerkerk et al., 1990;Malik et al., 2016). The
higher nitrogen (N) content of the DOM pool may also facilitate
more efficient utilization, requiring less microbial investment in
nutrient acquisition (Berg and Meentemeyer, 2002; Hessen et al.,
2004; Liang et al., 2007, 2019). As such, it has been hypothesized
that labile C substrates are the dominant source of microbial
products, while also having a more direct and efficient pathway
toward mineral stabilization (Cotrufo et al., 2013; Kallenbach
et al., 2015). In general, cover cropping is understood to increase
the proportion of labile carbon inputs into soil (Duval et al., 2016;
White et al., 2020). However, less attention has been paid to the
specific ways by which cover crop management strategies may
increase the relative proportion of plant photosynthates allocated
toward labile dissolved carbon inputs, such as through enhanced
rhizodeposition, and how this may therefore result in improved
SOC accumulation.

With respect to the monitoring of SOC persistence, a
framework, proposed in Lavallee et al. (2020), suggests a simple
and ecologically relevant method for measuring SOC storage
that separates SOM into two physically defined pool fractions,
particulate organic matter (POM) and mineral-associated
organic matter (MAOM). There is potential for cover crop
selection andmanagement to influence the size of these fractions.
Also called the light fraction, POM is formed during litter
decomposition through fragmentation and depolymerization. It
contains lightweight fragments of plant and fungal material,
composed predominantly of complex structural compounds such
as celluloses, lignin, and chitin, that are relatively undecomposed
and generally low in nutrient content (Six et al., 2001; Kögel-
Knabner et al., 2008; Sanderman et al., 2014; Cotrufo et al., 2015).
POM exists within a spectrum of size and density categories
and may either be physically accessible for decomposition
(free) or protected from degradation through occlusion within
aggregates (Jastrow and Miller, 1996; Lavallee et al., 2020).
Significant research has concluded that POM is essential in
the genesis of large microaggregates and macroaggregates, as a
nucleus for the assemblage of smaller microaggregates together

(Cambardella and Elliott, 1993; Jastrow and Miller, 1996; Angers
et al., 1997; Six et al., 2000; Bongiovanni and Lobartini, 2006;
Jastrow et al., 2007; Witzgall et al., 2021). As such, the role
of POM in the formation of soil structure and SOC physical
occlusion is significant. The physical transport pathways of POM
are notably more limited than that of DOM substrates, and so its
incorporation within the soil profile occurs more slowly in lieu
of cultivation and bioturbation (Rabbi et al., 2014; Cotrufo et al.,
2015).

On the other hand, MAOM contains low molecular weight
compounds derived mainly from microbial decomposition
(Kögel-Knabner et al., 2008; Cotrufo et al., 2013; Sanderman
et al., 2014; Castellano et al., 2015; Kleber et al., 2015).
The extent of MAOM accumulation in soils is dependent
on the balance between production of microbial biomass and
decomposition to necromass (Six et al., 2006). This balance
is influenced by the microbial CUE, which is defined as the
proportion of organic C allocated toward the accumulation of
biomass (anabolism) relative to the organic C allocated toward
respiration (catabolism) (Spohn et al., 2016). Thus, higher CUE
leads to higher microbial biomass, and therefore, higher SOC
cycling and storage from necromass, while lower CUE leads
to more carbon respiration and gas losses (Manzoni et al.,
2012).

The microbial biomass (necromass) produced is then
stabilized into the MAOM pool mainly through physicochemical
interactions with soil minerals (Figure 1; Six et al., 2002; von
Lützow et al., 2007; Cotrufo et al., 2013; Kallenbach et al.,
2016). Hence, the capacity of a soil to store SOC as MAOM is
conditioned by the inherent soil physicochemical characteristics,
such as the relative ratio of clay and silt content, clay mineralogy
(i.e., 1:1 or 2:1 phyllosilicates), pH, short-range ordered minerals,
and the presence of crystalline and poorly crystalline Fe/Al oxides
that combine to determine mineral surface area and sorption and
desorption dynamics (Six et al., 2002; Jastrow et al., 2007; Bailey
et al., 2019). Thus, soils have different SOC mineral saturation
potentials, defined as the theoretical maximum of SOC storage
within theMAOMunder optimum conditions (i.e., soil moisture,
temperature, continuous carbon inputs, and soil mineralogy;
Castellano et al., 2015).

This differing SOC saturation potential was highlighted in a
recent comparative study that aimed to quantify the potential
of SOC sequestration of a wide range of soil functional groups
in the World Reference Base (i.e., calcaric, calcic, fluvic, and
vertic) as a result of cover cropping. All the soils studied exhibited
different C sequestration potential, where soils with fluvic
diagnostic materials (marine and lacustrine parent materials)
showed the highest SOC storage potential (34.4 t/ha; Gristina
et al., 2020). The concept of saturation limit predominately
concerns the MAOM pool, with some studies indicating no
saturation limitations for POM (Six et al., 2002; Stewart et al.,
2009; Lajtha et al., 2014). Given that at least half of the total
SOC in arable land consists of the MAOM pool (Kirchmann
et al., 2004; Miltner et al., 2012; Plaza et al., 2013; Wiesmeier
et al., 2013), it may be most impactful to target soil C increases
within the MAOM. However, several studies suggest that once
the MAOM fraction is saturated, the SOC accrual increase in the
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POM fraction becomes larger (Six et al., 2002; Castellano et al.,
2015; Cotrufo et al., 2019).

Most notably, POM and MAOM have highly variable mean
residence times. While the POM fraction generally resides from
years to decades, MAOM has longer residence time potentials
of decades to centuries (Kögel-Knabner et al., 2008; Kleber
et al., 2015). Though distinct in their chemical composition
(Cotrufo et al., 2015), the residence times of POM and MAOM
are thought to be related more to their physical protection
mechanisms in soil, and thus, when physically protected through
macroaggregate occlusion, POM may persist on timescales
of decades to centuries (von Lützow et al., 2007). However,
macroaggregates are less persistent than smaller microaggregates
and are thought of as highly susceptible to breakdown upon
soil disturbance. Given the context of our need to monitor SOC
sequestration and the challenge of identifying meaningful and
accurate indicators of SOC change over time, POM (both free
and occluded) and MAOM are understood to be distinct and
relevant measurements for evaluating the responses of SOC to
contrasting agricultural management practices. They are also
relevant in considering physical stabilization mechanisms, with
approachable measurability and broad applications for landscape
modeling of cover crops and SOC sequestration rates across
semi-arid regions (Cambardella and Elliott, 1993; Collins et al.,
1999; Duval et al., 2013; Rocci et al., 2021).

