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The worldwide growing food demand and the excessive use of synthetic and

chemical inputs compel the agricultural sector to find innovative and

sustainable solutions to enhance or at least maintain crop yields in times of

increased abiotic stresses levels linked to global change. Currently, great

research efforts are carried out on brown seaweeds as their environment lead

them to produce a broad range of compounds, with osmoregulatory,

antioxidant, pro-bacterial, and plant-growth promoting activities. Indeed,

numerous studies are looking at different combinations of algal species,

extraction processes, plant species and environments of plant culture to

highlight the various effects of algal extracts on plant growth and

development, and resistance to abiotic stresses. Consequently, a wide

variety of novel commercial products are emerging, presenting diversified

chemical compositions, formulations and means of application. Such

products allow the biostimulation of plants and soil by alleviating abiotic

stresses such as drought, frost, and salt. The action of brown macroalgal

extracts on plant and soil health has been repeatedly demonstrated, yet the

precise relation between the extract chemical composition and its

subsequent effect is still to be elucidated, as molecular synergy is

suspected to play an important role. In this review, we present the interest

of using brown macroalgal extracts to produce biostimulants with beneficial

action on soil health, plant growth and development, as well as resistance

against abiotic stresses, in relation to the molecular changes occurring.
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Phaeophyceae, seaweeds extracts, primary and secondary metabolites, plant
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1 Introduction

The upcoming years will see the agriculture sector facing several

threats that could hinder its capacity to ensure global food safety.

Indeed, world population is estimated to reach 9.7 billion by 2050

(UN DESA, 2017), considerably increasing crop production need

for direct human consumption and livestock farming. Meanwhile,

global change is altering biotic and abiotic factors (Shrivastava and

Kumar, 2015; Raza et al., 2019), negatively impacting crop

development and yield (European Environment Agency, 2017;

FAO, 2021). Hence, the crop production demand will rise in an

increasingly hostile environment for agricultural cultivation, which

calls for a modification of current agricultural practices.

Additionally, as ecological awareness is gaining momentum, being

durable and safe is one of the leading challenges of modern

agriculture (Sujeeth et al., 2022). During the last decades,

intensive agriculture has rendered the once-fertile arable soils into

impoverished lands, both in terms of nutrients and physical

structure (Patle et al., 2019; Mandal et al., 2020). Non-degradable

synthetic inputs have tenacious persistence in the environment and

are responsible for eutrophication from run-offs and water

pollution. These chemicals also have harmful consequences on

human and animal health, stemming from their strong toxicity

(Ali et al., 2021a). Consequently, more and more legislations are

being passed to manage nutrient excess and reduce the range of

harmful synthetic agricultural products, which have resulted in an

increase in fertiliser prices (European Commission, 2021; Baffes and

Chian Koh, 2022). As a result, the agricultural industry attempts to

reduce synthetic inputs in crops and is pressured to look for efficient

natural alternatives.

Biostimulants are currently gaining attention in this regard.

According to the last European regulation on fertilisers EU2019/

1009, a biostimulant is a product of natural origin, that “stimulates

plant nutrition processes independently of the product’s nutrient

content with the sole aim of improving one or more of the following

characteristics of the plant or the plant rhizosphere: (a) nutrient use

efficiency, (b) tolerance to abiotic stress, (c) quality traits, (d)

availability of confined nutrients in soil or rhizosphere”

(European Parliament and Council, 2019). Overall, the use of

biostimulants on crops lead to an increase of the parameters

sought by the agri-food sector, i.e. food product yield, quality,

and shelf-life (EBIC, 2021). Their utilization, in synergy with

organic and inorganic fertilisers, enhances the effects of the latter,

and confers abiotic stress resilience (Rouphael and Colla, 2018). It

allows the reduction of synthetic inputs, and indirectly their impact

on the environment by limiting leachates. The biostimulant market

is ever-growing, with a worldwide double-digit growth, showing a

will of the agricultural sector to shift their practices (Smiglak-

Krajewska and Wojciechowska-Solis, 2021; Moolla, 2022). This

rapid growth is also linked to numerous actors and products

already present on the market, sometimes creating confusion on

terminologies and claimed product effects (Caradonia et al., 2019;

Moolla, 2022). To harmonize the European market, a new

regulation frames the registration of biostimulants and the

authorization to commercialize under this nomenclature. It
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encompasses several criteria, including evidences of biostimulant

effects by independent studies, and microbiological and chemical

safety, notably regarding heavy metals contamination (European

Parliament and Council, 2019).

Biostimulants are categorized according to their raw material

source, their principal bioactive compound, or their mode of action

(du Jardin, 2015). Among them, one of the most promising classes

is brown macroalgal extracts (BME). They do not naturally possess

enough fertilizing power to be classified as fertilisers, but they can

stimulate plant internal responses for growth and defense, thus

having tremendous potential for the agricultural sector (Samuels

et al., 2022). Overall, BME application results in increases in

production levels, health and quality of crops (Nanda et al.,

2022), and is considered harmless for humans, animals and the

environment (Renaut et al., 2019). Finally, as brown macroalgae are

growing at sea, they do not enter in land competition with crop

production (Deolu-Ajayi et al., 2021) and do not require water nor

fertilisers supply to grow. Therefore, BME are rapidly developing in

the biostimulant market, with the emergence of numerous

commercial products (El Boukhari et al., 2020; Critchley et al.,

2021; EBIC, 2021). Brown macroalgae, or Phaeophyceae

(Chromista, Ochrophyta), are the second largest group of

macroscopic algae, with ~2,100 identified species (Guiry and

Guiry, 2023). They all contain a specific xanthophyll pigment,

fucoxanthin, responsible for their characteristic brown-yellow

color (Lee, 1999). They also produce a broad range of bioactive

compounds, of which a large number have positive effects on plant

growth and development, and stress alleviation (Sujeeth

et al., 2022).

The present review aims to highlight the potential of BME as

biostimulants for agrochemical alternatives. Various brown

macroalgal compounds displaying plant promotion and stress

alleviation activities are first presented. Then, biostimulant

activities are displayed in respect to macroalgal species, plant

species and potential compounds involved. Though biocontrol-

like activities have sometimes been reported for biostimulant

products, this review only focuses on biostimulant effects i.e.,

under abiotic stresses. Finally, the potential molecular

mechanisms implicated in the various activities are presented.

The conceptual diagram in Figure 1 summarizes the full potential

of BME regarding plant global health.
2 Brown macroalgal metabolites
beneficial to plant health and growth

Brown macroalgae biochemical composition is modulated by

their stressful living environment, which involves both biotic and

abiotic parameters. In response, they produce a wide range of

bioactive metabolites that modulate their resilience to stress

factors (Connan and Stengel, 2011; Stengel et al., 2011; Lalegerie

et al., 2020). These metabolites, i.e. minerals, carbohydrates,

proteins, lipids, phlorotannins, pigments, vitamins, have

applications in numerous sectors, including plant health and

growth (Sujeeth et al., 2022).
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Brown macroalgae have strong absorption and accumulation

capacities of surrounding salts and minerals. As a result, they

usually have a high mineral content, between 9 and 44% of the

algal dry weight (DW). This content varies depending on species,

seasonality, and surrounding seawater mineral concentration

(Circuncisão et al., 2018). Minerals are involved in various plant

cellular metabolism pathways and can trigger and/or directly

enhance plant growth and defense mechanisms, leading to

enhanced crop yields and quality (Kolbert et al., 2022; Lesǩová

et al., 2022). Indeed, metal elements such as copper (Van Nguyen

et al., 2022), iron (Rout and Sahoo, 2015; Murgia et al., 2022),

manganese (Alejandro et al., 2020), molybdenum (Huang et al.,

2022), nickel (Tanveer, 2020), and zinc (Thiébaut and Hanikenne,

2022) are essential plant micronutrients, involved in energy

metabolism, photosynthesis, respiration, reproduction, gene

expression regulation, and stress tolerance (D’Oria et al., 2021).

