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Développement (CIRAD), France

REVIEWED BY

Luca Bragazza,
Agroscope, Switzerland
Antoine Couëdel,
Institut National de la Reche, France

*CORRESPONDENCE
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Multicriteria assessment
of conservation
agriculture systems

Guillaume Adeux , Maé Guinet , Emeric Courson,
Sarah Lecaulle, Nicolas Munier-Jolain
and Stéphane Cordeau *

Agroécologie, INRAE, Institut Agro, Univ. Bourgogne, Univ. Bourgogne Franche-Comté,
Dijon, France
Conservation agriculture (CA) relies on three fundamental and inseparable

pillars: no soil disturbance, diversified crop rotations, and permanent soil cover.

Nevertheless, few studies have evaluated the interactive effect of these three

fundamental pillars on a multicriteria basis. Here, we mobilize data from the

French AGROSYST database, which gathers all farming practices and

performances of the 3000 farms involved in the French DEPHY farmers’

network. Linear mixed effect models were used to compare the performance

(13 indicators) of CA (CAs, N=36) and pseudo-CA systems (pseudo-CAs, N=19,

allowing one occasional superficial tillage) to conventional tillage (plowed, CTs,

N=135) and superficial tillage (STs, N=90) based systems in similar production

situations (climate, soil type, presence of livestock or irrigation, etc.). CAs

required (compared to STs and CTs, respectively) more herbicides (+27

and +90%) but slightly less insecticides (-64 and -50%, non-significant),

decreased time of traction/ha/year (-25 and -32%), fuel consumption (-21

and -39%), as well as mechanization costs (-20 and -26%), tended to slightly

decrease profitability/ha (-7 and -19%, non-significant) due to slightly lower

productivity (-19% and -25%) but resulted in better profitability per hour of field

traction (+23% and +18%). Pseudo-CAs did not implement the three CA

principles since crop rotation were as diverse and cover crop as frequent as

in STs and CTs, and tillage occurred, albeit rarely. However, pseudo-CAs used

less insecticides (-92 and -83% compared to STs and CTs, respectively),

decreased fuel consumption (-25% compared to CTs), and resulted in similar

productivity and economic profitability (per hectare and per hour of field

traction). Further investigation is required to identify the diversity of

responses across production situations, the determinants of multi-

performance in given production situations, and to track down the rare

innovative systems optimizing multiple performances and solving apparent

trade-offs.

KEYWORDS

no-till, direct seeding, cover crop, tillage, crop diversification, cropping system,
pesticide use, sustainability
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1 Introduction

Agriculture must meet the challenges of producing in

quantity and quality, without harmful effects on the

environment and human health, while providing suitable

revenues for farmers. Agroecological systems aim to reach

these objectives through the enhanced mobilization of

biological and ecological processes that contribute to crop

production (Gliessman et al., 1998; Wezel et al., 2009). Among

these agroecological systems, conservation agriculture (CA)

places strong emphasis on no-till, permanent soil cover, and

diversified crop rotations. The simultaneous implantation of

these three pillars of CA contributes to the delivery of multiple

ecosystem services (Hobbs et al., 2008; Chabert and Sarthou,

2020). Initiated in the United States in the 1950s, in Europe in

the 1960s, then in Latin America in the 1970s (Derpsch, 1998),

soil conservation techniques rapidly evolved towards CA with

the development of direct seed drills and non-selective, effective

and cheap foliar herbicides (aminotriazole, paraquat, glyphosate

and glufosinate). Decades after its development by pioneer

farmers, CA acreage is increasing exponentially worldwide

(Kassam et al., 2019), although very few studies have assessed

its performances on a multicriteria basis, including

environmental, economic and societal aspects (Craheix et al.,

2016). According to Kassam et al. (2019), the adoption of CA has

increased because farmers are seeking for a new paradigm to

sustainably intensify crop production. They also report that the

major drivers which explain the adoption of CA continue to be

“the need to increase input factor productivity, yield and total

farm output, improved sustainability of production and farm

land, better incomes, timeliness of cropping practices, ease of

farming and reduction in drudgery, and improved ecosystem

services such as clean water, control of erosion and land

degradation, carbon sequestration, cleaner atmosphere and the

rehabilitation of degraded agricultural lands”. Although some

ecosystem services are targeted by farmers adopting CA, they

remain to be assessed and quantified. Our systematic review of

the scientific literature revealed the existence of 9 meta-analyses

where CA systems (i.e. implementing simultaneously the three

pillars) were compared to reference systems – the latter being

different according to studies. These meta-analyses concerned

yield (Rusinamhodzi, 2015; Corbeels et al., 2020; Jat et al., 2020;

Reich et al., 2021), water use efficiency (Jat et al., 2020),

economic sustainability (Jat et al., 2020; Reich et al., 2021),

food security (Reich et al., 2021), carbon sequestration (Powlson

et al., 2016; Mondal et al., 2020; Dong et al., 2021; Nicoloso and

Rice, 2021; Reich et al., 2021), greenhouse gas emission (Zhao

et al., 2016; Jat et al., 2020) and soil quality and fertility (Mondal

et al., 2020; Nicoloso and Rice, 2021; Reich et al., 2021). They

highlight that the effects of CA systems on crop productivity and

soil health (carbon sequestration, soil quality, soil structure, soil

biological activity) were extensively studied at the expense of

other dimensions of cropping system sustainability.
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CA systems combine a diverse set of farming practices, which

may evolve as the system matures (Derrouch et al., 2020). Stopping

tillage (both primary and secondary tillage operations, such as

plowing, stubble cultivation, false seed bed practices, mechanical

weeding, etc.) reduces traction timeand fuel consumption (West and

Marland, 2002; Kertész andMadarász, 2014). However, not all crops

are suitable for direct seeding (e.g. industrial crops such as sugar beet

or potato), still requiring shallow tillage for their establishment (e.g.

ridging), and their abandonment may have severe economic

consequences for farmers. Moreover, the implementation of the

threepillars ofCAand inparticular stopping tillage canhavenegative

consequences on crop productivity (Pittelkow et al., 2015), at least in

the short term, when cash crop sowing dates/rates, fertilization, and

herbicides are not optimized for untilled soil conditions (El-Gizawy,

2009). Nevertheless, the relative performance of CA systems,

compared to tillage-based systems, could vary across production

situations as studies have also reported positive effects on crop

productivity (Scopel et al., 2013; Jat et al., 2020).