With further relevance to semi-arid cropland, having
regionalized knowledge of SOC sequestration potentials
(saturation deficit) for each pedoclimatic condition would help
effectively assess the capacity of soils to store more C and inform
cover crop management for C sequestration (Castellano et al.,
2015; Cotrufo et al., 2019; Gristina et al., 2020; Devine et al.,
2021). In fact, soils can be saturated even when SOC is low, due
to limitations of SOC stabilization imposed by management
and climate (Stewart et al., 2007). As a result, an increase
in C inputs would not necessarily increase the total and/or
physico-chemically stabilized SOC stocks (Castellano et al.,
2015). In fact, sometimes soils can exhibit a negative balance of
SOC due to the occurrence of some destabilization mechanisms
such as desorption of the previously adsorbed SOC (Figure 1;
Schmidt et al., 2011). Once SOC is detached from soil minerals,
it becomes more available for decomposition, mineralization,
microbial assimilation and eventually release to the atmosphere
as CO2 (Figure 1; Novara et al., 2016).

Considering SOC Stabilization and
Destabilization Mechanisms in Deeper
Horizons
Recent studies have demonstrated that small amounts of organic
C in deep soil layers equate to large SOC stocks when integrated
across the entire soil profile (Richter and Markewitz, 1995;
Rumpel and Kögel-Knabner, 2011; Harper and Tibbett, 2013;
Moreland et al., 2021), with more than half of the total SOC
stored in deep soil layers beyond the top 20 cm (Jobbágy and
Jackson, 2000; Harrison et al., 2011; Schmidt et al., 2011). The
SOC storage dynamics in deep soil layers are regulated by
the lack of consistent fresh C inputs, and therefore a greater
degree of energy limitation, a smaller microbial population, and

physical isolation between microbial decomposers and organic
matter, contributing to slower turnover times with increasing
depth (Fontaine et al., 2007; Schmidt et al., 2011; Hicks Pries
et al., 2018). Pedogenic processes and features of subsoils
also contribute to C sequestration potentials, such as: (1) clay
accumulation, a key characteristic of many subsoils, which
promotes both higher MAOM saturation thresholds and stable
microaggregate formation with the capacity to occlude POM
(Six et al., 2000); (2) transformations of primary minerals and
associated weathering products into secondary minerals within
the subsoil, contributing to greater amounts of substrates to
facilitate MAOM stabilization compared to topsoil (Rasmussen
et al., 2006); and (3) presence of large structural units, dense
or cemented horizons typical of subsoils that can exclude roots,
water, and air, limitingmicrobial activity and influencing physical
transport mechanisms that further isolate SOC from bulk soil
microbial communities (Schmidt et al., 2011).

Traditionally, deep SOC has been considered more stable
(Harrison et al., 2011; Schmidt et al., 2011) and is also generally
of older age (Liebmann et al., 2020). For instance, deep SOC
storage at a 6-m depth was recently found to persist for over
20,000 years (Moreland et al., 2021). However, while subsurface
SOC stabilization and storage appears to occur relatively slowly
(Liebmann et al., 2020), some lines of evidence suggest that deep
SOC, mainly MAOM, may be proportionally more susceptible
to rapid destabilization and decomposition than SOC in topsoil.
This is due to changes in environmental conditions, such as
soil properties and climate, as well as soil management practices
(Harrison et al., 2011; Keiluweit et al., 2015; Shahzad et al., 2019).
These conditions may affect the mineral surface charge and the
mineral solubility, which will eventually lead to more soil organic
carbon destabilization within the MAOM pool (Bailey et al.,
2019).

For instance, soil pH and redox directly influence MAOM
destabilization (Rasmussen et al., 2018; Bailey et al., 2019). A
change in soil pH (increase or decrease) may induce a change
in the mineral surface charge (positive or negative; Bailey et al.,
2019), and therefore its reactivity vis a vis the adsorption of
certain SOC compounds (Bailey et al., 2019). Poorly crystalline
iron oxides are among the soil minerals that are highly correlated
with SOC content (Huang et al., 2016), and these colloids are
susceptible to changes in redox potential (Bailey et al., 2019).

The significant input of fresh C is another factor that appears
to accelerate destabilization of older SOM at greater depths
via microbial priming (Jobbágy and Jackson, 2000; Fontaine
et al., 2007), especially when introduced infrequently as a large
quantity pulse input (Sokol et al., 2019). This may result during
the mixing of large quantities of fresh POM or during a burst
DOM flux from surface to sub-surface soil layers (e.g., caused
by termination and/or incorporation of CC residues; Nieminen,
2004; Evans et al., 2007; Fontaine et al., 2007; Butman et al.,
2015). This may also occur due to the growth of deep rooting
plant species, resulting from the production of several types
of rhizodeposits (e.g., oxalic acid) that are shown to accelerate
rhizosphere priming, and also the subsequent turnover of those
roots during senescence (Keiluweit et al., 2015; Poirier et al.,
2018). To this point, a recent experiment found that mixing living
root inputs (rhizodeposits) with root litter inputs induced a loss
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of about 30% of MAOM through the rhizosphere priming effect
(Sokol et al., 2019). Though temperature fluctuations are greatest
near the soil surface, increasing temperatures are considered an
additional exacerbating factor for increasing microbial priming
rates of both surface and sub-surface SOC. Despite the relatively
long turnover periods of deep SOM, a recent soil warming
experiment indicated that SOC from the deeper profile could
currently account for 25% of soil respiration (Hicks Pries et al.,
2018), with substantial losses of soil C predicted under climate
warming (Soong et al., 2021).