Conversely, mineral deficiencies can reduce nutrient uptake and

metabolism, which in turn negatively affect growth, yield and

quality of the harvested product (Courbet et al., 2019; Thiébaut

and Hanikenne, 2022).

Brown macroalgae are especially rich in carbohydrates, i.e.

alginates, fucoidans, laminarans, mannitol and cellulose (Percival

and McDowell, 1967; Stiger-Pouvreau et al., 2016), reaching up to

80% DW in some species; this proportion varying greatly according

to species, geographical location, maturation degree and seasonality

(Stiger-Pouvreau et al., 2016; Mohd Fauziee et al., 2021).

Carbohydrates have several functions in soil health and crop

enhancement, notably as metabolic triggers signals for
Frontiers in Agronomy 03
physiological defense responses such as the production of

phytochemical compounds (Laporte et al., 2007; Briceño-

Domıńguez et al., 2014). These effects were notably observed in

cabbage (Di Stasio et al., 2017b), tobacco (Chandıá and Matsuhiro,

2008), tomato (Mzibra et al., 2021), and wheat (Chandıá et al., 2004;

Zou et al., 2019; Zou et al., 2021).

Proteins are not usually abundant in brown macroalgae,

ranging from 3 to 15% DW, owing to species, seasonality and

environmental conditions such as temperature variations

(Fleurence, 1999). Brown macroalgae are rich in aspartic and

glutamic acids (Pangestuti and Kim, 2015), which are involved in

the biosynthesis of nitrogen-containing compounds such as proline

(El-Metwally et al., 2022), improve nitrogen uptake (Colla et al.,

2015; El-Metwally et al., 2022), have a positive effect on

photosynthetic activity (El-Metwally et al., 2022), and reduce

physiological damages induced by oxidative stress (Rizwan et al.,

2017; El-Metwally et al., 2022).

Brown macroalgae have a low lipid content, ranging from 0.3 to

6% DW (Nugroho Jati et al., 2019; Alghazeer et al., 2022). Lipophilic

compounds play roles in plant growth and stress resilience

processes, regulating cell membrane permeability and increasing

the tolerance to freezing stress (Rayorath et al., 2008b;

Muthuramalingam et al., 2022).

Phlorotannins, specific phenolic compounds of brown

macroalgae (Stengel et al., 2011; Stiger-Pouvreau et al., 2014),

range from 0.1 to 18% DW (Connan et al., 2004; Stiger-Pouvreau

et al., 2014) depending on localization, season, light, and algal

species and age (Stiger-Pouvreau et al., 2014). They have a broad
FIGURE 1

Conceptual diagram of the beneficiary effects of brown macroalgal extracts on plants.
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range of bioactivities, including antioxidant, antibacterial,

antifungal, anthelmintic and nematicide to alleviate biotic and

abiotic stresses in plants (Zubia et al., 2015), and enhance the

nutritional quality of food products (Teklić et al., 2021).

Finally, pigments or vitamins could have biostimulant

properties, but few studies have been made to evaluate their

effects on plants (Khan et al., 2009; Ali et al., 2021a; Teklić

et al., 2021).
3 Beneficiary effects of BME on plants

BME have multiple beneficiary effects on plants (Figure 1;

Table 1). Several parameters influence the ability to obtain these

desired outcomes. Indeed, various combinations of BME (species,

methods of extraction, qualitative composition…), plant species

and methods of application (dose rate, foliar or root drench

application…) induce a wide variability of end results (Caradonia

et al., 2022).
3.1 Soil structure and quality

A healthy soil is essential for plant productivity. BME can

improve soil physical, chemical, and biological properties

(Samuels et al., 2022). Indeed, they contain several chelating

agents, such as alginates, that can combine with metallic ions to

form high molecular weight aggregates (Kholssi et al., 2022). These

aggregates promote water absorption and retention, as well as soil

stability and aeration through improved pores capillary activity

(Illera-Vives et al., 2015; Shukla et al., 2019). Furthermore, BME

improve nutrients availability by stimulating soil microbial activity

for nutrient mineralization (Renaut et al., 2019), and as a direct

source of organic matter and trace elements (Di Filippo-Herrera

et al., 2019). BME can also function as biosorption agents for

polluted soils bioremediation. Their polyanionic abilities allow the

entrapment of pollutants, notably heavy metals, to eliminate them

from the environment (Amador-Castro et al., 2021).
3.2 Root growth and nutrients uptake

BME can stimulate plant roots growth and development, in

particular when applied on early growth stages (Samuels et al.,

2022). Growth and elongation stimulatory activity on tomato roots

was reported for the commercial Ecklonia maxima extract at lower

concentrations (0.038-0.057g/L), while a more concentrated extract

(0.230g/L) inhibited root growth (Finnie and van Staden, 1985).

The authors related the activity to endogenous plant hormones and

found an equivalent activity with 0.1 nM cytokinin zeatin. Root

growth and development parameters enhancement were also

assessed both in lettuce treated by a Durvillaea commercial

mixture (Yusuf et al., 2019), and strawberry treated by

Ascophyllum nodosum (AN), Sargassum sp. and Laminaria sp.

extracts under nutrient stress (El-Miniawy et al., 2016).

Improvements in the root system allow a better nutrients and
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water absorption and use, by acting on genes involved in nutrient

root uptake. Indeed, nitrogen, phosphorus, potassium and sulphur

uptakes were enhanced after the application of the commercial AN

extract, following the improvement of rapeseed root growth (Billard

et al., 2014). Similarly, a Laminaria sp. acid extract improved boron,

calcium, copper, iron, manganese, magnesium, molybdenum,

sulphur and zinc uptake in nutrient-stressed maize (Ertani et al.,

2018). The root stimulatory effect was lost when the extract was

reduced to ash, suggesting an organic origin of the bioactive

compounds (Zhang and Ervin, 2004).
3.3 Soil and plant microbiome

Leaves, roots and surrounding soil are fully colonized by

microorganisms, allowing active microbe-plant interactions.

These surfaces secrete soluble compounds such as carbohydrates,

amino and organic acids, that can be used as an carbon source by a

wide range of beneficial microorganisms for their proliferation

(Haichar et al., 2008). Microorganisms have an important role in

soil health and healthy plant growth and development, through

biofilm formation for particles aggregation, water retention,

nutrient cycling and transport, degradation of toxic substances,

and control of plant illnesses (Renaut et al., 2019).

