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Molecular and machine learning
approaches to study the impact
of climatic factors on the
evolution of cranberry fruit rot

Khadijeh Aghel, Benjamin Cinget, Matteo Conti ,
Caroline Labbé and Richard R. Bélanger*

Centre de Recherche en Innovation des Végétaux, Département de Phytologie, Université Laval,
Québec, QC, Canada
Introduction:Cranberry (Vacciniummacrocarpon) is an important crop grown in

the United States and Canada, with the province of Québec being the world’s

largest producer of organic cranberry. However, cranberry fruit rot (CFR), caused

by 12 fungal species, has become a major issue affecting yield.

Methods: A molecular detection tool was used to detect the presence of the 12

CFR fungi and evaluate CFR species across three farms with different fungicide

strategies in Québec. The incidence and frequency of CFR fungi were evaluated

for 2020 and compared with 2018 data from the same farms in Québec.

Machine-learning models were used to determine the possibility of explaining

CFR disease and species based on climate, and analyze the effects of weather

variables on CFR presence andprimary fungal species.

Results: The most predominant CFR species remained the same in both years, with

Godronia cassandrae and Coleophoma empetri being the two most common, but

some species showed changes in relative abundance. Furthermore, this study

examined the diversity variations in 2018 and 2020, with data showing an overall

increase in diversity over the period. The results showed that fungicide applications

impacted the species composition of CFR among the farms. Five weather variables

(daily snow on the ground (cm), total daily precipitation (mm), daily atmospheric

pressure (kPa), daily relative humidity (%) and daily temperature (°C)) were selected

and found to contribute differently to the model with atmospheric pressure being

the most important. Surprisingly, temperature and precipitations did not influence

much the incidence of fungal pathogen species and each CFR species behaved

differently in response to environmental factors.
Abbreviations: CFR, Cranberry Fruit Rot; SRA, Species Relative Abundance; H', Shannon-Weiner index; J

Pielou’s evenness; P/A, Presence/Absence; XGBoost, Extrem Gradient Boosting; RCV, Repeated Cros

Validation; ROC, Receiver Operating Characteristic; SHAP, Shapley additive explanation; BKR, Black Rot

BIR, Bitter Rot.
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Discussion: Overall, this study highlights the complexity of predicting CFR

disease, as caused by 12 fungi, and of developing effective disease

management strategies for CFR.

KEYWORDS

Vaccinium macrocarpon, small fruits, pathogen detection, fungicides, climatic factors,
machine learning, evolution, fungal diversity
Introduction

Large cranberry (Vaccinium macrocarpon, Ait.) is a member of

the Ericaceae family, which also encompasses many other species,

such as Scotch heather (Calluna vulgaris), Rhododendrons

(Rhododendron spp.) and blueberries (Vaccinium augustifolium,

V. corymbosum) (Freedman, 2023). Second to United States,

Canada had a total annual output of 161,903 tons in 2020,

accounting for 24% of world production (FAOSTAT Statistical

database, 2021). In 2020, the provinces of Quebec (QC) and British

Columbia (BC) alone accounted for almost 94% of the

Canadian production.