Alternatively, dissolved organic matter is also a potential
source of stabilized SOC in deeper soil horizons (Kalbitz and
Kaiser, 2008; Rumpel and Kögel-Knabner, 2011). As DOM
percolates vertically into subsoils, through soil pores and
preferential flow paths (e.g., soil cracks, earthworms cast, and
root channels), certain SOC compounds become preferentially
sorbed to mineral surfaces (Gross and Harrison, 2019). The
vast majority of sub-surface MAOM content is microbially-
derived, and thus, plant-derived DOM substances will generally
undergo multiple sequences of transformation, sorption, and
desorption during the process of percolating down the soil profile
(Liebmann et al., 2020). The availability of N plays a central
role in the formation of microbially-derived SOM products,
especially the persistent SOC found with MAOM (Cotrufo et al.,
2019). The stronger affinity of soil minerals to smaller, highly-
oxidized, hydrophobic, and nitrogenous organic compounds
is likely a dominant reason behind the preferential sorption
of proteinaceous microbial residues versus less proteinaceous
plant residue (Jardine et al., 1989; Kaiser and Zech, 1997, 2000;
Gleixner et al., 2002; Guggenberger and Kaiser, 2003; Kiem and
Kögel-Knabner, 2003; Knicker, 2004; Kleber et al., 2007; Kaiser
and Kalbitz, 2012; Stockmann et al., 2013; Lehmann and Kleber,
2015). This highlights the key importance of SOC quality (i.e.,
composition) in long-term MAOM storage (Barré et al., 2018),
which is particularly relevant at depths where rhizodeposits are a
dominant source of microbial energy (Baumert et al., 2018) and
pedogenic transformations are the greatest (Kramer et al., 2017).

Carbon input frequency (infrequent “pulse” vs. frequent
“drip”) and spatial distribution are particularly important
considerations for SOM stabilization in subsoil (Sokol and
Bradford, 2019). Continuous, low-volume inputs of living root
rhizodeposits, deeper in the soil profile, may facilitate steady
microbial processing and stabilization pathways. On the other
hand, large and infrequent pulses of DOM (via precipitation
or irrigation) and POM (via tillage and incorporation) may
facilitate “boom and bust” cycles for the microbial community—
the formation of a temporarily enlarged microbial population,
without subsequent energy inputs, that results in significant
metabolic priming of resident SOC pools.

Mechanisms that promote POM destabilization are generally
linked to aggregate disruption factors associated with increased
soil disturbance, which tend to be more frequent near the soil
surface (Six et al., 2000). While a potential increase in soil
cultivation with the adoption of cover cropping is notable, it
is not the only considerable disturbance factor affecting POM
destabilization. For instance, the alternation of freeze and thaw
cycles may induce a break-up of soil aggregate through the

expansion of water (Bailey et al., 2019). Wetting and drying
cycles may further lead to shrinking and swelling for some
types of clay (2:1 clays), which can reshape soil aggregates and
induce a loss of the POM (Hu et al., 2015; Rahman et al.,
2018). Aggregate disruption may also occur through SOC cycling
by soil fauna or during a process known as bioturbation—the
physical displacement of materials by soil fauna throughout the
soil profile—which can induce either SOC destabilization or
stabilization depending on the bioturbation agents and mode of
action (Bailey et al., 2019). For instance, earthworms may cause
destabilization through consumption and decomposition of SOC
(Bailey et al., 2019). Yet, they may also act as stabilization agents
through the mucilage they excrete, which favors the formation
of microaggregates (Six et al., 2004; Bottinelli et al., 2015)
and therefore increases SOC stabilization via physical occlusion
within soil aggregates.

Differential SOC Stabilization of Above-
and Belowground Biomass
Historically, the quantity and quality of the aboveground
plant biomass fraction was considered as the overwhelmingly
dominant driver determining SOC stocks (Larson et al., 1972;
Rasmussen et al., 1980). Litter quality remains widely accepted
as a major factor affecting SOM stabilization (Castellano et al.,
2015), particularly at depth (Kramer et al., 2017). In order
to link litter quality and SOC stabilization, Cotrufo et al.
(2013) developed the Microbial Efficiency-Matrix Stabilization
(MEMS) framework where plant litter that produces more
microbial residues will likely result in more MAOM (Castellano
et al., 2015). However, the ability to render a positive effect of
new residue inputs within the MAOM pool is influenced by
SOC saturation status (Castellano et al., 2015). In this model,
improved litter quality will likely increase MAOM and result in a
low saturation deficit (potential C sequestration; Castellano et al.,
2015). After saturation, litter quality wouldn’t affect the storage
of carbon within MAOM as much, the transfer of POM into
MAOM would decrease (Castellano et al., 2015), and MAOM
would be more prone to destabilization through SOC desorption
mechanisms (Figure 1; Bailey et al., 2019).

Recent studies provide more fine grained and robust
evidence suggesting that the belowground plant biomass fraction
contributes more efficiently to stable SOC than aboveground
carbon inputs, especially the MAOM pool (Poeplau and Don,
2015; Austin et al., 2017; Jackson et al., 2017; Poirier et al., 2018;
Gross and Harrison, 2019; Sokol and Bradford, 2019). In fact,
one study observed that the conversion efficiency of belowground
vs. aboveground plant inputs toward SOM stabilization is as
much as fivefold (Jackson et al., 2017). This aligns with another
study, which found that the belowground fraction of cover
crop inputs were three times more likely to remain as SOC
in the 5 months after cover crop termination (Austin et al.,
2017). This belowground input efficiency during the formation
of stable SOM is assumed to result from a combination of (1)
the relatively higher lability of belowground inputs, (2) close
proximity and physical accessibility of belowground inputs to
both the rhizosphere microbial community and soil mineral
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surfaces, and (3) higher deposition frequency of belowground
inputs into the rhizosphere (Farrar et al., 2003; Rasse et al., 2005;
Jackson et al., 2017; Sokol and Bradford, 2019).

The belowground plant fraction is composed of both root
litter (e.g., root hairs, root debris) and living root inputs,
rhizodeposition (e.g., root exudates, secretions; Rasse et al., 2005;
Oburger and Jones, 2018).These rhizodepositions are diverse and
dynamic in composition and can be either water-soluble—such
as sugars, amino acids, and organic acids—or water-insoluble—
such as cell wall components, lipids, and mucilage (Canarini
et al., 2019). Belowground organic carbon deposits are stabilized
through different mechanisms depending on the origin of the
input (Poirier et al., 2018). Root functional traits that are
associated with storing POM are generally those that favor soil
aggregation, which in turn limit the accessibility of occluded SOC
to decomposers (von Lützow et al., 2008). Root litter, composed
of structural materials such as cellulose and hemicellulose,
are predominately stabilized through incorporation within soil
aggregates (occluded POM; Hättenschwiler and Vitousek, 2000;
Rasse et al., 2005). Polyphenols and polysaccharides, produced
by root mucilage, play an important role as a binding agent in soil
aggregate synthesis (Oades, 1984; Martens, 2002), as does fungal
hyphae both from symbiotic root-associations with mycorrhizal
fungi (Wilson et al., 2009) and fungi that preferentially utilize
rhizodeposits (Baumert et al., 2018).