In addition, CA systems also face problems in managing weeds

(Derrouch et al., 2020), which are no longer regulated by tillage. The

set of non-chemical weed management tools is more limited in CA

than in tillage-based systems and this is usually reflected by an

increase in herbicide use after adoption of CA (Adeux et al., 2019;

Derrouch et al., 2020). No-till is expected to reduce weed abundance

because weed seeds are maintained on the soil surface, a condition

deemedunfavorable toweed seed germination, but this appears to be

true only for a restricted set of species (Cordeau et al., 2015). On the

other hand, cover crops can suppress weeds through enhanced

competition (Osipitan et al., 2019; Smith et al., 2020) and crop

diversification can reduce weed abundance through a diversification

of selection pressures (Weisberger et al., 2019). CA farmers often

claim a decrease in insecticide use in CA, which they explain by the

diversity of crops in the rotation and the use of companion plants to

limit insectdamages (Cadouxet al., 2015).Theyalso report adecrease

in fungicide use, which could be explained by the presence of mulch

on the soil surface. According to Mulumba and Lal (2008), mulch

increases soil water capacity by 18-35% and soil moisture retention

from 29 to 70%, conditions deemed to enhance growth and spore

germination of fungi. However, mulch also prevents soil particles

from being splashed on the crop when rainfall occurs (McCalla and

Army, 1961), and hence limits the splash dispersal of inoculum

responsible for initial contamination (Teasdale et al., 2002).

Numerous studies have quantified the effect of one of the

three pillars of CA, e.g. on soil properties (Blanco-Canqui and

Wortmann, 2020), carbon sequestration (Powlson et al., 2014),

greenhouse gas emissions (Rochette, 2008), belowground

diversity and activity (Rincon-Florez et al., 2016) or crop

productivity (Pittelkow et al., 2015; Jat et al., 2020). Some

studies assessed cropping systems when conservation-

agriculture component practices were implemented either

separately or in tandem (Craheix et al., 2016; Jat et al., 2020).

However, very few studies have evaluated, on a multi-criteria

basis, CA systems implementing simultaneously the three
frontiersin.org
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fundamental pillars, (Craheix et al., 2016; Chabert and Sarthou,

2020; Jat et al., 2020) when they are combined into a true CA

system (Reicosky, 2015; FAO, 2021). A study using the MASC

multi-criteria evaluation tool showed that reducing tillage

tended to reduce overall cropping system performance, unless

it was combined with crop diversification (Craheix et al., 2016).

Such results demonstrate that CA must be seen, studied and

quantified as a system that jointly and simultaneously

implements the three pillars (Reicosky, 2015). A recent study

compared direct seeding systems (CA) to conventional- and

reduced-tillage systems and concluded that, despite a high

variability in the expression of ecosystem services, provisioning

of ecosystem services remained high in CA and that time since

conversion drove the delivery of many services (Chabert and

Sarthou, 2020). Time since conversion drove performances

because farmers take time before finding their own locally

adapted combination of practices within the framework of CA

and its three pillars (Derrouch et al., 2020). For instance, time is

needed to adapt the crop rotation (cash crops, companion crops,

cover crops, intercropping, relay-cropping, etc.) and to strictly

stop tillage, which may result in occasional shallow tillage

operations. In addition, it is not excluded that CA farmers

may face high pest pressures such as slugs (Scaccini et al.,

2020), voles (Ruscoe et al., 2022) and/or weeds (Derrouch

et al., 2021), forcing them to contain these issues with

occasional shallow tillage operations, hereafter called pseudo-

CA. Therefore, the performances of CA and pseudo-CA systems,

relative to reference systems which rely on conventional (i.e.

plowing) or superficial tillage in the same production context

and from a multi-criteria perspective, remains unclear.

The objective of this study is to assess the economic and

environmental performances of CA and pseudo-CA systems,

using data from the French DEPHY farm network, a network set

up in the early 2010s and made up of 3000 volunteer farmers

motivated about pesticide reduction (Lechenet et al., 2016;

Lechenet et al., 2017b), albeit without negatively impacting

their income. Based on detailed descriptions of the farmers’

cropping systems, we identified 36 CA and 19 pseudo-CA

systems (named hereafter CAs and pseudo-CAs, respectively)

and assessed their multiperformance (13 indicators). They were

compared to conventional- and superficial tillage-based systems

(named hereafter CTs and STs, respectively) located in the same

production situation (defined by similar climate, soil type

characteristics and the presence of livestock or irrigation).
2 Material and methods

2.1 The DEPHY network and
available data

The DEPHY farm network was set up as part of the

ECOPHYTO national action plan in 2010. Two years later, the
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network gathered 1900 farms and a new extension phase in 2016

allowed to reach a total of 3000 farms, with over half represented

by arable crops or arable crops and livestock. The network is

made up of volunteer farmers who are motivated in reducing

pesticide use, albeit without negative financial consequences.

The network is structured in groups of 10 to 15 farms,

geographically close to each other, and led by a crop advisor

whom assists farmers in redesigning their pest management

strategies. The farming practices are monitored and gathered in

the AGROSYST database (Ancelet et al., 2014), and include crop

rotation and detailed practices implemented in each crop. The

description of farming practices is done either at the plot level

with multiple plots per combination of cropping system and

farm, or in a more synthetic way. For the latter, the description

of the crop rotation and management practices associated to

each of its component represents an average of several plots (for

a given year or across multiple years), obtained by farmers’

questionnaires. Such descriptions are hence supposed to

incorporate temporal and spatial variability of farming practices.

For this work, both data sources were used (i.e. plot and

synthetic descriptions) to characterize cropping systems (see

details in Supplementary Tables S1, S2), and compute multiple

indicators of performance at the cropping system level, hence

considering all the plots of the cropping system whatever the

data source – plot or synthetic description – therefore avoiding

any bias due to the data source in the computed indicators. The

computation of the indicators was done over a three-year period

to smoothen potential inter-annual variability due to climatic

conditions. In rare cases, a cropping system was described with

data collected a given year, but multiple fields were described to

ensure the description of the whole cropping system (i.e. 6 fields

a given year to describe a 6-year rotation). Moreover, CAs and

pseudo-CAs were compared with their reference CTs and STs

(see section 2.3) over the same time frame (to the best of our

ability, see details in Supplementary Tables S1, S2, and at the end

of section 2.3), because annual weather conditions influence

both pest pressure and crop productivity.
2.2 Identification of CA and
pseudo-CA systems

Preliminary analysis of tillage practices identified 36 strict

no-till cropping systems (CAs), i.e. without any tillage

intervention in three successive years on all corresponding

plots, and 19 cropping systems with no deep tillage

intervention and maximum one shallow tillage (i.e. <10cm

depth) intervention per plot (or set of plots for the synthetic

description) per year across the three-year period (pseudo-CAs).