Cranberry fruit rot (CFR) is a disease complex caused by several

necrotrophic and hemibiotrophic fungi, which makes its diagnosis

difficult based on symptoms (McManus, 2001). Today, nine

symptomatic diseases caused by 12 different fungal species are

commonly recognized (McManus, 2001). These diseases remain

mostly asymptomatic until the fruit begins to mature in late August

(Tadych et al., 2015). Fruit rot can result in 100% crop losses in

some growing regions, making it one of the industry’s most critical

challenges (McManus, 2001). The 12 main fungal pathogens that

cause fruit rot belong to the taxonomic group Ascomycetes,and

include: Allantophomoposis lycopodina (Höhn.) Carris,

Allantophomopsis cytisporea (Fr.) Petr., Botryosphaeria vaccinii

Shear, Colletotrichum fioriniae Marcelino & Gouli ex R.G. Shivas

& Y.P. Tan (part of Colletotrichum acutatum species complex),

Colletotrichum fructivorum V.P. Doyle, P.V. Oudem. & S.A. Rehner

(part of Colletotrichum gloeosporioides species complex),

Coleophoma empetri Rostr., Godronia cassandrae Peck, Monilinia

oxycocci (Woronin) Honey, Phomopsis vaccinii Shear (teleomorph

Diaporthe vaccinii; abbreviated in text as P. vaccinii), Phyllosticta

vaccinii Earle (abbreviated in text as Phyl. vaccinii), Physalospora

vaccinii (Shear) Arx & E. Müll. (Abbreviated in text as Phys.

vaccinii) and Strasseria geniculata (Berk. & Broome) Höhn (Conti

et al., 2022. Among the nine types of rot, black rot (BKR) and bitter

rot (BIR), involve a complex of species. The BKR encompasses three

species: A. cytisporea, A. lycopodina and S. geniculata. For its part,

BIR is caused by two species, C. gloeosporioides and C. acutatum.

Cranberry fruit rot was initially described as a simple behavioral

disease (Oudemans et al., 1998), which, if left untreated, progressed

from one year to the next. Incidence and severity can vary among

geographical regions and may change over time from one year to

the next (Sabaratnam et al., 2014). According to Wells-Hansen and

McManus, (2017), in a survey conducted in New Jersey and
02
Wisconsin over three years, the prevalence of CFR-causing

pathogens may remain constant, increase, or decrease over time

resulting in a tremendous temporal variation among seasons. In

another study conducted to determine the variation within five

species of CFR pathogens across four geographic regions over two

years, the results showed that the geographical distribution of CFR

species varied according to the region (Polashock et al., 2009).

Similar observations were reported by Stiles and Oudemans (1999)

on the spatio-temporal variations of the frequency and distribution

of fruit-rotting fungi in New Jersey cranberry fields over three years.

More recently, a large-scale study conducted in three different

geographical areas in Quebec showed that the contribution of any

given species to the disease complex of CFR differed among three

farms (Conti et al., 2022). Depending on meteorological conditions,

the concentration of spores in the atmosphere fluctuates (Troutt

and Levetin, 2001). In addition, soilborne fungi are more abundant

on wet-harvested fruits than on dry-harvested fruits but do not

outgrow the pathogens responsible for CFR (McManus, 2001).

Every biological process is impacted by temperature, and there is

no exception for fungal diseases in their epidemiological stage.

Temperature can influence fungal interactions, and the ability of

fungi to grow varies at different temperatures. If the temperature is

favorable for one fungus, the growth of another fungus may be

affected (Contreras et al., 2022). Among the favorable conditions of

pathogenic fungi, high humidity and elevated temperatures are

general predictors (Romero et al., 2022). Many fungi that can cause

CFR are settled in the beds and may pose a problem during bloom,

especially if precipitations are persistent (Pscheidt and

Ocamb, 2023).

The major problem encountered with abundance data is the

selection of the most suitable model for explaining disease

incidence. Ordinary linear regression models have two challenges

considering that count data distributions are often positively

skewed, with many observations with zero values and cannot be

transformed into normal distributions. In addition, conventional

statistical models like Poisson and negative binomial regression

models used to analyze count data may be affected by an excess

number of zeros, and results in overdispersion problems (Green,

2021). As an alternative, machine learning approaches perform

slightly better than traditional regression models (Wah et al., 2012).

To deal with zero values, they may be used to perform classifications

of experimental units based on presence-absence of species (Lewin

et al., 2010). Transforming count data into presence-absence data

leads to imbalanced classes (Yen and Lee, 2006). However, it has
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been shown that ensemble methods such as Random Forest,

Decision Tree, and XGboost algorithms are very effective in

analyzing count data through classification approaches, providing

high efficiency and accuracy simultaneously (Mahesh, 2020;

Ghafarian et al., 2022).