The action mechanism of BME on rhizosphere and phyllosphere

microbiota and the precise interactions between microbiota and plants

are still unknown. Extracts characterization, observations of their

impacts on microbial communities and resulting plant-microbe

interactions can help to understand the links between algal extract

composition, microbial structure and plant growth enhancement

(Renaut et al., 2019). The modification of the plant and soil

secretions by BME can influence the structure and activity of the

microbial population, which in turn impact the plant growth and

development process (Shukla et al., 2019). In this sense, an increase in

root and soil microbial a-diversities and a low but significant positive

impact on microbial b-diversity following the application of an AN

commercial extract on pepper and tomato were observed (Renaut et al.,

2019). The rhizosphere microbial a-diversity of strawberry was also

increased after the application of another AN commercial extract rich

in betaine, alginic acid and caidrine (Spinelli et al., 2010). Both studies

suggest at least a partial implication of the extracts on the structure of

the microbial communities. BME can also prompt beneficial soil

microbial growth and activity, as well as soil conditioning

compounds production by these microorganisms (Deolu-Ajayi

et al., 2021).
3.4 Seed priming

Plant seedlings can be subjected to various abiotic stresses,

including drought and salinity, threatening their germination and

establishment. These stresses can trigger a physiological dormant

state that prevents germination under unfavorable conditions.

Application of BME can induce a “primed” physiological state of

seedlings by inducing various biochemical changes that lead to

dormancy break and trigger germination under stressful conditions
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TABLE 1 Brown macroalgal species, bioactive compounds and associated biostimulant commercial products, regarding their activities on various plants.
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Cucumber (Cucumis sativus)
Cyclamen (Cyclamen persicum)
French bean (Phaseolus sp.)
Grapevine (Vitis vinifera)
Kiwi (Actinidia sp.)
Lettuce (Lactuca sativa)
Lily (Lilium sp.)
Maize (Zea mays)
Olive (Olea europaea)
Onion (Allium cepa)
Orange (Citrus spp.)
Pine (Pinus sp.)
Poplar (Populus sp.)
Potato (Solanum tuberosum)
Rapeseed (Brassica napus)
Rice (Oryza sativa)
Soybean (Glycine max)
Spinach (Solanum oleracea)
Strawberry (Fragaria x ananassa)
Sugarcane (Saccharum officinarum)
Thale cress (Arabidopsis thaliana)
Tobacco (Nicotiana tabacum)
Tomato (Solanum lycopersicum)
Turfgrass (Festuca arundinacea)
Watermelon (Citrullus lantus)
Wheat (Triticum aestivum)

- Nutrient uptake and transp
- Water uptake improvement
- Root growth enhancement
- Soil and plant microbiome
activity improvement
- Seed germination improvem
- Growth and development p
- Overall yield increase
- Nutritional quality (total so
carotenoids, lycopene, flavonoi
proteins, anthocyanins, vitamin
aspect and shelf-life improvem
- Abiotic stress (drought, hea
oxidative) alleviation

Bifurcaria bifurcata(Fucales) Tomato (Solanum lycopersicum) - Seed germination improvem

Cystoseira sp.
C. compressa
C. foeniculacea (Fucales)

Maize (Zea mays)
Rapeseed (Brassica napus)
Tomato (Solanum lycopersicum)

- Seed germination improvem
- Growth and development p
- Overall yield increase
- Nutritional quality improve
- Abiotic stress (salinity) allev
o

s

a

l
d

e
t

a

m

https://doi.org/10.3389/fagro.2023.1109989
https://www.frontiersin.org/journals/agronomy
https://www.frontiersin.org


TABLE 1 Continued

efits References

ent
ent parameters increase

t) alleviation

Carrasco-Gil et al., 2018; Mattner et al., 2018;
Yusuf et al., 2019

ransport enhancement
ent
ent parameters increase

tamin C, phenolics)

Featonby-Smith and van Staden, 1983; Nelson and
van Staden, 1984; Finnie and van Staden, 1985;
Nelson and van Staden, 1986; Aldworth and van
Staden, 1987; Featonby-Smith and van Staden,
1987a; Featonby-Smith and van Staden, 1987b;
Beckett and van Staden, 1989; Temple et al., 1989;
Beckett and van Staden, 1990; Crouch et al., 1990;
Crouch and van Staden, 1991; Crouch and van
Staden, 1992; Atzmon and Van Staden, 1994;
Beckett et al., 1994; van Staden et al., 1994;
Kowalski et al., 1999; Arthur et al., 2003; Basak,
2008; Matysiak et al., 2011; Urbanek Krajnc et al.,
2012; Di Stasio et al., 2017b; Masondo et al., 2018;
Rouphael et al., 2018; Di Filippo-Herrera et al.,
2019; Kulkarni et al., 2019; Mola et al., 2019;
Dziugieł and Wadas, 2020; Poberezny et al., 2020;
Wadas and Dziugieł, 2020

provement Malaguti et al., 2002; Mansori et al., 2015;
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Strawberry (Fragaria x ananassa)
Tomato (Solanum lycopersicum)

- Root growth enhance
- Growth and developm
- Overall yield increase
- Abiotic stress (nutrien

Ecklonia arborea
E. maxima (Laminariales)

Plant growth regulators-like
(cytokinins)

Kelpak® Apple (Malus domestica)
Barley (Hordeum vulgare)
Bean (Phaseolus sp., Vigna sp.)
Bell pepper (Capsicum annuum)
Cabbage (Brassica oleracea, B. rapa)
Carrot (Daucus carota)
Cascading geranium (Pelargonium
peltatum)
Wild foxlove (Ceratotheca triloba)
Lettuce (Lactuca sativa)
Maize (Zea mays)
Marigold (Tagetes patula)
Peanut (Arachis hypogaea)
Pine (Pinus pinea)
Potato (Solanum tuberosum)
Spinach (Solanum oleracea)
Swish chard (Beta vulgaris)
Tomato (Solanum lycopersicum)
Wheat (Triticum aestivum)

- Nutrient uptake and t
- Root growth enhance
- Growth and developm
- Overall yield increase
- Nutritional quality (v
improvement

Fucus sp.
F. spiralis (Fucales)

Algafect® Apple (Malus domestica)
Bean (Phaseolus vulgaris)
Maize (Zea mays)
Tomato (Solanum lycopersicum)

- Overall yield increase
- Nutritional quality im

Gongolaria barbata (Fucales) Aubergine (Solanum melongena)
Bell pepper (Capsicum annuum)
Tomato (Lycopersicon esculentum)

- Seed germination imp
- Abiotic stress (freezin

Hydroclathrus sp. (Ectocarpales) Rice (Oryza sativa) - Seed germination imp
- Nutrient uptake and t
- Growth and developm
- Overall yield increase

Laminaria sp.
L. hyperborea (Laminariales)

Algafect®

Algreen®
Barley (Hordeum vulgare)
Maize (Zea mays)
Strawberry (Fragaria x ananassa)

- Seed germination imp
- Nutrient uptake and t
- Growth and developm
- Overall yield increase
- Nutritional quality im
- Abiotic stress (drough
m

m

i

https://doi.org/10.3389/fagro.2023.1109989
https://www.frontiersin.org/journals/agronomy
https://www.frontiersin.org


TABLE 1 Continued

pecies Benefits References

ensis)
stivum)

- Soil and plant microbiome structure and
activity improvement
- Abiotic stress alleviation

Wang et al., 2016; Wang et al., 2017; Zou et al.,
2019

Vigna sp.)
s sativus)

- Overall yield increase
- Nutritional quality (phenolics, vitamin C)
improvement
- Abiotic stress (drought) alleviation