On the other hand, root chemical characteristics such
as higher root N and suberin content, and rhizodeposition
of low molecular weight organic compounds, can promote
SOC stabilization through interactions with soil minerals, thus
forming MAOM (Rasse et al., 2005; Cotrufo et al., 2013,
2015; Austin et al., 2017). Soluble rhizodeposition such as
exudated sugars and organic acids have direct stabilization
pathways through sorption to mineral surfaces (MAOM)
(Figure 1; Kraffczyk et al., 1984; Austin et al., 2017; Liang
et al., 2017; Sokol et al., 2019) so much so that they may
not even require microbial processing beforehand (Mikutta
et al., 2019; Angst et al., 2021). Notably, these soluble
rhizodeposition may be the most efficient and effective mode of
SOC stabilization, especially in subsoils where SOC content is
below mineral saturation thresholds (Rasse et al., 2005; Austin
et al., 2017). Even where mineral saturation is near thresholds,
rhizodeposition are also essential in aggregate synthesis and
SOC occlusion. To that point, one study observed living root
rhizodeposition to be 2–13 times more efficient than litter
inputs (above- and belowground) in contributing to both
MAOM and POM accrual—and much of the rhizodeposition
were persistent up to 3 years later (Sokol et al., 2019). The
efficiency of forming MAOM and POM from the belowground
inputs (roots and rhizodeposition) is notably different, where
rhizodeposition inputs have the highest MAOM efficiency
compared to roots and shoots, and root litter has the
highest POM formation efficiency (Villarino et al., 2021). The
high efficiency of the belowground fraction in storing and
stabilizing SOC, as well as the complementary role between
rhizodeposition inputs and roots in forming MAOM and POM
respectively, is useful information that can help advise novel
cover crop management practices to capitalize on the role of

the belowground fraction for increasing SOC sequestration in
Mediterranean croplands.

IMPLICATIONS FOR COVER CROP
MANAGEMENT PRACTICES IN
MEDITERRANEAN REGIONS

Harnessing the potential of cover crops to increase SOC
sequestration will require strategic implementation of
management considerations related to net primary productivity,
fertility, plant community composition, termination method and
residue management, and soil disturbance regime. Ultimately,
the SOC sequestration potential of cover cropping will be
determined by cumulative effects of climate and management on
organic input quantity and quality, input and output flux rates,
and the spatial distribution of deposits within the soil profile. Soil
management practices also induces shifts in the physical habitat
and resource availability of microbial communities and therefore
CUE (Six et al., 2006). Here we consider cover crop selection
and management approaches that could increase the efficacy of
cover cropping in Mediterranean croplands for C sequestration
(Table 1).

Species Selection
Current understanding of SOC fluxes and sequestration
mechanisms highlights the key role of belowground structure
and soluble plant inputs in regulating soil and microbial
processes associated with long term SOC storage. Strategic
integration of cover crop functional groups has been shown to
partially regulate SOC storage potential. Since a broad range
of species can be cultivated as cover crops in Mediterranean
agroecosystems, informing species selection and community
assembly with the specific root functional traits shown to
increase SOC and stabilization potential offers new opportunities
to optimize management for long-term C storage (Poirier et al.,
2018).

Plant growth strategies and root traits have significant legacy
effects on soil C storage through nutrient uptake dynamics,
quantity and quality of organic inputs and shaping of active
microbial communities through exudation (De Deyn et al.,
2008; Cantarel et al., 2015; Guyonnet et al., 2018). Frameworks
examining linkages between root functional traits and C storage
pathways have shown that root tissue chemical recalcitrance
promotes MAOM formation while morphological traits seldom
relate to stabilization mechanisms, except for rooting depth
which is an important trait controlling root-C storage and
stability in the subsoil (Poirier et al., 2018). Developing cover
crop systems with high root depth distribution results in greater
contact between root tissues and mineral surfaces in deeper soil
layers and favor stable MAOM associations on less saturated
mineral surfaces (Kell, 2011). Diverse species mixtures are
increasingly favored to increase the array of beneficial functions
one can obtain from cover crops. A positive relationship
between plant diversity and SOC sequestration (De Deyn et al.,
2008; Fornara and Tilman, 2008; Cong et al., 2014) has been
demonstrated, especially in extensively managed systems.
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TABLE 1 | Summary table of considerations for cover crop management to

promote soil organic carbon sequestration.

Suggested considerations of cover crop management strategies

Before soil MAOM saturation After soil MAOM saturation

Main objective:

Target soil C increases in both SOC

fractions, POM and MAOM

Main objective:

Target soil C inputs as POM and avoid

practices that cause MAOM destabilization

Species selection

• Prioritize mixtures with a variety of

complementary acquisitive growth

strategies which triggers greater

rhizodeposition and encourages

large C pulses into the soil matrix.

• Plant cover crop species with a

deep rooting system to promote

rhizodeposition in deep soil

horizons where colloids are more

likely to be unsaturated with SOC.

• Mix leguminous cover crops with

other species to optimize residue

quality and enhance microbial CUE.

• Prioritize mixtures with conservative

species.

• Avoid priming of subsoil MAOM by

selecting shallow rooting cover crop

species with lower rhizosphere inputs,

such as those with coarser roots.

• Promote physical protection of POM

by selecting cover crops with extensive

shallow fibrous roots with higher root

density (e.g., grasses) to enhance

aggregation.

• Promote association with mycorrhizal

fungi. Fungal products such as proteins

favor soil particle aggregation, facilitating

more POM physical protection

Cover crop growth phase and planting duration

• Terminate cover crops earlier to

promote high quality litter inputs

with greater microbial CUE during

decomposition

• Tightly control nutrient budgets to

limit N and P availability during

cover crop growth phase (promote

root formation and allocation of

surplus photosynthates toward

exudation) and increase N and P

availability during cash crop growth

phase (improve microbial CUE

during decomposition)

• Terminate cover crop later to promote

formation of low-quality (high C:N) inputs,

with more plant structural compounds

that form POM.