Rolling interventions (regardless of the type of roller) were not

considered as tillage interventions. When cropping systems were

described over periods longer than 3 years and no change in

tillage strategy was identified, only the three most recent years
frontiersin.org
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were retained for analysis, in order to maximize the chances of

characterizing systems that passed the initial transition phase,

during which practices are known not to be optimal (Derrouch

et al., 2020).

The CAs identified were mainly located in the regions

Poitou-Charentes, Centre, Bourgogne Franche-Comté and

Lorraine, i.e. regions with mainly shallow calcareous-clay soils

and limited yield potential (Schauberger et al., 2018; Schils et al.,

2018), and a few systems in the deeper soils of the Paris basin,

Normandy and the South-West (Figure 1). Pseudo-CAs were in

the same regions, with the addition of three systems in the South

East of France. These systems were located in the major arable

regions of France where CA is practiced (Laurent, 2015).
2.3 Identification of reference systems

In order to optimize the comparison of systems in similar

production situations (i.e. pedo-climatic and economic

constraints which go beyond farmers’ strategic decisions),

reference CTs and STs were searched according to the

following rules:
Fron
- Similar climate: for each focus CAs or pseudo-CAs, we

searched for CTs and STs within a geographical radius

of 50 km. This rule not only ensured that the systems

were compared in a rather similar climate, even if it is

known that rainfall can be more localized, but also

maximized the probability of the same socio-technical

context (e.g. proximity to a sugar factory or other
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industry offering outlets for specific crops: beet, field

vegetables, etc.).

- Similar soil type: as information on soil type is poorly

informed in the AGROSYST database, we approximated

soil type of each system on the basis of the French soil

map (Inra, 2018). This French soil database indicates

soil typological units (STU) that can be mapped. By

intersecting the geographical positions of the systems

and the map of soils on a GIS tool, we assigned to each

cropping system the most frequent soil type of the city

where the farm is located. Only CTs and STs sharing

similar soil types with each focus CAs or pseudo-CAs

were retained (within the previously established 50km

radius).

- Similar years: the same three years were used to describe

the focus CAs and pseudo-CAs and their reference CTs

and STs (to the best of our ability, see details in

Supplementary Tables S1, S2), to maximize the

chances that climatic conditions and pest pressures

were similar.

- As the presence of livestock on the farm greatly

determines practices (Lechenet et al., 2016), focus CAs

and pseudo-CAs were only compared with CTs and STs

in similar farming contexts (grain-based only or grain-

based/livestock mixed farming).

- As access to irrigation is a major driver of performance

(e.g. increased productivity and/or production costs,

possibility to grow certain crops), only CTs and STs

with similar access to irrigation (yes/no) to the focus

CAs or pseudo-CAs were retained.
FIGURE 1

Geographical location of conservation agriculture (CAs, N=36), pseudo-CAs (N=19), and their reference conventional tillage (CTs, N=135) and
superficial tillage (STs, N=90) based systems, all being part of the French DEPHY farm network.
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- When possible, i.e. number of CTs or STs > 6 in the same

production situation of the focus CAs or pseudo-CAs, a

second filter based on distance was applied in order to

keep only the six closest CTs and STs meeting all the

other previous conditions.
On the basis of these context variables, we identified clusters

of cropping systems sharing the same production situation, with

each cluster being composed of a focus CAs or pseudo-CAs and

their reference CTs and STs (i.e. similar climate, soil type, time

frame of description, livestock context, access to irrigation). In a

few rare cases, CAs or pseudo-CAs were geographically close

and therefore were compared to the same CTs and STs. Each

‘cluster’ therefore comprises one to two CAs (number of clusters

with 2 CAs = 3) or pseudo-CAs (number of clusters with 2

pseudo-CAs = 1) and from 0 to 6 reference CTs (on average 3.3

for the comparison with CAs and 3.7 for the comparison with

pseudo-CAs) and from 0 to 6 STs (on average 1.8 for the

comparison with CAs and 1.9 for the comparison with

pseudo-CAs). Thus, a total of 36 CAs or 19 pseudo-CAs were

compared to a total 135 CTs and 90 STs, split into 33 and 18

clusters for CAs and pseudo-CAs, respectively (Supplementary

Tables 1, 2). The statistical analysis (see details below) allowed

us to distinguish the “cluster” effect (i.e. effect of soil, climate and

socio-technical context) from the effect of farming strategy (i.e.

CTs , STs , CAs and pseudo-CAs) on each of the

indicators considered.

A sub dataset comprising only cropping systems described

across common years in a given cluster was also created to

explore whether the results were sensible to the inclusion of

reference cropping systems described over a slightly different

time period.
2.4 Indicators of cropping
systems’ performances

Data was extracted from the AGROSYST database, which

provides information on crop identity and their order of

succession, the sequence of interventions associated to each

crop (from harvest of the previous crop to harvest of the

studied crop), equipment, inputs (pesticide, fertilizer, seeds,

irrigation etc.), dates and doses of application, and crop yield.

Then, AGROSYST automatically computes several indicators of

performance. In this study, we focused on two types

of indicators:
- Indicators which aimed at verifying whether CA and

pseudo-CA systems, initially identified based on tillage

strategy, actually implemented the other two pillars of

CA, i.e. crop diversification and permanent soil cover.

For each system (CAs, pseudo-CAs, CTs, STs), we

calculated the number of different crops in the
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rotation (two crops grown and harvested one after

another in a given year were counted as 2) and the

frequency of summer fallow cover crops. When

cropping systems were described through the plot

approach, these two indicators were calculated as the

average described over the three years of monitoring and

for all plots. When the number of plots:years was less

than 9 (i.e. less than 3 plots described each year), the

indicators were not calculated.