Temple et al., 1989; Valencia et al., 2018; Di
Filippo-Herrera et al., 2019; Zou et al., 2021

itrus trifoliata) - Soil and plant microbiome structure and
activity improvement

Ishii et al., 2000; Kuwada et al., 2005

ungo)
tinum)
nensis)
iva)

)
us raphanistrum

x ananassa)
copersicum)
stivum)

- Seed germination improvement
- Root growth enhancement
- Growth and development parameters increase
- Overall yield increase
- Nutritional quality (protein, amino acid, sugars,
vitamin C) improvement
- Abiotic stress (salinity, oxidative, drought)
alleviation

Jeannin et al., 1991; Sivasankari et al., 2006;
Kumar and Sahoo, 2011; Matysiak et al., 2011;
Sunarpi et al., 2011; Kalaivanan and Venkatesalu,
2012; Kasim et al., 2015; El-Miniawy et al., 2016;
Abdel Latef et al., 2017; Di Filippo-Herrera et al.,
2019; Mahmoud et al., 2019; Silva et al., 2019; Yao
et al., 2020; Dookie et al., 2021

opsis - Growth and development parameters increase
- Overall yield increase
- Nutritional quality (protein, sugars)
improvement

Ramya et al., 2011

- Seed germination improvement
- Abiotic stress (nutrient) alleviation

Sunarpi et al., 2011
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Algal species (Order) Bioactive
compound

Commercial
product Plant s

Lessonia flavicans
L. nigrescens
L. vadosa (Laminariales)

Alginic acids
Fucoidans

Apple (Malus hupeh
Wheat (Triticum ae

Macrocystis pyrifera
M. integrifolia (Laminariales)

Plant growth regulators-like
(cytokinins)

GaiaAT® Bean (Phaseolus sp.,
Cucumber (Cucumi

Saccharina
japonica (Laminariales)

Oligoalginates
Mannitol

Trifoliate orange (C

Sargassum sp.
S. horneri
S. latifolium
S. muticum
S. myriocystum
S. polycystum
S. vulgare
S. wightii (Fucales)

AlgaminoPlant®

Algreen®
Black lentil (Vigna m
Chickpea (Cicer arie
Grapevine (Vigna si
Lettuce (Lactuca sat
Maize (Zea mays)
Bean (Vigna radiata
Red radish (Raphan
subsp. sativus)
Rice (Oryza sativa)
Strawberry (Fragaria
Tomato (Solanum ly
Wheat (Triticum ae

Stoechospermum polypodioides
(Dictyotales)

Cluster bean (Cyam
tetragonoloba)

Turbinaria murayana
T. ornata (Fucales)

Rice (Oryza sativa)

https://doi.org/10.3389/fagro.2023.1109989
https://www.frontiersin.org/journals/agronomy
https://www.frontiersin.org


Kergosien et al. 10.3389/fagro.2023.1109989
(Masondo et al., 2018). Furthermore, seed priming also provides

seedlings with additional sources of minerals, amino acids and

soluble sugars to enhance germination and improve vigor (Silva

et al., 2019). As a result, BME induce early seed germination and

increase germination rate and establishment in many crops, for many

algal species (Kumar and Sahoo, 2011; Lola-Luz et al., 2012; Masondo

et al., 2018; Mzibra et al., 2021). For example, seedlings of aubergine,

pepper and tomato subjected to cold temperatures, treated with a

Gongolaria barbata extract had enhanced germination rates linked to

improved vigour (Demir et al., 2006). Additionally, tomato seedlings

treated with Cystoseira foeniculacea, Fucus spiralis and Bifurcaria

bifurcata extracts increased germination rate and percentage (Mzibra

et al., 2021). Seed priming also grants the grown plant faster and/or

stronger responses to abiotic stresses (Sujeeth et al., 2022). Extract

drenching is the main method of application for seed priming, with

caution paid to extract composition and concentration, as high

concentrations of extracts can lead to a germination inhibition, due

to the presence of several growth regulators compounds (Silva

et al., 2019).
3.5 Plant growth and development

BME have a positive impact on overall plant growth and

development, demonstrated by an increase in root and shoot

length, surface area and volume, stem size, and overall fresh and

dry weight. For example, improvements in all physical and

biochemical growth parameters of bean were observed after the

application of a low concentrated Stoechospermum polypodioides

extract (Ramya et al., 2011). Meanwhile, higher concentrations

application resulted in growth inhibition. In addition, growth

stimulatory activities of commercial AN and Durvillaea extracts

were tested on nutrient-stressed lettuce, leading to root biomass

increase (Yusuf et al., 2019). The impact of an AN commercial

extract on lettuce, melon, pepper and tomato was studied under

drought stress (Neily et al., 2010). In each case, the treatment

allowed an improvement of growth parameters, as well as an early

development of root and shoot. BME can be applied directly to soil

and roots or as a foliar spray, and effects on plant growth are

concentration-dependent (El Boukhari et al., 2020). The growth-

promoting properties of the extracts could be attributed to the

presence of oligosaccharides, amino acids and vitamins (Briceño-

Domıńguez et al., 2014; Renaut et al., 2019).

BME can increase the chlorophyll content of treated plant

leaves for an improved photosynthesis. Indeed, a higher leaf

chlorophyll content in nutrient-stressed lettuce was measured

after AN commercial alkali extract application (Yusuf et al.,

2019). The extract reduced chlorophyll degradation in

chloroplasts, linked to plant endogenous betaines synthesis

enhancement induced by BME (Blunden et al. , 1996).

Furthermore, antioxidant compounds, like phlorotannins and

carotenoids, can protect the photosynthetic apparatus against

photooxidative damages occurring during abiotic stress by

scavenging reactive oxygen species (ROS) thus preventing
Frontiers in Agronomy 08
chlorophyll degradation and increasing leaf chlorophyll content

(Mansori et al., 2015). Extracts can also trigger early flowering and

fruiting in bean (El-Yazied et al., 2012), pepper (Ali et al., 2021b),

marigold (van Staden et al., 1994), strawberry (El-Miniawy et al.,

2016) and tomato (Crouch and van Staden, 1992; Ali et al., 2021b).

It is suspected that BME trigger the biosynthesis of endogenous

cytokinins, which influence flowering (Samuels et al., 2022).
3.6 Crop yield and quality

Improvements of the above-mentioned parameters by BME

result into enhanced crops yields, as observed in barley (Blunden

et al., 1996), bean (El-Yazied et al., 2012), broccoli (Gajc-Wolska

et al., 2012), cabbage (Di Stasio et al., 2017b), grapevine (Taskos

et al., 2019), lettuce (Mola et al., 2019), maize (Hussein et al., 2021),

onion (Hidangmayum and Sharma, 2017), pepper (Arthur et al.,

2003), potato (Dziugieł and Wadas, 2020), rapeseed (Jannin et al.,

2013), spinach (Rouphael et al., 2018), tomato (Yao et al., 2020),

watermelon (Abdel-Mawgoud et al., 2010) and wheat (Amaral

Carvalho et al., 2014). Additionally, an AN commercial extract

had a positive impact on apple’s fruit set, number, size and weight,

when applied at low concentrations (de Sousa et al., 2019). An

increase was measured in maize ear weight of 37-42% and 48-50%

after E. maxima and Sargassum sp. commercial extracts application,

respectively (Matysiak et al., 2011). Increases in fruit size and

harvest volume of blueberry (Loyola and Muñoz, 2009), grapevine

(Norrie and Keathley, 2006; Khan et al., 2012), kiwi (Chouliaras

et al., 1997), pepper (Arthur et al., 2003), potato (Dziugieł and

Wadas, 2020) and tomato (Dookie et al., 2021) were also observed.