• Tightly control nutrient budgets to

increase N availability during both cover

crop and cash crop growth phase (to

improve aboveground productivity and

slow residue decomposition)

Termination and residue management methodologies

• Infrequent conservation tillage,

especially when paired with

external organic inputs, may favor

storage within MAOM (reduce SOC

priming) compared to no-till,

especially in deeper subsoils

• Reduce bare soil exposure by

increasing soil surface residue

retention (through mowing,

roller-crimping, or herbicides)

• Grazing* at low intensity increases

dissolved C and N inputs. This

enhances microbial biomass and

activity, which may lead to

MAOM increases

• Infrequent conservation tillage to reduce

aggregate breakdown and microbial

accessibility to occluded POM

• Reduce bare soil exposure by increasing

soil surface residue retention (through

mowing, roller-crimping, or herbicides)

• Maintain slower aboveground residue

input rates by avoiding excessive

biomass incorporation (reduce

SOC priming)

*Other parameters related to grazing that need to be taken into consideration, such as

grazing intensity, frequency, and duration.

Growing deep-rooted species with species that colonize
complementary spatial-temporal niches could favor formation of
both MAOM at depth and POM in the topsoil through a greater
diversity of root traits, impacts on soil structure and spatial
and temporal C inputs to soil ecosystems (Cong et al., 2014;
DuPont et al., 2014; Lange et al., 2015; Kravchenko et al., 2019).

For instance, species differently impact structural stability of
soil particles important for POM storage. Whereas, deep rooted
species with coarse roots can increase soil bulk density adjacent
to the root, smaller diameter roots can decrease bulk density by
increasing soil porosity (Gyssels et al., 2005). Species with denser,
finer root systems such as grasses bind soil more effectively than
do large taproot systems (Loades et al., 2010), leading to greater
macro aggregation in topsoil and accumulation of labile SOC
in both macro and micro aggregates (Angers and Caron, 1998).
Mixtures of grasses and legumes may be particularly effective
and could include species with functional traits attributed to
acquisitive strategies such as combining deep-rooted legume
species i.e., alfalfa (Medicago sativa) and faba beans (Vicia faba)
with commonly managed grass species with extensive shallower
fibrous root structures. Deeply rooted C4 grasses and shallow
rooted legumes are also highly complementary functional groups
with high C storage potential (Fornara and Tilman, 2008).

Prioritizing species mixtures could also be beneficial to
enhance the amount and diversity of labile C inputs and
microbial populations instrumental in building both POC
and MAOM fractions (Lange et al., 2015; Tiemann et al.,
2015). The amount and composition of root C efflux via
root respiration, exudation and rhizodeposition vary among
plant species (Bais et al., 2006; Herz et al., 2018; Dietz et al.,
2020; Henneron et al., 2020) and it is likely possible to
manipulate the abundance and composition of root exudates
by modifying species composition. In general, in an agricultural
context, choosing acquisitive growth types according to plant
economic spectrum might be more suitable and effective for
SOC storage than slow growing conservative species, since
the higher photosynthesis and nutrient demand of acquisitive
species triggers greater rhizodeposition (Henneron et al., 2020).
However, our understanding of exudation patterns and quality
in agricultural systems is very limited and a major knowledge
gap in designing plant covers that harness this potential
for long term SOC storage. Plants species that release more
exudates will probably enhance their impact on aggregation and
SOC occlusion pathways, along with species that exude larger
molecules that can act as binding agents (Whalley et al., 2005).
Root exudates from legumes are of particular interest since they
have high concentrations of N-rich compounds compared to
other species (Fustec et al., 2010) which can be rapidly assimilated
in microbial biomass, increasing microbial CUE and MAOM
content (de Neergaard and Gorissen, 2004; Cotrufo et al., 2013;
Kopittke et al., 2020). Legumes ability to provide adequate N
requirements for maximizing C storage often leads to greater
SOC contents and accumulation of SOC is frequently observed
across contexts and in macroaggregate shortly after legume
growth (Topps et al., 2021). Legumes in cover crop mixtures with
grasses are often found beneficial to cover crop productivity and
C input from biomass (Fornara and Tilman, 2008; Freund et al.,
2021).

Favoring species with beneficial biotic root traits can also
impact SOC quantity and persistence through association
with differing rhizosphere communities and mycorrhizal fungi
(Langley et al., 2006; Averill et al., 2014). For instance, plants in
symbiosis with ectomycorrhizal fungi, which lower decomposer
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activity by outcompeting them for N, store largely more SOC
than arbuscular mycorrhizal associated plants. It has also been
proposed that species with root traits that stimulate the growth
of fungi over bacteria, such as high lignin and low root N content
can promote SOC sequestration (De Deyn et al., 2008; Bardgett
et al., 2013; Poirier et al., 2018).

This view is consistent with recent knowledge that fungal
structures reside longer in soil whereas bacterial membranes
are more quickly mineralized (Domeignoz-Horta et al., 2021).
As such, bacteria-only communities can lead to more unstable
and labile SOC pools compared to communities with bacteria
and fungi (Domeignoz-Horta et al., 2021). Rhizobia in legumes
can also promote aggregate formation and stability through the
binding action of rhizobia exocellular polysaccharides (Haynes
and Beare, 1997; Alami et al., 2000).

Research in extensively managed grassland systems shows that
more diverse plant covers lead to more rapid annual carbon
accumulation rates compared to monocultures thanks to greater
above and belowground C inputs and soil N mineralization
which fuel the soil microbial pump and prime positive diversity–
productivity relationship (Cong et al., 2014; Yang et al., 2019).
Promoting a diverse array of C inputs through diversifying crop
rotations with cover crops and adopting diverse cover crop
species mixtures likely provide various resources that better
optimize CUE (Kallenbach et al., 2019). In mild Mediterranean
climates, extending the growth period of active living roots
and inputs of C into the soil through cover cropping will also
increase the period where microbial communities remain active.
Mitigating long microbial dormancy periods may improve CUE
over time (Kallenbach et al., 2019). Either way, maintaining
more prolonged periods of metabolic activity annually, even
with lower CUE, would presumably result in more microbially-
derived C (necromass) than management strategies that facilitate
low C inputs, high loss pathways, and longer periods of
microbial dormancy, which may be typical of conventional
systems (Kallenbach et al., 2019).