Data sets in ecology and evolution are often binary (e.g., the

presence or absence of a species at a site), whereas basic statistics

rely on normally distributed data. It is equally important to consider

the absence of species as ignoring this aspect would hide

informative evidence about the phenomenon under study (Bolker

et al., 2009). The skewness and sparsity of count-based data severely

limit linear regression models. On the other hand, in the generalized

linear regression model (GLMs), the dependence of the repeated

observations over time is not considered. Hence, generalized linear

mixed-effects models must be extended to GLMs to consider

random effects in nonnormal data. The assumptions in linear

parametric models are often difficult to verify, whereas data-

driven machine-learning methods can be applied to raw data

without making prior assumptions. Considering the non-

normality of the data and the large number of zeros for the

abundance of some species in some fields, as well as the

advantages of machine learning over the traditional analysis

method, the machine learning approach was used in an attempt

to better understand the factors that influenced CFR. This study

hypothesized that meteorological factors affected the incidence of

cranberry fruit rot and the composition of fungal species. The

objectives of this study were to compare the changes in the

relative abundance of CFR fungi and diversity between 2018 and

2020 among three farms with different regimes of fungicide

application and attempt to determine the effect of environmental

factors on the incidence of CFR.
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Materials and methods

Study sites and sample collection

The three Québec farms previously surveyed by Conti et al.

(2022) were considered in this study. They were selected with

sufficient geographic distancing to avoid cross-contamination and

in accordance with different fungicide schemes used to manage

CFR. One organic farm located north of Lac-Saint-Jean (Farm 1; 48°

49’56.7”N, 71°52’52.0”W), one transitioned farm that no longer

uses fungicides since 2015 located in the regions of Lanaudière

(Farm 2; 46°08’54.2’’N, 73°30’29.8’’W) and one conventional farm

using three fungicide applications (quinone outside inhibitors and

demethylation inhibitors in alternance) per year situated in “Centre

du Québec” (Farm 3; 45°52’22.2’’N, 72°21’20.3’’W) were surveyed

for the experiments (Figure 1).

To complete data obtained in 2018 by Conti et al. (2022) and

perform a comparative analysis over two years, rotten cranberry

fruit were sampled at harvest on the three farms in 2020. After

sampling, collected fruit were kept at −20°C until analysis. Samples

were surface-sterilized after being taken out of the freezer. Five

samples containing five surface-sterilized fruit were taken from each

field, following the methodology used by Conti et al. (2022). In total,

the same 116 fields were surveyed in 2018 and 2020 from the three

farms: 34 fields from farm 1, 21 fields from farm 2 and 61 fields

from farm 3.This study analyzed a total of 1160 samples, broken

down in 116 fields, each contributing 5 samples (of 5 fruit each)

over two years of data collection. Each sample was tested for the

presence of the 12 fungi detected by PCR (Conti et al., 2022).
Material preparation, DNA extraction and
PCR detection of CFR fungi

To extract DNA, the previously surface sterilized fruit were

frozen at -80°C before being lyophilized with the sublimation

occurring at about -55°C under vacuum conditions (low than 1

mAtm) at 7.7 kg/m.s using a Labconco Freezone 6 (Labconco

Corporation, Kansas City, MO) for 24 hours. Each sample was

powdered homogeneously with an Omni Bead Ruptor 24 (Omni

International Inc., Kennesaw, GA) for two cycles of 45 seconds at

6.95 m/s with a 30-s pause between each round. About 50 mg of

fruit powder were used for DNA extraction. The in-house protocol

described in Conti et al., 2019 was used to process CTAB-based

DNA extraction. After the extraction procedure, a NanoDrop™

One Microvolume UV-Vis Spectrophotometer (Thermo Scientific,

WI, USA) was used to control nucleic acid purity and

concentration. As a standard procedure, the absorbance ratios

260/280nm and 260/230nm are used to assess the purity of DNA.

Prior to being used in multiplex reactions, DNA extracts were

standardized to 50 ng.µL-1 and stored at -20°C.