- Technical-economic and environmental performance

indicators, calculated at the cropping system scale

(average of each component of crop rotation). The

indicators calculated by AGROSYST were:

The Treatment Frequency Index [TFI, average number of

doses at the recommended dose per ha (Gravesen,

2003)], and its different components: total TFI

(including seed treatment), Herbicide-TFI, Fungicide-

TFI and Insecticide-TFI. It is commonly used in Europe

to assess cropping system reliance to pesticides (OECD,

2001; Strehlow et al., 2020). A pesticide application at

the reference dose over the whole plot surface yields a

value of 1. AGROSYST computes TFI using two

different methods: TFI “at crop” for which the

reference dose is defined for each combination of

commercial product and crop, and TFI “at pest target”

for which the reference dose is defined for each

combination of commercial product, crop and pest

target. For instance, glyphosate is an active ingredient

present in many herbicides whose homologated doses

depend on the target weed (either annual or perennial

weed species). Pearson’s product moment correlation

between TFI resulting from both methods were tested

(Supplementary Table S3). Furthermore, herbicide TFI

was partitioned into glyphosate TFI and herbicide TFI

without glyphosate, using the open database of the

French E-Phy catalog of plant protection products

(ANSES, 2021) to quantify the reliance of systems to

this active compound (Antier et al., 2020).

Mechanized work time (h/ha/year), was calculated by

AGROSYST using a national reference database

(Walter, 2020), according to the work rate of the tools

used for each mechanized intervention listed in a given

cropping system, accounting for combined operations.

Fuel consumption (L/ha/year), was computed by

AGROSYST using a national reference database

(Walter, 2020), as a function of the work rate of the

equipment, but also of the traction power and the load

rate, according to the method recommended by the

APCA – Chambres d’Agriculture France (2020).

Economic indicators were also computed: gross product (€/ha/

year), operating costs (€/ha/year), mechanization costs

(€/ha/year), semi-net margin (€/ha/year, calculated as
frontiersin.org
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Fron
gross product – operating costs –mechanization costs) and

semi-net margin per hour of field traction (€/h/ha/year).

Crop productivity was compared based on winter wheat

grain yield (t/ha) as winter wheat was a crop shared by the

vast majority of cropping systems. These indicators were

calculated by AGROSYST on the basis of 10 price scenarios

reflecting price volatility (agricultural products, fertilizers

and fuels) between 2005 and 2017. The indicators were

calculated for each price scenario and then averaged, which

makes it possible to compare the economic performance of

cropping systems that were not characterized over the same

years.
2.5 Statistical analysis

All response variables presented above were analysed for the

four datasets separately (CAs and pseudo-CAs, full dataset or

sub dataset comprising only cropping systems described across

the exact same time frame within a cluster) with linear mixed

models, using the lme() function of the R package {nlme}

(Pinheiro et al., 2017). These models integrated a fixed part

(farming strategy, a 3-level factor, i.e. CAs/CTs/STs or pseudo-

CAs/CTs/STs) and a random part that accounted for the

structure of the data (the cluster effect accounting for the

production situation effect). This procedure amounts to

generalizing a paired t-test (intra cluster comparison) for more

than 2 groups, with data for each combination of cluster:farming

strategy averaged at the cluster level.

To account for intrinsic variability of performances within each

farming strategy and meet one the prerequisites of ANOVA (i.e.

homoscedasticity of residuals), variance structures were added to

the model when required (Pinheiro and Bates, 2006; Zuur et al.,

2009). Models with farming strategy as fixed factor and cluster as

random effect, differing only by the inclusion or not of a variance

structure (i.e. weights=varIdent(form=~1|farming_strategy)), were

compared via a likelihood ratio test. The most likely model was

retained, re-fitted by restricted maximum likelihood, and then

subjected to an analysis of variance in order to test the ‘farming

strategy’ fixed effect (F-test).

Contrasts between farming strategies were adjusted using the

{emmeans} package (Lenth, 2019). The marginal effect of

farming strategy is highlighted by least squares means. The

coefficient of determination (R²), indicating the proportion of

variance explained by the statistical model, is also presented as a

diagnostic tool. For mixed models, it is divided into R²m (the

proportion of variance explained by the fixed effects, farming

strategy), and R²c (the proportion of variance explained by the

whole model, fixed + random effects). All variables (except for

intercrop frequency and semi-net margin) were log transformed.
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3 Results

3.1 Multicriteria performance of
CA systems

3.1.1 Compliance with CA pillars
With an average of 5.1 crops in the rotation (Table 1; Figure 2),

CAs were significantly more diversified than their reference CTs

(4.3) or STs (4.4). However, only the difference between CAs and

CTs remained significant when the sub dataset comprising only

common years was used (Supplementary Table S4). Frequency of

fallow cover crops was also significantly greater in CAs than in

reference systems (Table 1; Figure 2). Focusing on the sub dataset

comprising only common years yielded a similar ranking among

farming strategies but no significant farming strategy effect or

significant differences between treatments were revealed

(Supplementary Table S4). Overall, strict no-till was accompanied

by the implementation of the other two CA pillars (Table 1), i.e.

crop diversification and soil cover, although some systems deviated

from this general trend, with less crops and/or cover crops than CTs

and STs of the same cluster (Figure 2).
3.1.2 Pesticide use
Results were very similar whether TFI was computed using

the “at crop” or “at pest target” methods (see Table 1 for values

“at pest target”, Supplementary Table S5 for values “at the crop”

method, and Supplementary Table 3 for correlations between

both methods). Total TFI (Figure 3) of CAs was not different

from that of STs, but higher (significant difference, +52% ‘at the

pest target’ TFI method) than that of CTs (Table 1). However,

only the difference between CAs and CTs remained significant

when focusing on the sub dataset comprising only common

years (Supplementary Table S4). The difference was mainly

explained by higher herbicide use in CAs than CTs (+0.9

herbicide TFI point, +90%, Table 1 and Figure 3) and STs

(+0.4 herbicide TFI point, +27%, only in the case of the full

dataset, Supplementary Table S4). Few CAs resorted to less

herbicides than STs (up to -2 herbicide TFI points) and CTs (up

to -0.8 herbicide TFI points) of the same cluster. CAs relied more

on the use of glyphosate (0.26 glyphosate TFI point, Table 1)

than STs and CTs, but glyphosate use was overall low (Figure 3).

Herbicide TFI without glyphosate was similar in CAs and STs

but higher than in CTs (Table 1 and Figure 3). However, only the

difference between CAs and CTs remained significant when

focusing on the sub dataset comprising only common years

(Supplementary Table S4). There was a trend towards lower

insecticide use in CAs (Figure 3) compared to STs (-64%) and

CTs (-50%), but the difference was not significant (Table 1).

Fungicide use was similar between the three types of systems

(Table 1 and Figure 3).
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TABLE 1 Comparison of indicators between conservation agriculture systems (CAs) and their reference conventional tillage (CTs) and superficial tillage (STs) based systems, while accounting for
production situation effects.