Nevertheless, as commercial biostimulants are sometimes

supplemented with growth enhancers including synthetic plant

hormones to boost biostimulation effects, increases in yield

cannot be solely attributed to BME.
3.7 Biofortification

The application of BME enhances the nutritional value of the

crops. Indeed, the nutritional qualities of broccoli (Lola-Luz et al.,

2014b), carrot (Poberezny et al., 2020), cucumber (Valencia et al.,

2018), grapevine (Frioni et al., 2018), onion (Lola-Luz et al., 2014a),

potato (Lola-Luz et al., 2014a), spinach (Fan et al., 2011) and

strawberry (Kapur et al., 2018) were improved upon the addition

of BME, such as AN or Macrocystis sp. In the same way, after BME

application, the fruits accumulate higher amounts of healthy and

taste-beneficial compounds, such as soluble carbohydrates (fructose

and sucrose), phenols, flavonoids, anthocyanins, quercetin and

vitamin C (Di Stasio et al., 2018; Frioni et al., 2018; Kapur et al.,

2018; Valencia et al., 2018). Shelf-life seems to be extended by AN

commercial extracts treatment on grapes (Norrie and Keathley,

2006) and spinach (Fan et al., 2014). On the contrary, AN and E.

maxima commercial extracts application decreased preservation

duration of apple fruits (Basak, 2008).
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3.8 Resilience to abiotic stresses

Field-cultivated crops are regularly exposed to multiple abiotic

stresses usually occurring simultaneously. They originate from

environmental conditions variation, and usually encompass

oxidative, hydric, frost, heat, and saline stresses (Samuels et al.,

2022). BME contain compounds that can elicit several defense

systems in plants by triggering stress signals involved in

transduction pathways, and heighten resistance and resilience to

these stresses to a certain extent (Larsen et al., 2003). Indeed, an AN

commercial extract applied on cherry tomato under saline and

drought stresses limited yield loss to 15% (Murtic et al., 2018).

Oxidative stress induces damaging free radicals and ROS

production in the plant. In Arabidospis, pepper and tomato under

oxidative stress, AN extract application induced the accumulation

of cytokinins and phenolic compounds, which have ROS-

scavenging capabilities (Omidbakhshfard et al., 2020; Staykov

et al., 2021). Salinity and drought stresses can be similarly

mitigated by a reduction of osmotic potential to avoid excessive

water loss. This involves osmoprotectants accumulation, such as

proline, carbohydrates, organic acids and proteins, and stimulation

of stomatal closure, which can be enhanced by BME, such as AN

extracts on asparagus (Al-Ghamdi and Elansary, 2018) and spinach

(Xu and Leskovar, 2015), or Cystoseira sp. extract on rapeseed

(Hashem et al., 2019). For example, long-term dehydration effect

prevention consecutive to the application of AN extracts on

drought-stressed Arabidopsis was observed (Santaniello et al.,

2017; Rasul et al., 2021). Conversely, heat stress is mitigated by

an increase in transpiration to improve thermoregulation (Franzoni

et al., 2022). Freezing stress protection is enhanced by the

accumulation of proline, soluble sugars and lipophilic compounds

such as unsaturated fatty acids, as observed in freezing-stressed

Arabidopsis treated by an AN lipophilic extract (Nair et al., 2012).

Stress mitigation can also be enhanced by the application of several

extracts from different macroalgal species at once, to handle a wider

variety of stresses (Deolu-Ajayi et al., 2021).
4 Molecular modes of action of BME
in crops

Currently, the precise mechanisms activated and regulated by

BME application are still not fully understood, as the intricate

molecular processes responsible for plant growth responses and

stress alleviation induced by BME are complex. Extensive

composition analysis of BME and improved genomic techniques

to oversee resulting effects on plant physiology are key elements to

unveil the processes in which the extracts constituents improve

plant growth, health and vigour (Sujeeth et al., 2022). It is suspected

that these compounds act as signaling mechanisms for specific

metabolic and hormonal pathways, to modulate gene expression

and induce metabolic changes in the plant (Nanda et al., 2022;

EBIC, 2023; Table 2). Under stress conditions, these pathways can

be amplified to improve plant adaptation and survival, or delay

stress effects. Furthermore, some of these compounds present
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antioxidant activities, which directly reduce the deteriorating

effects of free radicals produced by plants under stress conditions

(Franzoni et al., 2022). Small variations in extract composition can

lead to different molecular and cellular end-results, which suggest

the activation of distinct underlying pathways. Furthermore, a

single extract can concurrently trigger and/or restrain several

metabolic or hormonal pathways. Thus, no generalities can be

made on the mode of action and the subsequent benefits solely

based on extract composition (Deolu-Ajayi et al., 2021).
4.1 Nutrient and water uptake and
transport enhancement

Nutrients uptake and transport are stimulated through the

upregulation of several genes responsible for transcription of nutrient

transporters in the plant membrane, which can be induced by BME

application. For example, AN extracts application on Arabidopsis and

barley upregulated calcium, copper, nitrate, sulphate, amino acids,

peptides, nucleotides, sugar, nucleotide-sugar derivatives transporters

genes (Goñi et al., 2016; Goñi et al., 2021). Meanwhile, AN commercial

extracts on spinach upregulate the glutamine synthetase gene that

catalyses the inorganic nitrogen form, ammonium, into the organic

form, glutamine, and the nitrate reductase gene responsible for the

nitrate-to-nitrite reduction towards the assimilation of nitrate (Fan

et al., 2013). BME application can also trigger the synthesis of

membrane proteins aquaporins to facilitate water transmembrane

exchanges (Santaniello et al., 2017; Al-Ghamdi and Elansary, 2018;

Rasul et al., 2021).
4.2 Soil and plant microbiome structure
and activity improvement

BME differentially trigger several enzyme genes involved in

compounds degradation into assimilable nutrients for the microbial

community development. Depending on the extract composition,

microorganism genes expression varies differently, impacting

encoded enzyme activity, such as cellulase, invertase, nitrite

reductase, phosphatase, proteinase, and urease, for cellulose,

carbohydrates, nitrite, phosphate, proteins, and urea degradation

respectively (Eyras et al., 1998). Assimilable nutrients availability is

thus altered, and differentially favors microbial communities. This

positive modification of the microbiome structure was observed in

apple cultivars following the application of a Lessonia extract

(Wang et al., 2016).
4.3 Seed priming and germination
improvement

The priming action of BME to enhance the seed resistance to

stresses is modulated through epigenetic and chromatin pathways

(Lämke and Bäurle, 2017). The acquired resistance is then retained by

the plant from a few days to several weeks (Liu et al., 2022). Beside
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TABLE 2 Benefits induced by brown macroalgal extracts on plants, and their suspected molecular mode of action in plants.
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et al., 2014; Goñi et al., 2016; Goñi et al.,
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Benefits Molecular mode of action

Nutrient uptake and
transport enhancement

- Upregulation of calcium (CAX3, CAX7, ACA1), copper (COPT2), iron (NRAMP3), potassium (HKT2;1), sodium (NHX2), nitra
NRT1.5), sulphate (SULTR1, SULTR3, AST56), amino acids (LHT1, AAP5), peptides (ATOPT3), nucleotides (ATPUP10), nucleotid
(UTR2, UTR3), sugars (MSS1) transporter genes
- Upregulation of glutamine synthetase (GS1) gene
- Upregulation of nitrite reductase (NR) gene