Multiplex PCR (mPCR) amplifications were processed as

described in Conti et al. (2019), except for Godronia cassandrae

primers replaced by those described in Conti et al. (2022). Briefly, to

identify the presence of the 12 fungal species, the mPCR was divided
FIGURE 1

Location of the three farms surveyed for cranberry fruit rot in
Québec, Canada. The organic farm (farm 1, denoted with green
color) is located in Saguenay–Lac-Saint-Jean. Blue and red colors
denote the transitional (Farm 2) and the conventional farms (Farm 3),
respectively. The farms are located in the regions of Lanaudière
(farm 2) and Centre du Québec (farm 3). Areas delimited by a dash
line represent the 50-km perimeters around the farms where
weather stations (grey points) were located.
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into three main reactions (A, B and G). The reaction A allows for

detecting M. oxycocci, Phyl. vaccinii, and fungi from the

Phacidiaceae family; reaction B detects Pho. vaccinii, Phyl.

elongata, C. empetri, Phys. vaccinii, and fungi from the

Glomerellaceae family while G. cassandrae was detectable in

reaction G. Two subset reactions were considered to identify the

species in the two families (Phacidiaceae and Glomerellaceae) (C

and D). Reaction C was used to discriminate A. lycopodina, A

cytisporea, and S. geniculata belonging to the Phacidiaceae family,

and reaction D allows the distinction between Colletotrichum

species. PCR was performed in 25 mL reaction volume with

OneTaq® DNA Polymerase (New England Biolabs, MA, USA) by

using 4 µL DNA template. Primers were diluted in ultrapure water

to a final concentration of 100 mM. For amplification, PCR

conditions were optimized for each reaction with consideration of

several factors as described by Conti et al. (2019); Conti et al. (2022):

DNA concentration, primer concentration, and the PCR cycling

program. Each PCR reaction was performed with a T100 Thermal

Cycler (Bio-Rad, Hercules, CA). The analyses of PCR products were

run on a QIAxcel Advanced system (Qiagen, Hilden, Germany) by

using QIAxcel DNA Screening Kit and the OM320 method

implemented in the QIAxcel ScreenGel Software v.1.6, with the

default parameters (Qiagen, Hilden, Germany). Data of molecular

detection of the 12 CFR species targeted in this study can be found

in supplementary data (Supplementary Table 3).
Data analysis

Relative abundance of CFR species
Species relative abundance (SRA) represents the proportion of

each species in relation to the total number of observations

considering the field as an experimental unit. For both 2018 and

2020, SRA was estimated from mPCR results with the following

formula:

SRAij =
Nsij

on
n=1Nsij

where Nsij and SNsij are respectively the numbers of positive mPCR

detections of the species i and the total number of positive

detections for the n species in the jth field. The SRA values were

calculated from mPCR results with R v.4.2.2 (R Core Team, 2022).
CFR species diversity
Considering the field as an experimental unit, the species

diversity was estimated by species richness (SR) as defined by

Hurlbert (1971), for 2018 and 2020 for each farm. The value for

SR refers simply to the number of species simultaneous detected by

mPCR in a same field and ranges from 0 to 12 in this study. Because

the relative abundance of each species is not considered when

measuring SR (Kiernan, 2014), the Shannon-Weiner index (H’,

Shannon, 1948) and Pielou evenness (J’, Pielou, 1975) were

also estimated.
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The H’ index is widely used to measure diversity considering

both species richness and relative abundances (Fedor and

Zvarıḱová, 2019) and is estimated as follows:

H0
j = −o

n

n=1
(SRAij � Ln(SRAij))

where SRAi is the relative abundance (see above-mentioned section

“Relative abundances of CFR species” and Ln(SRAi) is the natural

logarithm of the SRA of the species i, for the n species detected in

the jth field. The higher the value of H’, the higher is the diversity of

species in a field.

Pielou’s evenness (J’) is an index that measures diversity along

with species richness. While species richness is the number of

different species in a field, evenness is a measure of individuals of

each species in a field.

J 0j =
H0

j

log (SRj)

where H’j and SRj are the Shannon-Weiner Index and the Species

Richness in the jth field.