However, linkages between cover crop diversity,
species choice and SOC outcomes remain to be tested in
Mediterranean agroecosystems. Root functional frameworks and
characterization of common cover crop species can inform cover
cropmanagement (Tribouillois et al., 2015;Wang et al., 2021) but
outcomes remain context specific, especially when considering
plastic root traits which vary considerably within species in
response to resource gradients and ecological interactions.
Cover crop species choice is also a function of other system
management goals that must be reconciled with desired C storage
outcomes. For instance, planting leguminous crops is preferred
to maintain or increase soil N content (Ordóñez-Fernández
et al., 2018), while other cover crop types such as grasses and
brassicas might be useful for scavenging nutrients, increasing
biomass inputs, and reducing N leaching. Finally, modifications
of soil properties regulating SOC storage, including microbial
communities, are strongly linked to cover crop management
and edaphic properties, in some cases more so than species
choice and diversity (Romdhane et al., 2019; Cloutier et al.,
2020).

Cover Crop Growth Phase and Planting
Duration
Adjusting cover crop growth duration by selecting cover crop
planting and termination times is an intrinsic considerationwhen
managing cover crops (Alonso-Ayuso et al., 2014), especially
in Mediterranean agroecosystems which may facilitate a wide
range of growth periods. For the objective of increasing SOC
sequestration, cover crop growth duration is the most important
predictor of SOC responses to cover cropping, as was recently
highlighted in a meta-analysis study (McClelland et al., 2021).
This importance is likely due to interactions between the cover
crop growth period and other factors like plant establishment,
plant biomass (McClelland et al., 2021) and residue quality (Clark
et al., 1994; Alonso-Ayuso et al., 2014).

Organic C preservation depends on the balance between
SOC stabilization and destabilization mechanisms (Janzen, 2006;
Harden et al., 2018; Bailey et al., 2019), and litter quality
affects the balance between these two mechanisms (Bailey et al.,
2019). For example, high quality residues characterized by
low C:N ratios or the predominance of simple compounds,
have a high microbial CUE (Cotrufo et al., 2013), where the
resulting microbial by-products can be efficiently stabilized
within the MAOM pool (Six et al., 2002; von Lützow et al.,
2007; Cotrufo et al., 2013). These same labile products can act as
destabilizing agents via the priming effect (Jobbágy and Jackson,
2000; Fontaine et al., 2007; Bailey et al., 2019). Therefore, we
propose that adjusting cover crop growth duration as a function
of litter quality and SOC saturation status could contribute
toward balancing stabilization and destabilization mechanisms,
hence optimizing SOC sequestration through proper cover crop
management. Cover crop termination at early stages of plant
development may result in higher plant litter quality that is
more easily assimilated by microbes. As a result, the increased
microbial necromass is likely to favor MAOM stabilization
mechanisms. After MAOM saturation, further accrual of SOC
will shift to POM stabilization mechanisms. Thus, at this stage,
cover crop management practices that favor promotion of
aggregation will become the dominant pathway for continued
SOC sequestration. However, more studies are needed to
effectively assess cover crop termination time with regards
to SOC stabilization and destabilization mechanisms across
contexts. In particular, the impacts of soil fertility on plant growth
and optimal termination for SOC accrual remain elusive, yet
critical to promote plant allocation of carbon to preferential
storage flows, especially belowground.

Recent literature suggests that conditions that repress
aboveground growth, while still allowing photosynthesis to
continue, facilitates the allocation of surplus photosynthates
toward exudation and root structures (Prescott et al., 2020). This
is especially relevant when considering strategic nitrogen (N)
management. For instance, the beneficial effects of N availability
for MAOM formation may be counteracted as N fertilizers also
reduce biomass allocation toward roots and therefore decrease
belowground C deposition (Bonifas et al., 2005; Lazicki et al.,
2016; Pausch and Kuzyakov, 2018; Ordóñez et al., 2021), the
quantity of exudates produced (Kaštovská et al., 2017; Mortensen
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et al., 2021), and plant C flux rates toward soil communities
(Gorka et al., 2019). Another strategic consideration is that the
release of exudates appears to be maximized in leguminous
species when phosphorous (P) is limited (Cardenas et al., 2021).
Likewise, moderate drought can increase root exudation and
rhizodeposition (Karlowsky et al., 2018). Managing cover crop
growth conditions to favor photosynthate transport belowground
in consideration of root growth, exudation, and the spatial
hotspots of microbial activity (such as within the rhizosphere)
may therefore be an important regulation factor to maximize
SOC stabilization outcomes.

Alternatively, maintaining sufficient soil N availability over
the long-term has been shown as essential toward increasing
both MOAM and POM (Spohn et al., 2016; Ordóñez et al.,
2021; Rocci et al., 2021). This may be especially true when
targeting increases in aboveground productivity and POM
accumulation, such as when MOAM storage thresholds are
near saturation (Rocci et al., 2021). Additionally, higher N
fertility suppresses the breakdown of lignin in plant residues,
which slows decompositional processes and may increase
POM persistance (Talbot and Treseder, 2012; Li et al., 2017).
Managing for optimal N fertility is essential toward improving
microbial CUE and, therefore, the efficiency of SOC formation
(Li et al., 2017; Mahal et al., 2019; Ordóñez et al., 2021).
Optimizing SOC benefits of cover cropping will therefore
require more precise nutrient management approaches that
balance higher nutrient requirements of the crop, for optimizing
aboveground productivity, with maintaining lower, yet sufficient,
nutrient status during the cover crop phase to optimize
belowground productivity and SOC sequestration. Deciding on
the growth period of cover crops could be considered a potential
management tool to optimize SOC preservation in croplands
with Mediterranean climate, especially with respect to fertility
management, the promotion of belowground productivity, and
optimizing litter quality inputs. This decision is site-specific and
depends on intrinsic soil characteristics, as well as external factors
such as climate and other co-management variables. Hence, more
research is needed in order to delineate easy-to-use indicators
that would guide farmers’ decisions to choose proper cover crop
plantation and termination times.

Termination and Residue Management
Methodologies
The design and application of cover crop termination strategies
are a readily accessible tool available for growers to optimize
cover cropping for increased C sequestration. Modes of cover
crop termination may be classified into three broad categories
that include chemical (herbicides), mechanical, and natural
methods. Mechanical termination methods have the broadest
applications and include mowing, rolling/crimping, and a wide
array of tillage options. Natural termination methods may
include planting of winter-kill species (though not common
in Mediterranean climates) and the use of animal grazing
on residues. Cover crop residue management is an additional
consideration and options may include retention on the soil
surface, incorporation into soil profile, and/or biomass removal

through grazing or harvesting. The various combinations of
management choices have significant impacts on the quantity
and quality of above- and belowground carbon deposition, as
well as the spatial distribution dynamics of deposited organic
and inorganic inputs. Linking cover crop management with
SOC accumulation and persistence frameworks should guide
our efforts to adapt cover crop termination methods with the
objective of sequestering more carbon and ensuring its long-
term storage.