Water uptake improvement
- Upregulation of transmembrane protein aquaporins (PIP1;2, PIP2;2, PIP2;3) genes

Soil and plant microbiome
structure and activity
improvement

- Upregulation of cellulase, dehydrogenase, inverterase, nitrite reductase, phosphatase, proteinase and urease genes

Seed germination
improvement

- Upregulation of a-amylase enzyme genes by gibberellin A3 signalling

Growth and development
parameters enhancement

- Modulation of the phenylpropanoid and flavonoid pathways
- Upregulation of cellulose synthase-like E1 (CSLE1), UDP-glucose 4-epimerase 1 (UGE1), pectin acetylesterase 8 (PAE8) genes
- Upregulation of growth hormones auxin (IAA), cytokinin (IPT), gibberellin (GA2Ox) biosynthesis genes
- Upregulation of FLOWERING TIME (FT), CLAVATA (CLV), SQUAMOSA PROMOTER BINDING-LIKE (SPL) genes
- Upregulation of Single Flower Truss (SFT), Self-Pruning (SP), Jointless (J), Anantha (AN), Falsiflora (FA) and Constans-1 (CO)

Photosynthesis
enhancement

- Upregulation of betaine aldehyde dehydrogenase and choline monooxygenase genes
- Upregulation of glycine betaine biosynthesis genes
- Downregulation of chlorophyll degradation (AtCLH1 and AtCLH2) genes

Nutritional quality
enhancement

- Upregulation of thylakoid-bound ascorbate peroxidase (APX) and monodehydroascorbate reductase genes

Abiotic stress alleviation - Modulation of ABA, RCAR and RBOHD signalling-dependant compounds
- Modulation of signalling compounds mediated by cytokinin, cytokinin response regulator2 (ARR2) and apoplastic peroxidase (P
- Upregulation of ABA-signalling and biosynthesis (NCED3, PP2CA, PP2C52, PYL8, ABI1, ABI2, SnRK2,8, DREB1A, DREB3) ge
- Upregulation of proline synthesis (P5CS1 and P5CS2) genes
- Downregulation of proline degradation (ProDH) gene
- Upregulation of polysaccharide degradation (9SEX1, SEX4) genes
- Upregulation of carbohydrate biosynthesis (GOLS2, GOLS3) genes
- Downregulation of sucrose degradation genes
- Upregulation of cell cycle marker (HISTONE H4) gene
- Downregulation of programmed cell death associated (WRKY33, ATG) gene
- Upregulation of glutathione (GSH) gene
- Upregulation of drought-responsive (LEA4-5, LEA7, LEA46) and dehydrine (TAS14) genes
- Downregulation of negative growth regulator stress responsive (RESPONSIVE TO DESICCATION 26) gene
- Upregulation of freezing-tolerance (DGD1, COR15A, RD29A, CBF3) genes
- Upregulation of stomatal chloroplast proteins cryoprotection transcription factor (DREB1A, COR78/RD29A) genes
- Upregulation of freezing tolerance (galactinol synthase2, pyroline 5-carboxylate synthetase, acetyl-CoA carboxylase) genes
- Upregulation of ascorbate-glutathione antioxidant system (APX1, AO) genes
- Upregulation of ROS-scavenging enzyme (superoxide dismutase, peroxide dismutase, catalase, ascorbate peroxidase) genes
- Downregulation of oxidative stress-induced cell death lipids (TAGS and GABA) genes
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seed resistance improvement, BME compounds, found for example

in AN, can trigger the biosynthesis of the hormone gibberellin A3

that functions as a signal for a-amylase enzyme gene activation. The

enzyme then participates in starch hydrolysis into carbohydrates,

which is used as an energy source by the seed for germination

(Akazawa and Hara-Nishimura, 1985; Beck and Ziegler, 1989; Sun

and Gubler, 2004; Rayorath et al., 2008b). Other compounds can also

be responsible for a-amylase enzyme activation, as it was also elicited

by a GA3-deprived AN extract (Rayorath et al., 2008b).
4.4 Growth, photosynthesis, and nutritional
quality enhancement

The stimulation of plant growth by BME is modulated through

several plant hormonal pathways, namely phenylpropanoid and

flavonoid (Sujeeth et al., 2022). BME compounds are able to act as

signals for the endogenous plant growth hormones auxin, cytokinin

and gibberellin biosynthesis through the upregulation of their

respective genes (Wally et al., 2013; Ali et al., 2019; Shukla et al.,

2019; Ali et al., 2021b; Baghdadi et al., 2022). Moreover, accumulation

of plant growth hormones was correlated with growth parameters

improvement of tomato and bell pepper, as well as on Arabidopsis

consecutive to the application of AN and Sargassum vulgare extracts

(Wally et al., 2013; Ali et al., 2019; Ali et al., 2021b; Baghdadi et al.,

2022). AN and Sargassum extracts applied on tomato upregulated the

genes responsible for flowering, which is regarded as an index of yield

(Dookie et al., 2021; Baghdadi et al., 2022). BME also elicit the

upregulation of cellulose synthase-like E1, UDP-glucose 4-epimerase

1 and pectin acetylesterase 8 genes, responsible for the development

and strengthening of plant cell walls (Goñi et al., 2016).

BME can improve the plant photosynthetic system by

upregulating betaine aldehyde dehydrogenase and choline

monooxygenase genes involved in the photosynthetic process (Xu

and Leskovar, 2015). They also trigger the upregulation of glycine

betaine biosynthesis genes that prevent chlorophyll degradation and

delay photosynthetic activity loss, and the downregulation of

chlorophyll degradation genes (Genard et al., 1991; Nair et al.,

2012). Both processes resulted in increased leaf chlorophyll content

and enhanced photosynthetic activity, as observed after AN extract

application on spinach (Fan et al., 2013; Xu and Leskovar, 2015).

Quality and shelf-life of post-harvest food products are

improved upon BME applications. Indeed, an AN commercial

alkali extract elicited the upregulation of thylakoid-bound

ascorbate peroxidase and monodehydroascorbate reductase genes

involved in the accumulation of carotenoids, flavonoids, phenols in

spinach (Fan et al., 2014; Xu and Leskovar, 2015).
4.5 Abiotic stress alleviation

Plants cultivated in open fields are frequently subjected to

oxidative, hydric, saline, heat, and frost stresses. Those stresses

and their impact on plant health and yield can be alleviated by BME
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through several metabolic pathways. For example, alginates of AN

can act as signals for the accumulation of abscisic acid through the

activation of its biosynthesis and signaling genes (Santaniello et al.,

2017; Rasul et al., 2021). Accumulation of abscisic acid in plants is

one key factor in multiple stress resilience. Furthermore, osmotic

balance maintenance is a crucial parameter to ensure the plant

survival, as it allows efficient water and ion exchange through cell

membranes. When a plant is subjected to saline, hydric or frost

stress, application of an AN lipophilic extract can trigger the

accumulation of proline, an osmoprotectant, through the

upregulation of proline synthesis and the downregulation of

proline degradation genes (Nair et al., 2012). Similarly, the

accumulation of mannitol is induced by the upregulation of genes

encoding for mannitol-1-P-dehydrogenase and mannose-6-P-

reductase enzymes, responsible for the reduction of fructose-6-P

and mannose-6-P into mannitol-1-P, respectively, while the gene

encoding for mannitol dehydrogenase, responsible for the oxidation

of mannitol into carbohydrate monomers, is downregulated (Pharr

et al., 1995; Stoop et al., 1996).