The three diversity indexes were calculated for each field with

the R package Vegan v.2.5.2 (Oksanen et al., 2018) in R v.4.2.2 (R

Core Team, 2022).

Climatic data and selection of relevant
weather variables

The weather data corresponding to the years of this study (2018

and 2020) were obtained from Environment and Climate Change

Canada (https://climate.weather.gc.ca) using R package weathercan

v.0.6.2 (LaZerte and Albers, 2018) in R v.4.2.2 (R Core Team, 2022).

Acquisition was performed by downloading data from weather

stations found in a 50-km perimeter around each farm. Overall,

data were gathered from a total of 21 meteorological stations, and

their geographic coordinates can be found in supplementary data

(Supplementary Table 1). Six, eight and seven weather stations were

found within 50 km of farms 1, 2 and 3, respectively (Figure 1).

After downloading climatic data, data for 52 variables were

obtained (Supplementary Table 1, 2). Among them, the 32

corresponding to definition variables, giving information or

comment on variable (station ids, variable flag, etc) and three

with missing value proportions higher than 20% were not

considered in the study. Of the 17 remaining, seven other

variables with low relevance for CFR modeling (wind direction

and speed, wind chill, climatization or heating limit temperatures,

gust direction and speed) were ruled out. Finally, a look for any high

(|value| > 0.8) correlation values and visual inspection for general

interaction behavior of these last 10 variables resulted in the

conservation of five climatic variables (Figure 2). The five weather

variables selected for modeling were monthly average of daily snow

on the ground (cm), total daily precipitation (mm), daily

atmospheric pressure (kPa), daily relative humidity (%) and daily

temperature (°C). After selection, the variables selected were

averaged by 12-month periods and by farm.
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Statistical analysis

Evolution of CFR patterns over time
The variations in CFR composition were evaluated by testing

the differences in species diversity indexes (species richness, SR;

Shannon’s Index, H’ and Pielou’s evenness, J’) and in SRA between

2018 and 2020. None of three diversity indexes and SRA respected

the assumpt ions of l inear ANOVAs (normal i ty and

homoscedasticity). Consequently, diversity variation between

years and farms was tested with Wilcoxon rank sum test and SRA

variation by species was tested with Wilcoxon signed rank test on

paired samples by considering farms and years as grouping

variables. Analyses were performed with R package rstatix v.0.7.2

(Kassambara, 2023) in R v.4.2.2 (R Core Team, 2022).

Impact of climatic factors on CFR
Because weather variables were available by month, all 12

months were used as features and a month variable was also

included in an extreme gradient boosting as implemented in

XGBoost algorithm (Chen and Guestrin, 2016) to evaluate their

impact on target values, defined as presence-absence (P/A) of CFR

or of one of main species in cranberry field. In addition, farm and

sampling year were also included. For each field, target values were

obtained from SR or from SRA by considering values > 0 as CFR or

main species presence, respectively.

Encoding data for CFR or species P/A resulted in a strongly

imbalanced dataset. This is well-known to affect training XGBoost

model (Lemaıt̂re et al., 2017). Because the objective of this study was

to determine if weather factors influenced the presence of CFR or

one of the main CFR species found in Quebec, the overall

performance of explanation was favored to the detriment of the

right probability of case prediction. Consequently, a weighting

strategy based on classes frequencies was applied to balance

positive and negative cases.

Since XGBoost can run only with numeric values, a second

encoding was used for the categorical feature “Farm”. Each one was
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selected on the fungicide strategy used in its farm. Consequently,

this feature was encoded as an ordinal variable to represent the

importance of fungicide use in each farm. The values of 0, 1 and 2

were chosen to represent the organic (farm 1), the transitional (farm

2) and the conventional (farm 3) production, respectively.