Farming strategy

CAs STs CTs

n
(max = 36)

Mean
(se)

n
(max = 58)

Mean
(se)

n
(max = 109)

Mean
(se)

R²m‡ R²c‡

36 5.1 (0.3) a 56 4.4 (0.2) b 106 4.3 (0.2) b 0.03 0.28

36 0.21 (0.04) a 56 0.12 (0.03) b 106 0.13 (0.02) b 0.02 0.18

36 3.2 (0.3) a 57 3.0 (0.3) a 105 2.1 (0.3) b 0.09 0.63

1 36 1.9 (0.1) a 57 1.5 (0.1) b 105 1.0 (0.1) c 0.26 0.65

1 30 0.26 (0.02) a 36 0.06 (0.02) b 86 0.01 (0.00) c 0.84 0.84

30 1.58 (0.13) a 36 1.36 (0.16) a 86 0.88 (0.14) b 0.26 0.83

36 0.05 (0.03) a 57 0.14 (0.05) a 105 0.1 (0.05) a 0.02 NA

36 0.5 (0.1) a 57 0.5 (0.1) a 105 0.5 (0.1) a 0.00 0.36

29 3.0 (0.3) b 44 4.0 (0.3) a 66 4.4 (0.3) a 0.07 0.11

1 27 56.9 (5.2) c 43 72.1 (5.7) b 67 93.6 (6.3) a 0.15 0.27

1 28 807 (46.6) b 39 994 (52.6) a 69 1082
(46.6)

a 0.12 0.27

30 6.24 (2.67) b 43 7.14 (2.39) b 80 6.98 (1.88) b 0.07 NA

1 28 212 (14.4) b 43 265 (16.3) a 74 288 (15.4) a 0.10 0.37

36 325 (18.9) a 56 349 (18.5) a 100 324 (14.4) a 0.01 0.29

23 497 (82.8) a 29 537 (79.4) a 51 616 (63.7) a 0.02 NA

23 204 (47.5) a 29 134 (17.6) a 46 144 (17.9) a 0.02 NA

to R²m (the proportion of variance explained by the fixed effect, farming strategy), and R²c (the proportion of variance explained by

cator are not significantly different at p < 0.05. The Treatment Frequency Indices (TFI) are those computed with “at the pest target”
rop target” method are provided in Supplementary Table 5.
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Indicators nb cluster
(max = 33)

numDF denDF F p-
valu

Number of crops (including secondary crops) 33 2 163 3.87 0.023

Frequency of occurrence of cover crops 33 2 163 3.09 0.003

Total TFI 33 2 163 3.63 0.028

Herbicide TFI 33 2 163 11.86 <0.000

Glyphosate TFI 28 2 122 74.94 <0.000

Herbicide w/o Glyphosate 28 2 122 7.79 0.000

Insecticide TFI 33 2 163 1.86 0.158

Fungicide TFI 33 2 163 0.01 0.994

Field traction time (h/ha/year) 26 2 111 5.32 0.006

Fuel consumption (L/ha/year) 24 2 111 13.04 <0.000

Gross product (€/ha/year) 25 2 109 10.82 <0.000

Winter wheat yield (t/ha) 27 2 124 5.43 0.005

Mechanization costs (€/ha/year) 25 2 118 10.35 <0.000

Operational costs (€/ha/year) 33 2 157 1.21 0.301

Semi-net margin (€/ha/year) 20 2 81 1.01 0.369

Semi-net margin per hour of field traction
(€/h/ha/year)

20 2 76 0.98 0.379

‡The coefficient of determination (R²) indicates the proportion of variance explained by the statistical model, and is divided i
the whole model, fixed + random effects, the latter being the cluster effect). NA, not applicable.
Significant (p<0.05) farming strategy effects are shown in bold. Farming strategies sharing the same letter for a particular ind
method (the reference dose is defined for each combination of commercial product, crop and pest target); results “at the c
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FIGURE 3

Pesticide use in conservation agriculture (CAs). Distributions of the differences in response variables between conservation agriculture systems
(CAs) and their reference conventional tillage (CTs, blue boxplots) and superficial tillage (STs, green boxplots) based systems for: total treatment
frequency index (total TFI including seed treatments, A), fungicide TFI (B), insecticides TFI (C), herbicide TFI (D), glyphosate-based herbicide TFI
(E), and herbicide TFI without glyphosate (F). The TFI are those computed with “at the pest target” method. Grey dots represent individual
differences between systems. Black dots represent average differences per cluster. Red stars indicate significant differences between CAs and its
reference system (either CTs or STs) at p<0.05. Cluster was included as a random effect in the statistical models to account for production
situation effects (see details in Table 1).
A B

FIGURE 2

Distributions of the differences in response variables between conservation agriculture systems (CAs) and their reference conventional tillage
(CTs, blue boxplots) and superficial tillage (STs, green boxplots) based systems for: the number of crops (A) and the frequency of fallow cover
crops (B). Grey dots represent individual differences between systems. Black dots represent average differences per cluster. Red stars indicate
significant differences between CAs and its reference system (either CTs or STs) at p<0.05, cluster accounting for the production situation
included as a random effect in the model (see details in Table 1).
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3.1.3 Technical and economic indicators
With respectively 3 h/ha/year and 57 L/ha/year on average

(Table 1), traction time and fuel consumption were clearly

reduced in CAs compared to STs (-25 and -21%, respectively)

and CTs (-32 and -39%, respectively, Figure 4). Nevertheless, the

differences between CAs and STs were less obvious for both

variables when focusing on the sub dataset comprising only

common years (Supplementary Table S4). Gross product was

19% and 25% significantly lower in CAs than in STs and CTs,

respectively (Table 1 and Figure 4). Focusing on the sub dataset

comprising only common years yielded a similar ranking among

farming strategies but no significant farming strategy effect or

significant differences between treatments were revealed
Frontiers in Agronomy 09
(Supplementary Table S4). The lower gross margin was partly

compensated by significantly lower mechanization costs in CAs

compared to STs (-20%, only in the case of the full dataset,

Table 1 and Figure 4) and CTs (-36%). However, lower

mechanization cost was sufficient to compensate for the loss of

gross products, as the semi-net margin did not differ (Table 1)

between strategies (Figure 4). Winter wheat productivity was

lower in CAs than STs (-13%) and CTs (-11%) indicating that

reduced gross product was partly due to reduced yield of some

crops (Table 1). The semi-net margin per hour of mechanized

work did not significantly differ between the three strategies

(Table 1 and Figure 4) despite a clear advantage of CAs over STs

(+52%) and CTs (+42%).
A B
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FIGURE 4