Oxidative stress generates ROS responsible for several damages

in plants. BME application on crops under oxidative stress can

upregulate the ROS-scavenging enzymes genes to inhibit ROS

production and prevent harm (Fike et al., 2001; Abdel Latef et al.,

2017; Goñi et al., 2018; Hussein et al., 2021). Indeed, AN extract

application on oxidative-stressed Arabidopsis upregulated genes

associated to ROS detoxification ascorbate-glutathione

antioxidant system, and downregulated programmed cell death-

associated and lipid cell death-associated genes, which suggest a

reduction of damages caused by oxidative stress (Omidbakhshfard

et al., 2020; Rasul et al., 2021; Staykov et al., 2021). Saline and hydric

stresses are both mainly mitigated through osmotic pathways,

including the accumulation of osmoprotectants. Stressed

Arabidopsis treated with an AN commercial alkali extract

modulated cytokinin response regulator2 and apoplastic

peroxidase activities, both involved in stomatal closure (Rasul

et al., 2021). Stomatal closure enhancement allows for a reduction

of transpiration and an increase of water retention. AN extracts also

elicited the upregulation of drought-responsive and dehydrin genes

(Muñoz-Mayor et al., 2012; Goñi et al., 2018; Rasul et al., 2021), and

downregulated the negative growth regulator stress responsive gene

in Arabidopsis (Rasul et al., 2021). Frost stress is alleviated through

the upregulation of freezing-tolerance genes, the upregulation of

stomatal chloroplast proteins cryoprotection transcription factor

genes and the upregulation of genes coding for enzymes involved in

the synthesis of freezing tolerance compounds (Nair et al., 2012;

Zamani-Babgohari et al., 2019). Protection against frost is also

improved through the accumulation of several compounds,

including proline and unsaturated fatty acids, involved in cell

protection against freezing-induced damages, as well as

carbohydrates, to increase the energy stock for continued

metabolism performance. Carbohydrates accumulation is

mediated through the upregulation of polysaccharide degradation

genes, carbohydrate biosynthesis genes and the downregulation of

sucrose degradation genes (Nair et al., 2012).
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5 Conclusion and future directions

As the agricultural sector is actively looking for agrochemical

alternatives to enhance crop yield and prevent abiotic stress threats,

brown macroalgal biostimulants are gaining momentum. The wide

range of bioactive compounds of brown macroalgae make them prime

candidates for such applications. Encouraging results have already been

highlighted regarding soil structure and stability, seed priming, nutrient

and water uptake, root and plant growth and development, overall

yield and nutritional quality, and abiotic stress alleviation. Nevertheless,

the precise mode of action of extracts are still unclear, as several

metabolic pathways are involved, and the extracts complex

composition associated with compounds’ synergy do not allow a

clear understanding of the mechanisms involved. Improvements in

genomic techniques and extensive characterization of BME could

allow, in the future, for a better comprehension of plant

mechanisms, which in turn would allow for extract optimization to

further enhance the activities. In addition, these findings will allow

commercial BME producers to develop and standardize more

systematically their extracts which will guarantee more homogeneous

products with sufficient bioactivity to meet targeted results. Currently,

brown macroalgae are still considered an underexploited resource, but

are gaining more interest from scientists and industries. Indeed, their

application fields are numerous, and their offshore growth neither

requires water and fertilisers supply nor competes with crop

production for arable lands. Brown macroalgae are a renewable

resource, thanks to their high recovery rate, but harvest from wild

populations must be tightly regulated to avoid biomass

overexploitation and surrounding marine ecosystem disruption. In

this regard, cultivation could ensure a continuous supply of algal

biomass without threatening wild communities.
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da Silveira, L. C. I., Mattos, P., Mógor, Á.F., Daros, E., de Oliveira Bettini, M., and
Norrie, J. (2015). Effect of kelp extract on sugarcane plantlets biomass accumulation.
Idesia 33, 31–33. doi: 10.4067/S0718-34292015000300005

Dell’Aversana, E., Cirillo, V., Van Oosten, M. J., Di Stasio, E., Saiano, K., Woodrow,
P., et al. (2021). Ascophyllum nodosum based extracts counteract salinity stress in
tomato by remodeling leaf nitrogen metabolism. Plants 10, 1044–1066. doi: 10.3390/
plants10061044

De Lucia, B., and Vecchietti, L. (2012). Type of bio-stimulant and application method
effects on stem quality and root system growth in L.A. lily. Eur. J. Hortic. Sci. 77, 10–15.

Demir, N., Dural, B., and Yildirim, K. (2006). Effect of seaweed suspensions on seed
germination of tomato, pepper and aubergine. J. Biol. Sci. 6, 1130–1133. doi: 10.3923/
jbs.2006.1130.1133

Deolu-Ajayi, A., van der Meer, I., van der Werf, A., and Karlova, R. (2021). The
power of seaweeds as plant biostimulants to boost crop production under abiotic stress.
Plant Cell Environ. 45, 2537–2553. doi: 10.1111/PCE.14391

de Sousa, A. M., Ayub, R. A., Viencz, T., and Botelho, R. V. (2019). Fruit set and yield
of apple trees cv. gala treated with seaweed extract of Ascophyllum nodosum and
thidiazuron. Rev. Bras. Fruticultura 41, 72–84. doi: 10.1590/0100-29452019072

Di Filippo-Herrera, D. A., Muñoz-Ochoa, M., Hernández-Herrera, R. M., and
Hernández-Carmona, G. (2019). Biostimulant activity of individual and blended
frontiersin.org