A predominant determinant of cover cropping efficacy with
respect to SOC sequestration is the choice to retain or incorporate
residues upon termination. The choice to incorporate residues
is done through the use of tillage, which may occur for
several reasons including to mix organic and inorganic materials
throughout the soil profile, mitigate weed pressure, and/or
break apart soil surface compaction for improved planting
and water infiltration (Derpsch, 2003; Derpsch et al., 2014).
Yet, while tillage facilitates the incorporation of aboveground
residue-derived POM throughout the soil profile (Duval et al.,
2016; Schaefer et al., 2020), heavy tillage has also been shown
to stimulate SOC losses through disrupting aggregate stability
and increasing microbial access to previously occluded intra-
aggregate POM (Franzluebbers et al., 1999; Six et al., 2000;
Salvo et al., 2010; Poeplau and Don, 2015). Heavy tillage is also
associated with significantly higher rates of SOC loss via surface
erosion (Van Oost et al., 2006). To this extent, POM is actually
most often lower in the surface soils of conventionally tilled
systems, despite this increased incorporation of aboveground
cover crop residues (Motta et al., 2007; Olchin et al., 2008;
Franzluebbers and Stuedemann, 2014; Jilling et al., 2020).
Though more variable, the use of tillage is also sometimes
associated with reductions in MAOM (Salvo et al., 2010; Jilling
et al., 2020). These factors therefore contribute to a well-
established negative relationship between conventional tillage
and total SOC stocks of surface soils when compared to no-
till and conservation tillage strategies, particularly within the
tillage zone where significant disturbance occurs (Hobbs et al.,
2008; Salvo et al., 2010; Franzluebbers and Stuedemann, 2014;
Higashi et al., 2014; Poeplau and Don, 2015; Nunes et al., 2020;
McClelland et al., 2021; Wulanningtyas et al., 2021). Notably,
our understanding of tillage dynamics is limited by the tendency
to discuss the various types of conversation tillage, and their
underlying impacts, as a monolith rather than as a dynamic
tool that differs in application and subsequent SOC dynamics
(Derpsch et al., 2014).

To this extent, the impacts of various tillage regimes on
sub-surface SOC storage are a current point of controversy. A
growing body of evidence has observed decreased SOC stocks
in subsoils with the conversion from conventional tillage to no-
till management of cover crops (Franzluebbers and Stuedemann,
2014; Camarotto et al., 2020). While the underlying mechanisms
are not yet well-understood, this decrease in deeper SOC
sequestration during the transition toward no-till may result
from reductions in cover crop establishment and subsequent
decreases in above- and belowground biomass production
(Constantin et al., 2010; Camarotto et al., 2020). This may
potentially be remediated by some conservation tillage methods
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(Franzluebbers et al., 1999; Jilling et al., 2020), increasing cover
crop seeding rates, and/or extending the cover crop cultivation
window. Further, it may also be that the negative subsoil SOC
response with the conversion to no-till results partially from
increases in SOC priming, which may be especially prevalent
within conventionally managed systems with significant soluble
N inputs (Duval et al., 2016; Tautges et al., 2019; Camarotto et al.,
2020). Some research suggests that this same priming response
may be mitigated when organic inputs, such as compost, are
paired with cover cropping in both tilled and no-till systems
(Fronning et al., 2008; Liang et al., 2018; Tautges et al., 2019;
Schaefer et al., 2020; White et al., 2020; Rath et al., 2021).

Though significantly understudied in agricultural systems,
residue incorporation may also occur through bioturbation
and the physical transport of materials deeper into the soil
profile (Lavelle et al., 2006; Frouz et al., 2009). While the
negative impacts of tillage on soil fauna populations are well
documented (House and Parmelee, 1985; Emmerling, 2001),
less is understood on how this directly impacts the transport
dynamics of SOC throughout agroecosystem soils. Nevertheless,
retention of surface residues has been shown as essential to
the prosperity of soil fauna communities (Tian et al., 1995;
Lavelle et al., 2006, 2016), and research has increasingly shown
the role these organisms may play in SOC cycling within
natural ecosystems (Filser et al., 2016). While further research is
necessary, this may partially explain why POM stocks are often
found to be higher in surface soils under no-till with residue
retention strategies when compared to residue incorporation via
tillage. Notably, there is scarce research conducted on the impacts
of lower frequency tillage events. Thus, our understanding of
the benefits and/or tradeoffs associated with the infrequent use
of tillage in more temporally dynamic cover crop termination
rotations are not well-understood. Ultimately, keeping cover crop
residues on-field, whether through promoting residue retention
on the soil surface or through incorporation, has been shown as
essential to improving SOC storage (Kan et al., 2020; Wang et al.,
2020; Zhao et al., 2020).

Yet, residue surface retention strategies, such as herbicides,
mowing, and roller-crimping, have shown a wide array of benefits
associated with the “soil armor” effect of reducing bare soil
exposure. This includes increases in SOC (Turmel et al., 2015;
Chen et al., 2017; Alam et al., 2018; Li et al., 2019; Sharma
et al., 2019; Wang et al., 2019; Zhao et al., 2020) and soil
structure (Chen et al., 2017; Li et al., 2019; Wang et al., 2019)
that, in tandem with the insulating effect of residue layers,
improves the regulation of soil temperature (Schonbeck and
Evanylo, 1998; Sarkar and Singh, 2007) and retention of soil
water (Schonbeck and Evanylo, 1998; Sarkar and Singh, 2007;
Turmel et al., 2015; Yin et al., 2020; Zhao et al., 2020). Some
studies have shown a decrease in soil carbon priming with
the interaction of no-till and residue retention strategies when
compared to residue incorporation (Kan et al., 2020; Mo et al.,
2021). Residue incorporation may, in fact, only further increase
SOC priming as the quantity of biomass incorporated increases
(Shahbaz et al., 2017a,b). However, little is known about the
varying relative impacts of chopping (via mowing) and matting
(via roller-crimping) of cover crop residues. The relative effects

of evenly distributing or spatially concentrating residues are also
not well-understood. Residue retention strategies vary widely in
application, both in time and space. Yet, the spatial and temporal
diversity of these strategies are not captured well in research,
and instead are often conflated and inaccurately represented
as a single management practice rather a suite of management
options. Thus, the best management practices are not yet well-
identified in Mediterranean climates.