Technical and economic performances of conservation agriculture systems (CAs). Distributions of the differences in response variables between
CAs and their reference conventional tillage (CTs, blue boxplots) and superficial tillage (STs, green boxplots) based systems for mechanized work
time (h/ha/year, A), gross product (€/ha/year, B), mechanization costs (€/ha/year, C), operating costs (€/ha/year, D), fuel consumption (L/ha/
year, E), semi-net margin (€/ha/year, F) and semi-net margin per hour of field traction (€/h/ha/year, G). Grey dots represent individual
differences between systems. Black dots represent average differences per cluster. Red stars indicate significant differences between CAs and its
reference system (either CTs or STs) at p<0.05. Cluster was included as a random effect in the statistical models to account for production
situation effects (see details in Table 1).
frontiersin.org

https://doi.org/10.3389/fagro.2022.999960
https://www.frontiersin.org/journals/agronomy
https://www.frontiersin.org


Adeux et al. 10.3389/fagro.2022.999960
3.2 Multicriteria performance of
pseudo-CA systems

3.2.1 Compliance with CA pillars
Pseudo-CAs did not resort to a more diversified crop

rotation than the reference systems (Table 2 and Figure 5).

The frequency of fallow cover crops was higher in pseudo-CAs

than in the reference systems, but these differences were again

not significant (Table 2 and Figure 5). Hence, pseudo-CAs

tended to implement the two other pillars of CA but the

difference with their CTs and STs counterparts was not as

clear as with CAs (section 3.1.1).

3.2.2 Pesticide use
Overall, herbicide and insecticide use varied between

farming strategies but pseudo-CAs showed significant

differences with the reference systems only for insecticide use

(-91 and -80% compared to STs and CTs, Table 2 and Figure 6).

As observed for CAs, results were very similar when using TFI

calculated with the TFI ‘at crop’ and ‘at pest target’methods (see

Table 2 for “at pest target” values, Supplementary Table S5 for

“at crop values”, and Supplementary Table 3 for correlations

between both methods). Total TFI of pseudo-CAs (Figure 6) was

intermediate between STs (highest) and CTs (lowest), but was

not significantly different (Table 2). Nevertheless, focusing on

the sub dataset comprising only common years yielded a

s ignificant d i ff e rence be tween STs and CTs only

(Supplementary Table S6). The differences were again mainly

due to herbicides (Table 2 and Figure 6), with herbicide TFI in

pseudo-CAs being lower than in STs (-7%) and higher than in

CTs (+40%), but no significant differences were observed.

However, focusing on the sub dataset comprising only

common years revealed significantly higher herbicide use in

pseudo-CAs and STs than in CTs (Supplementary Table S6).

Pseudo-CAs and STs relied similarly on the use of glyphosate

but more than CTs, although glyphosate use was overall low

(Table 2 and Figure 6). Interestingly, herbicide TFI without

glyphosate in CAs was not significantly different from either STs

or CTs, though it was respectively higher and lower for the case

of CAs. (Table 2 and Figure 6). Significantly higher herbicide TFI

without glyphosate in pseudo-CAs and STs than in CTs was

nevertheless identified when focusing on the sub dataset

comprising only common years (Supplementary Table S6).

Insecticide TFI (Figure 6) in pseudo-CAs was extremely low,

close to 0, and significantly lower than those of the reference

systems (Table 2). Fungicide TFI were about 0.3 and not

significantly different between farming strategies (Table 2,

Figure 6). Focusing on the sub dataset comprising only

common years highlighted a significant difference between

pseudo-CAs and CTs (Supplementary Table S6).
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3.2.3 Technical and economic indicators
There were no differences between pseudo-CAs and STs for

any of the technico-economic indicators studied (Table 2).

However, fuel consumption in pseudo-CAs (-25%) and STs

(-17%) was significantly lower than for CTs (Table 2 and

Figure 7). Only the difference between pseudo-CAs and CTs

remained significant when focusing on the sub dataset

comprising only common years (Supplementary Table S6).

Gross product, winter wheat yield, operating costs and semi-

net margin (per hour of mechanized work or not) did not vary

by farming strategy, for the full as well as the reduced dataset

(Table 2; Figure 7 and Supplementary Table S6).
4 Discussion

4.1 Multicriteria performances of CA and
pseudo-CA

The study confirmed and quantified assumptions often

made about CA, usually backed up by farmers’ observations.

Our study is original with respect to the rare studies assessing

CA based on multiple indicator of performances conducted in

France (Craheix et al., 2016; Chabert and Sarthou, 2020). Indeed,

Craheix et al. (2016) included systems implementing occasional

superficial tillage in their definition of CA, which we describe

here as pseudo-CA following the classification of tillage types of

Reicosky (2015). In addition, Craheix et al. (2016), identified and

classified systems based on tillage strategy as we did, but did not

check the implementation of the third CA pillar, i.e. permanent

soil cover, often considered by pioneers as the first to be

implemented in the system. Contrary to Craheix et al. (2016),

which indicated that crop rotation in CA helped in controlling

weeds but not insect pests and diseases, our results showed that

CAs resorted to more herbicides, whether glyphosate-based or

not, but slightly less insecticides than the reference superficial

(STs) and conventional (CTs) tillage based systems. Tillage, even

superficial, remains a major weed management tool, although it

shows the disadvantage of stimulating new cohorts after the

destruction of the initial community (Teasdale et al., 1991;

Cordeau et al., 2017). This could explain why non-glyphosate

based herbicide TFI was similar in CAs and STs and slightly

higher (even though not significantly) in STs than in pseudo-

CAs in our study. However, CAs relied more on glyphosate than

STs and CTs because even under no-tillage, perennial and even

annual weeds still emerge and maintain populations over time

(Trichard et al., 2013) and remain a main concern for CA

farmers (Derrouch et al., 2020). Overall, the use of glyphosate-

based herbicide was low (i.e. 0.26 and 0.13 TFI points for CAs

and pseudo-CAs, respectively), corresponding to a reference
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TABLE 2 Comparison of indicators between pseudo-conservation agriculture systems (pseudo-CAs) and their reference conventional tillage (CTs) and superficial tillage (STs) based systems, while
accounting for production situation effects.