https://doi.org/10.1155/2022/8422414
https://doi.org/10.1371/journal.pone.0216710
https://doi.org/10.3390/plants10030531
https://doi.org/10.1007/s10811-020-02309-8
https://doi.org/10.1016/j.jenvman.2021.112013
https://doi.org/10.5281/zenodo.51607
https://doi.org/10.1016/S0254-6299(15)30348-3
https://doi.org/10.1007/BF00025373
https://blogs.worldbank.org/opendata/fertilizer-prices-expected-remain-higher-longer
https://blogs.worldbank.org/opendata/fertilizer-prices-expected-remain-higher-longer
https://doi.org/10.3389/fpls.2022.983772
https://doi.org/10.3389/fpls.2022.983772
https://doi.org/10.1080/15538360802365251
https://doi.org/10.1080/15538360802365251
https://doi.org/10.1146/annurev.pp.40.060189.000523
https://doi.org/10.1146/annurev.pp.40.060189.000523
https://doi.org/10.1007/BF02182161
https://doi.org/10.1007/BF02327254
https://doi.org/10.1007/BF02327254
https://doi.org/10.1016/s0254-6299(16)31068-7
https://doi.org/10.1007/s00344-013-9372-2
https://doi.org/10.1515/botm.1986.29.2.155
https://doi.org/10.1007/BF02186333
https://doi.org/10.1007/BF02186333
https://doi.org/10.1186/s40538-016-0069-1
https://doi.org/10.1007/s10811-014-0237-2
https://doi.org/10.1007/s00344-018-9853-4
https://doi.org/10.1007/s00344-018-9853-4
https://doi.org/10.1007/s11540-021-09510-3
https://doi.org/10.1007/s11540-021-09510-3
https://doi.org/10.1007/s10725-018-0438-9
https://doi.org/10.1016/j.ijbiomac.2007.10.023
https://doi.org/10.1023/B:JAPH.0000044778.44193.a8
https://doi.org/10.22004/AG.ECON.292416
https://doi.org/10.17660/actahortic.1997.444.74
https://doi.org/10.1002/jsfa.3543
https://doi.org/10.1002/jsfa.3543
https://doi.org/10.3390/md16110400
https://doi.org/10.17660/ActaHortic.2006.721.28
https://doi.org/10.17660/ActaHortic.2006.721.28
https://doi.org/10.1016/j.scienta.2015.08.037
https://doi.org/10.1515/BOT.2004.057
https://doi.org/10.1016/j.aquatox.2011.03.016
https://doi.org/10.1016/j.aquatox.2011.03.016
https://doi.org/10.1093/jxb/erz214
https://doi.org/10.1093/jxb/erz214
https://doi.org/10.1016/B978-0-12-823048-0.00012-5
https://doi.org/10.1007/BF02179784
https://doi.org/10.1016/S0176-1617(11)80138-0
https://doi.org/10.1007/BF02185785
https://doi.org/10.3389/fpls.2019.00905
https://doi.org/10.4067/S0718-34292015000300005
https://doi.org/10.3390/plants10061044
https://doi.org/10.3390/plants10061044
https://doi.org/10.3923/jbs.2006.1130.1133
https://doi.org/10.3923/jbs.2006.1130.1133
https://doi.org/10.1111/PCE.14391
https://doi.org/10.1590/0100-29452019072
https://doi.org/10.3389/fagro.2023.1109989
https://www.frontiersin.org/journals/agronomy
https://www.frontiersin.org


Kergosien et al. 10.3389/fagro.2023.1109989
seaweed extracts on the germination and growth of the mung bean. J. Appl. Phycol. 31,
2025–2037. doi: 10.1007/s10811-018-1680-2

Di Stasio, E., Cirillo, V., Raimondi, G., Giordano, M., Esposito, M., and Maggio, A.
(2020). Osmo-priming with seaweed extracts enhances yield of salt-stressed tomato
plants. Agronomy 10, 1559–1572. doi: 10.3390/agronomy10101559

Di Stasio, E., Raimondi, G., Van Oosten, M., and Maggio, A. (2017a). “Algal
derivatives may protect crops from residual soil salinity: a case study on a tomato-
wheat rotation,” in European Geosciences union general assembly (Vienna, Austria:
Geophysical Research Abstracts), 19408.

Di Stasio, E., Rouphael, Y., Colla, G., Raimondi, G., Giordano, M., Pannico, A., et al.
(2017b). The influence of Ecklonia maxima seaweed extract on growth,
photosynthetic activity and mineral composition of Brassica rapa l. subsp. sylvestris
under nutrient stress conditions. Eur. J. Hortic. Sci. 82, 286–293. doi: 10.17660/
eJHS.2017/82.6.3

Di Stasio, E., Van Oosten, M. J., Silletti, S., Raimondi, G., Dell’Aversana, E., Carillo,
P., et al. (2018). Ascophyllum nodosum-based algal extracts act as enhancers of growth,
fruit quality, and adaptation to stress in salinized tomato plants. J. Appl. Phycol. 30,
2675–2686. doi: 10.1007/s10811-018-1439-9

Dookie, M., Ali, O., Ramsubhag, A., and Jayaraman, J. (2021). Flowering gene
regulation in tomato plants treated with brown seaweed extracts. Scientia Hortic. 276,
109715–109723. doi: 10.1016/j.scienta.2020.109715

D’Oria, A., Courbet, G., Lornac, A., Pluchon, S., Arkoun, M., Maillard, A., et al.
(2021). Specificity and plasticity of the functional ionome of Brassica napus and
Triticum aestivum exposed to micronutrient or beneficial nutrient deprivation and
predictive sensitivity of the ionomic signatures. Front. Plant Sci. 12. doi: 10.3389/
fpls.2021.641678

du Jardin, P. (2015). Plant biostimulants: Definition, concept, main categories and
regulation. Scientia Hortic. 196, 3–14. doi: 10.1016/j.scienta.2015.09.021

Dziugieł, T., and Wadas, W. (2020). Possibility of increasing early crop potato yield
with foliar application of seaweed extracts and humic acids. J. Cent. Eur. Agric. 21, 300–
310. doi: 10.5513/JCEA01/21.2.2576

EBIC (2021) The European biostimulants industry. Available at: https://
biostimulants.eu/ (Accessed November 25, 2022).

EBIC (2023) Recent insights into the mode of action of seaweed-based plant
biostimulants. Available at: https://biostimulants.eu/publications/ (Accessed February
15, 2023).

El Boukhari, M. E. M., Barakate, M., Bouhia, Y., and Lyamlouli, K. (2020). Trends in
seaweed extract based biostimulants : Manufacturing process and beneficial effect on
soil-plant systems. Plants 9, 1–23. doi: 10.3390/plants9030359

El-Metwally, I. M., Sadak, M. S., and Saudy, H. S. (2022). Stimulation effects of
glutamic and 5-aminolevulinic acids on photosynthetic pigments, physio-biochemical
constituents, antioxidant activity, and yield of peanut. Gesunde Pflanzen 74, 915–924.
doi: 10.1007/s10343-022-00663-w

El-Miniawy, S. M., Ragab, M. E., Youssef, S. M., and Metwall, A. A. (2016). Influence
of foliar spraying of seaweed extract on growth, yield and quality of strawberry plants. J.
Appl. Sci. Res. 10, 88–94.

El-Yazied, A., El-Gizawy, A. M., Ragab, M. I., and Hamed, E. S. (2012). Effect of
seaweed extract and compost treatments on growth, yield and quality of snap bean. J.
Am. Sci. 8, 1545–1003.

Ertani, A., Francioso, O., Tinti, A., Schiavon, M., Pizzeghello, D., and Nardi, S.
(2018). Evaluation of seaweed extracts from Laminaria and Ascophyllum nodosum spp.
as biostimulants in Zea mays l. using a combination of chemical, biochemical and
morphological approaches. Front. Plant Sci. 9. doi: 10.3389/fpls.2018.00428

European Commission (2021) Report from the commission to the council and the
European parliament on the implementation of council directive 91/676/EEC concerning
the protection of waters against pollution caused by nitrates from agricultural sources
based on member state reports fo (Brussels, Belgium). Available at: https://eur-lex.
europa.eu/legal-content/EN/TXT/?uri=COM%3A2021%3A1000%3AFIN&qid=
1633953687154 (Accessed February 15, 2023).

European Environment Agency (2017). “Climate change, impacts and vulnerability
in Europe 2016,” in An indicator-based report (Copenhagen, Denmark). doi: 10.2800/
534806

European Parliament and Council (2019)Regulation (EU) 2019/1009 of the
European parliament and of the council of 5 June 2019 laying down rules on the
making available on the market of EU fertilising products and amending regulations
(EC) no 1069/2009 and (EC) no 1107/2009 and repealing regula. In: Official journal of
the European union. Available at: https://eur-lex.europa.eu/eli/reg/2019/1009/oj
(Accessed September 11, 2022).
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