Using tree-based model (named gbtree in XGBoost) as booster,

logistic regressions for binary classification were used as learning

task objective to fit model on P/A targets (named binary:logistic in

XGBoost). In order to find the best model, seven hyperparameters

were optimized: the number of trees (nrounds in XGBoost), the

maximum tree depth (max_depth), the learning rate (eta), the

minimum loss reduction (gamma), the column sampling

( c o l s a m p l e _ b y t r e e ) , t h e m i n i m um l e a f w e i g h t

(min_child_weight), and the row sampling (subsample).

To limit model overfitting, five repeats of 10-fold cross-

validation (RCV) were used to estimate the model performance

during all the training process. Because same fields were sampled in

2018 and 2020, data splitting was done on field name (ID) to

consider repeated measure structure of the data during the training

step. This simple splitting allowed to ensure that measurements

from the same fields exist either exclusively in the training or

exclusively in the test set and used in the RCV procedure. The

impact of each optimization step on the model performance was

evaluated based on changes in receiver operating characteristic

(ROC) metrics according to the best model from the previous

step. The set of hyperparameters that maximized the ROC within

the withheld portion of the training data was selected and the

performance of the final model was evaluated on its capacity to

correctly assess the presence or absence of CFR by comparing

absolute metric differences obtained from training steps and those

obtained from optimal model prediction on full dataset (Grandini

et al., 2020).

Although the final model had already been restricted to include

only the weather variables from the above selection approach, both

importance and contribution of these variables on the prediction of

P/A values were further interpreted with Shapley additive
A B

FIGURE 2

Correlation and interaction behavior between the main climatic variables selected to model cranberry fruit rot presence. The correlogram on the left
(A) was built between climatic variable before correlation filtering, and the right (B) gives information for the last five climatic variables selected
for modeling.
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explanation (SHAP) (Lundberg and Lee, 2017). These SHAP values

form an additive feature attribution measure to interpret complex

machine-learning models. In contrast with the raw importance

values, the SHAP values present the feature contribution to cross-

validated predictions using by marginal contribution to the model

outcome (Liu and Just, 2021). The SHAP values were estimated in

the grouped cross validation (repeated field measures not included

in the training data for each fold).

The optimization steps were done with R packages caret v. 6.0-

93 (Kuhn, 2008) and xgboost v. 1.7.5.1; SHAP evaluation was done

with R package SHAPforxgboost v.0.1.1 (Liu and Just, 2021) in R

v.4.2.2 (R Core Team, 2022). Optimization procedure can be found

as Supplementary Material (Supp Text 1).
Results

Species diversity and composition over
time and farms

Diversity variations
Based on the species presence in each field determined by

molecular detection, species diversity by field was estimated by

using three different indexes (see ‘CFR species diversity’ section in

Materials and Methods). Two main results emerged from the

diversity comparisons between year and among farms (Figure 3).

First, an overall increase of diversity was observed from 2018 to

2020. Comparison variations between years showed significant

differences in farm 1 and 3 with the greater one observed in farm

3 (Figure 3A). Interestingly, if the three indexes reported these

differences for farm 3, Pielou’s evenness (J’) was only significantly

different between 2018 and 2020 for farm 3.

As a second important observation, diversity was greatest in

farm1 and lowest in farm 3, except in 2020, where diversity in farm

3 was higher than in farm 2. Comparison of diversity among farms

in 2018 showed significative differences (Figure 3A) between farm 3

and the two other farms for the three indexes. By contrast,

differences of diversity between each farm in 2020 was significant

only based on species richness (SR) and Shannon’s index (H’).

Species detection and SRA variations
The six most predominant CFR species in Quebec farms

remained the same in 2018 and 2020 (Figure 3B), namely in

order of importance: Godronia cassandrae, Coleophoma empetri,

Allantophomopsis cystisporea, Strasseria geniculata, Colletotrichum

gloeosporioides and Monilinia oxycocci. Although relatively few

significant differences in SRAs were detected between 2018 and

2020, three main patterns could be observed. Species with an

increased SRA in 2020 such as S. geniculata and M. oxycocci,

species with a decrease in SRA such as C. gloeosporioides and

finally, species with a balancing SRA between 2018 and 2020 such

as G. cassandrae and C. empetri (Figures 3A, B). In addition, some

species represented interesting issues asM. oxycocci detected mainly

in farm 1 in 2018 and 2020, or S. geniculata and C. empetri for

which a significant difference in SRA between 2018 and 2020 was

exclusively observed in farm 3 (Figure 3B). Another notable result
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was A. cystisporea SRA in 2020, which was significantly higher than

in 2018 in farms 1 and 3.