Farming strategy

pseudo-CAs STs CTs

n
ax = 19)

Mean
(se)

n
(max = 35)

Mean
(se)

n
(max = 67)

Mean
(se)

R²m‡ R²c‡

19 4.6 (0.4) a 34 3.7 (0.3) a 66 3.8 (0.3) a 0.03 0.26

19 0.18 (0.04) a 34 0.13 (0.03) a 64 0.15 (0.04) a 0.01 0.35

19 2.2 (0.4) a 33 2.4 (0.6) a 66 1.9 (0.4) a 0.02 0.54

19 1.3 (0.1) ab 33 1.4 (0.1) a 66 0.9 (0.1) b 0.16 0.60

17 0.13 (0.06) a 31 0.05 (0.02) a 58 0.01 (0.00) b 0.13 0.31

17 1.13 (0.12) ab 31 1.29 (0.16) a 58 0.87 (0.15) b 0.15 0.69

19 0.008
(0.005)

b 33 0.09 (0.05) a 66 0.04 (0.02) a 0.09 NA

19 0.3 (0.2) a 33 0.4 (0.1) a 66 0.3 (0.1) a 0.00 NA

17 3.3 (0.5) ab 32 3.3 (0.4) b 59 4.1 (0.5) a 0.04 0.46

14 60.8 (9.0) b 29 67.5 (5.3) b 53 80.9 (7.4) a 0.04 0.26

18 976 (78) a 34 987 (66.7) a 55 1055
(63.4)

a 0.01 0.28

13 7.4 (2.96) a 32 7.38 (2.91) a 48 6.96 (3.22) a 0.03 NA

14 258 (32.2) a 24 241 (21.8) a 49 250 (23.2) a 0.00 0.43

19 279 (24.7) a 31 339 (26.6) a 63 311 (20.0) a 0.03 0.26

14 578
(102.2)

a 22 528 (84.7) a 40 717 (66.4) a 0.05 NA

13 148 (17.4) a 22 191 (45.9) a 39 171 (29.4) a 0.05 0.05

(the proportion of variance explained by the fixed effect, system type), and R²c (the proportion of variance explained by the

e not significantly different at p < 0.05. The Treatment Frequency Indices (TFI) are those computed with “at the pest target”
et” method are provided in Supplementary Table 5.
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Indicators nb cluster
(max = 18)

numDF denDF F p-
value (m

Number of crops (including secondary crops) 18 2 99 2.45 0.0913

Frequency of occurrence of cover crops 18 2 97 0.73 0.4867

Total TFI 18 2 98 1.13 0.3266

Herbicide TFI 18 2 98 3.43 0.0365

Glyphosate TFI 16 2 88 9.35 0.0020

Herbicide w/o Glyphosate 16 2 88 2.38 0.0979

Insecticide TFI 18 2 98 5.66 0.0047

Fungicide TFI 18 2 98 0.30 0.7438

Field traction time (h/ha/year) 16 2 90 3.57 0.0323

Fuel consumption (L/ha/year) 14 2 80 4.15 0.0192

Gross product (€/ha/year) 17 2 88 0.76 0.4708

Winter wheat yield (t/ha) 13 2 78 1.86 0.1629

Mechanization costs (€/ha/year) 14 2 71 0.39 0.6798

Operational costs (€/ha/year) 18 2 93 1.89 0.1565

Semi-net margin (€/ha/year) 14 2 60 2.01 0.1426

Semi-net margin per hour of field traction (€/h/
ha/year)

13 2 59 0.51 0.6035

‡The coefficient of determination (R²) indicates the proportion of variance explained by the statistical model, and is divided into R²m
whole model, fixed + random effects, the latter being the cluster effect). NA, not applicable.
Significant (p<0.05) farming strategy effects are shown in bold. Farming strategies sharing the same letter for a particular indicator a
method (the reference dose is defined for each combination of commercial product, crop and pest target); results “at the crop tar
r
g
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A B

FIGURE 5

Distributions of the differences in response variables between pseudo-conservation agriculture systems (pseudo-CAs) and their reference
conventional tillage (CTs, blue boxplots) and superficial tillage (STs, green boxplots) based systems for: the number of crops (A) and the
frequency of summer fallow cover crops (B). Grey dots represent individual differences between systems. Black dots represent average
differences per cluster. Red stars indicate significant differences between pseudo-CAs and its reference system (either CTs or STs) at p<0.05,
cluster accounting for the production situation included as a random effect in the model (see details in Table 2).
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FIGURE 6

Pesticide use in pseudo-conservation agriculture (pseudo-CAs). Distributions of the differences in response variables between pseudo-CAs and
their reference conventional tillage (CTs, blue boxplots) and superficial tillage (STs, green boxplots) based systems for: total treatment frequency
index (total TFI including seed treatments, (A), fungicide TFI (B), insecticide TFI (C), herbicide TFI (D), glyphosate-based herbicide TFI (E), and
herbicide TFI without glyphosate (F). The TFI are those computed with “at the pest target” method. Grey dots represent individual differences
between systems. Black dots represent average differences per cluster. Red stars indicate significant differences between pseudo-CAs and its
reference system (either CTs or STs) at p<0.05, cluster accounting for the production situation included as a random effect in the model (see
details in Table 2).
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dose applied every four years or a fourth of the reference dose

applied each year on all plots of a given cropping system for CAs.

Our results also showed that stopping tillage in CA allows to

decrease time of traction/ha/year, fuel consumption, as well as

mechanization costs. It tended to slightly decrease profitability

per hectare (due to slightly lower productivity), as also observed

worldwide (Pittelkow et al., 2015). However, the ranking of

systems was reversed when focusing on profitability per hour of

field traction. CA was as profitable per hours of field traction as

the other systems. CA is an innovative type of agriculture, at

odds with some of the traditional pillars of farming, and thus

requires training, field observations, a new organization of the

work time, a more in depth selection of seeds and suppliers,
Frontiers in Agronomy 13
management of seed stocks, etc., which is not accounted for in

field traction time.

These conclusions draw general lessons based on averages

across different production situations, but mask a great diversity

of interactions between farming strategy and cluster (a “unique”

production situation). It is sometimes in particularities that we

observe more nourishing lessons (Verret et al., 2020; Salembier

et al., 2021). For example, our results showed that few CAs used

less herbicides (herbicide TFI) than their reference CTs and STs

located in the same production situation. We hypothesize that

specific elements of the production situation (region, soil type,

market outlet) and/or differences in initial pest pressure could

explain the large variability of responses across clusters, but
A B
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FIGURE 7

Technical and economic performances of pseudo-conservation agriculture systems (pseudo-CAs). Distributions of the differences in response
variables between pseudo-CAs and their reference conventional tillage (CTs, blue boxplots) and superficial tillage (STs, green boxplots) based
systems for mechanized work time (h/ha/year, A), gross product (€/ha/year, B), mechanization costs (€/ha/year, C), operating costs (€/ha/year,
D), fuel consumption (L/ha/year, E), semi-net margin (€/ha/year, F) and semi-net margin per hour of field traction (€/h/ha/year, G). Grey dots
represent individual differences between systems. Black dots represent average differences per cluster. Red stars indicate significant differences
between pseudo-CA and its reference system (either CTs or STs) at p<0.05. Clusters were accounted for as random effects in the model, cluster
accounting for the production situation included as a random effect in the model (see details in Table 2).
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argue that our dataset was not designed to investigate these

hypotheses compared to other studies [e.g. see Lechenet et al.