Depending on the cover crop composition, one of the
drawbacks associated with surface residue retention is potential
reductions in available N (Ordóñez-Fernández et al., 2018; Jani
et al., 2019; Hefner et al., 2020). This may both reduce crop
productivity (Hefner et al., 2020) and stoichiometrically limit
stable SOC formation (Bertrand et al., 2019), though these
outcomes are likely highly dependent on residue nutrient content
and carbon quality (Bertrand et al., 2019; Mo et al., 2021)
and, as previously mentioned, may be a strategic benefit for
SOC stabilization in cropland soils with high N application
rates. Where N availability places stoichiometric limitations, this
may potentially be addressed through increasing the planting
of leguminous species thereby improving the N content and
mineralization rates of surface retained residues (Büchi et al.,
2018; De Notaris et al., 2020). The CUE of cover crop residues
may also be increased through the strategic application of
nutrients, whether during the cash crop or cover crop phase, to
help balance stoichiometric needs between C and other essential
nutrients that may limit microbial assimilation and anabolism of
C substrates.

Another option may be the strategic introduction of animal
grazing into cover cropping rotations. While grazing animals
on cropland, especially as a cover crop termination method,
is fairly understudied, there is some validation that well-
managed cropland grazing may increase soil C sequestration
(Franzluebbers and Stuedemann, 2010; Fultz et al., 2013;
Assmann et al., 2014; Cecagno et al., 2018; Bieluczyk et al.,
2020; Brewer and Gaudin, 2020; Liebig et al., 2020; Sekaran
et al., 2021; Zani et al., 2021). Animal grazing of cover crops
alters carbon and nutrient input flows into the soil through the
transformation of aboveground residues into soluble, nutrient-
rich, and labile animal excreta, where the DOC and nutrients
are stoichiometrically decoupled and more easily diffused and
transported throughout the soil profile (Carvalho et al., 2010;
Ramos et al., 2010; Rumpel and Kögel-Knabner, 2011; Rumpel
et al., 2015; Eldridge et al., 2017; Sekaran et al., 2021). Soil carbon
and nutrient inputs from grazing may therefore be both more
readily available for plant uptake (Holford, 1980; Lemaire et al.,
2014; Zhou et al., 2017) and easily transformed by soil microbes
(Acosta-Martínez et al., 2004; Wilson et al., 2018; Sekaran et al.,
2021), potentially facilitating a more direct pathway toward long-
term MAOM stabilization and persistence (Cotrufo et al., 2013;
Mosier et al., 2021). However, differences in MAOM are often
insignificant between grazed and ungrazed cropland (Salvo et al.,
2010; Assmann et al., 2014; Zani et al., 2021) and long-term
grazing can reduce total soil N content over time through export
within animal biomass.

Grazing, especially when conducted multiple times
throughout the cover crop growing season, may also result
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in both changes in cover crop biomass productivity and a
reallocation of resources above- and belowground (Dawson
et al., 2000; Hamilton et al., 2008; Zhou et al., 2017). Multiple
studies have shown an increase in cover crop root biomass
(Piñeiro et al., 2010; Assmann et al., 2014; Chen et al., 2015) and
rhizodeposition of labile carbon (Dawson et al., 2000; Wilson
et al., 2018) with the introduction of grazing. The magnitude and
direction of SOC impacts will be determined by the frequency
and intensity (density and duration) under which grazing occurs.
Low intensity stocking rates and/or less frequent grazing events
have broadly shown positive results for SOC sequestration
(Conant et al., 2003; Teague et al., 2011; Assmann et al., 2014;
Chen et al., 2015; Zhou et al., 2017; Alves et al., 2020; Mosier
et al., 2021). Thus, optimizing best management practices
for cover crop grazing will require strategic consideration of
site-specific thresholds at which high intensity grazing becomes
negatively associated with SOC storage (Teague et al., 2011;
McSherry and Ritchie, 2013; Chen et al., 2015; Plaza-Bonilla
et al., 2015).

In the final analysis, cover crop termination and residue
management schemes may best be designed in a way to avoid
prescriptive implementation—utilizing the same regime year-
after-year regardless of changes in climatic, ecological, and soil
biogeochemical characteristics—and instead applied strategically
in a way to adapt to these same changes over time. As such, a
strategic and temporally dynamic termination rotation of residue
retention (via mowing, herbicides, or roller-crimping), residue
incorporation (via conservation tillage), and residue grazing
practices may yield the best results for cover crop management
with respect to increasing SOC sequestration. This may be
guided by the simultaneous goals of maintaining continuous
inputs of shoot and root-derived C, diversifying the spatial and
temporal input of shoot-derived C, reducing soil disturbance,
and improving soil microbial efficiency through balancing the C-
to-nutrient stoichiometric demands of SOC formation processes
(Ferreira et al., 2018; Bertrand et al., 2019).

CONCLUSION

We considered cover crop selection andmanagement approaches
that could increase the effectiveness of cover cropping in the

Mediterranean croplands for C sequestration following three
main guiding principles (Table 1). However, significant gaps
remain in understanding best management practices for C
accrual, especially in Mediterranean systems. We highlight the
need for:

1) Clearer SOC measurements and monitoring in these systems
to guide cover crop management efforts toward targeting
increases in both POM and MAOM fractions (when under
mineral C saturation thresholds), or maintaining MAOM
content while increasing the POM fraction (when at mineral
C saturation thresholds);

2) Specifically outlining the determining root functional traits
associated with SOC storage in both POM and MAOM
fractions, and identify cover crop species with greater
contributions from belowground fractions.

3) Synthesis of depth dependent SOC stabilization and
destabilization mechanisms in the MAOM fraction, and
interpretation and application of cover crop management
strategies that may shift the equilibrium between these two
processes toward net stabilization.

Considering the evolution of SOC sequestration theory,
we see opportunities for growers to implement new cover crop
management strategies that capitalize on this knowledge. In-turn,
as these strategies become standard, more systematic evaluations
in field settings across soils and systems in Mediterranean
climates will occur and advance our understanding of
agriculturally managed SOC sequestration.
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