(2017a)]. For example, stopping tillage represents a strong

disturbance of the ecological habitat for weeds and it is only

after a transition phase estimated by some studies at 5-6 years

that weed management becomes optimal, when CA farmers

optimized their choices of crops and cover crops (Derrouch

et al., 2020). Finally, it is possible that the economic profitability

per hectare (and/or per hour of work) is more favorable to CAs

in areas of low to intermediate productivity, on shallow clay-

limestone soils with limited yield potential. Our analysis

highlighted lower winter wheat productivity for CAs than

reference systems in the same production situation, as shown

by Pittelkow et al. (2015), and may partly explain why gross

products were lower in CAs. However, this conclusion cannot be

drawn for all crops in all production situation and an in-depth

analysis of the differences between the clusters, i.e. the

production situation, would allow to verify this hypothesis, but

even larger datasets would be required (Munier-Jolain and

Lechenet, 2020).
4.2 Values of exploring big data sets

CAs and pseudo-CAs were here initially selected according

to their tillage strategy (no-till in CAs and less than one

superficial tillage per year across the 3-year period for pseudo-

CAs). However, our analysis showed that CAs, contrary to

pseudo-CAs , implemented the pr inc ip le s o f crop

diversification and soil coverage, two of the three pillars of CA

(Reicosky, 2015; Kassam et al., 2019; FAO, 2021), and often

considered as those implemented first during the transition

phase (Derrouch et al., 2020). Pseudo-CAs did not implement

the three CA principles since crop rotation were as diverse and

cover crop as frequent as in STs and CTs, and tillage occurred,

albeit rarely. The present study demonstrates once again the

great value of large datasets documenting detailed agricultural

practices implemented across a wide array of production

situations (Larsen and Noack, 2017; Lechenet et al., 2017a;

Munier-Jolain and Lechenet, 2020). Their analysis makes it

possible to produce agronomic knowledge that is primordial

for supporting farmers’ agro-ecological transition, i.e. the

adaptation of practices to increase cropping system multi-

performance (Munier-Jolain and Lechenet, 2020). The method

developed here is original, different from the data mining

approaches (CART, Random Forest) that are becoming

common for the analysis of large agronomic datasets (Tittonell

et al., 2008; Williams et al., 2009). We studied differences in

indicators of performance between systems within the same

production situations, with reference systems neighboring the

targeted CAs and pseudo-CAs. As all the systems in the same
Frontiers in Agronomy 14
cluster share the same production context [type of soil, type of

climate, technical-economic context, etc., i.e. all the elements of

the context that are undergone by farmers and which cannot be

modified by their farming strategy (Lechenet et al., 2017a)], the

approach allows to compare systems without confounding effect

of the production situation, ensuring to highlight the effect of

farmers’ strategies.
4.3 Avenues for future research
on multicriteria assessment of
conservation agriculture

It was not possible in this study to refine the analyses by

increasing the range of available indicators. For example, and

despite an increasing interest in this question (Dang et al., 2015;

Blanco-Canqui and Wortmann, 2020; Cordeau et al., 2020), the

use of strategic tillage in fields implementing CA principles for

years remains to be assessed from a multicriteria perspective.

Pseudo-CAs consists of the implementation of superficial

occasional tillage either for strategic (planting root crops such

as sugar beet or potato, which require tillage) or tactical reasons

(contain pest issues such as slugs, voles and/or weeds). However,

implementing superficial tillage after a no-till phase is generally

considered to be risky for weed management since the no-till

phase of the rotation concentrates the weed seedbank in the top

soil layer (Swanton et al., 2000) and then shallow tillage

stimulates germination, leading to high infestations (Cordeau

et al., 2020). This is not the case for the ‘rotational no-till’

strategies, which alternate long no-till phases with plowing

(Mirsky et al., 2013), but whose performance on a wide range

of indicators, as we did here, remain unknown (Cordeau

et al., 2020).

Finally, this study compared cropping systems based on

performances averaged over multiple plot and years. The

DEPHY Farm network was set up in the early 2010s and is

made up of volunteer farmers who are motivated in reducing

pesticide use, albeit without negative financial consequences, and

are thus engaged in changing their farming practices. Thus,

performances are expected to change over time as farmers

optimize new practices aiming at reducing pesticide use, even

in CA and pseudo-CA. It would therefore be interesting to

analyze the trajectories of performances to identify pathways

allowing farmers to achieve multi-performance as fast as

possible. CA remains a new and evolving form of agriculture

in France as it is worldwide, constantly innovating, and already

very different from how it was implemented by pioneers several

decades ago (Laurent, 2015). Ensuring the continuation of the

DEPHY farmers’ network will allow future research to dig into

performance trajectories, instead of averaged performances of

moving strategies.
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5 Conclusion

Based on the analysis of 13 indicators of technical, economic

and environmental performances, computed on 280 cropping

systems implementing conservation agriculture (CAs), pseudo-

CAs (implementing occasional shallow tillage operations),

conventional tillage (CTs, i.e. plowing-based) and superficial

tillage (STs) based strategies, we found that CAs (i) require more

herbicides but slightly less insecticides, (ii) decrease time of

traction/ha/year, fuel consumption, as well as mechanization

costs, (iii) tend to slightly decrease profitability per hectare (due

to slightly lower productivity) but similar profitability per hour

of field traction. Further analysis is needed to identify the

determinants of multi-performance in a given production

situations and track down innovative systems optimizing

multiple performances and solving apparent trade-offs, such as

tillage intensity and herbicide use and/or limited productivity.
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Sanitaire De L'alimentation De L'environnement Et Du Travail (Anses).
Available at: https://www.data.gouv.fr/fr/datasets/donnees-ouvertes-du-catalogue-
e-phy-des-produits-phytopharmaceutiques-matieres-fertilisantes-et-supports-de-
culture-adjuvants-produits-mixtes-et-melanges/.
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