Finally, among the nine rots of the CFR disease complex, two

are considered caused by a complex of species: the black rot (BKR)

and the bitter rot (BIR). Of the three species involved in BKR, only

A. cystisporea and S. geniculata were detected in the three surveyed

Quebec farms (Figure 3B), while only C. gloeosporioides was

detected as species involved in BIR. In 2018, S. geniculata was

found in the organic farm only, but similar SRAs were observed in

the three farms in 2020 with important increases from 2018 to 2020.
Modeling influence of weather factors
on CFR

Machine learning model
All the process of optimization and hyperparameters tuning can

be found in supplementary data (Supp Text 1). Briefly, five weather

variables, farm origin and year of sampling were used in a XGBoost

approach to evaluate their impact on CFR presence or on the

presence of the six main species detected in Québec farms. Because

weather variables were available by month, a total of eight features

were used in modeling of P/A values.

For CFR P/A, the evaluation of the optimal model resulted in an

ROC value of 0.930, corresponding to a sensitivity of 0.958 (True

positive rate) and specificity of 0.847 (True negative rate). Briefly,

ROC values from models for the six main CFR species P/A ranged

from 0.776 (sensitivity = 0.667 and specificity = 0.649) to 0.946

(sensitivity = 0.859 and specificity = 0.740) for C. gloeosporioides

andM. oxycocci, respectively. Detailed results and parameter values

obtained for each optimal model can be found in Table 1.

The SHAP overview plot illustrated different patterns of feature

importance on CFR and the main six fungal species (Figure 4).The

rank of the mean absolute SHAP values suggested that the top key

contributing variables to predicting the presence-absence of CFR

(Figure 4A) were atmospheric pressure, the total precipitation, the

relative humidity, the temperature, and the snow on the ground.

Interestingly, variables year and farm (i.e. fungicide use) had

minimal effects in the prediction of CFR occurrence in a field and

the month variable seemed to show that monthly variations of

weather variables impacted the presence of CFR. For the by-species

models (Figures 4B–G), year ranked at the top, excepted for C.

gloeosporioides, showing there was a strong annual variability only

when regarded by species. The atmospheric pressure was at the

second rank in all species, except for C. empetri. The farm variable

contributed differently depending on the species considered. It was

a major contributor to models for G. cassandrae, C. empetri, S.

geniculata and M. oxycocci, by contrast farm variable contributed

poorly for A. cystisporea and C. gloeosporioides. The temperature,

relative humidity and total precipitation had similar contributions

to predict the presence-absence of each species with a notable

exception however for C.gloeosporioides. The rank of the mean

absolute SHAP values suggested that the temperature and the

relative humidity were the top key contributing variables to

predicting the presence-absence of this species (Figure 4F).

Finally, with the exception for C. empetri, month ranked last
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suggesting a minimal effect of seasonality on the incidence of

other species.
Discussion

Disease management strategies for CFR are challenging because

of the complex nature of the disease, the limited knowledge about its

epidemiology and the lack of prediction models. Considering the

difficult task of identifying the 12 fungal agents potentially

responsible for CFR, few studies have been able to describe with

precision and reproducibility the etiology of the disease. The recent
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development of a multiplex PCR approach to detect all 12 species in

one sample (Conti et al., 2019) has offered new opportunities to

investigate the disease with greater accuracy. In a recent study,

Conti et al. (2022) argued that CFR species composition was mainly

influenced by fungicide applications, but they suggested that

environmental variables also played a role. In this study, we

attempted to draw a more detailed picture of CFR in Quebec and

provide new information concerning the impact of environmental

factors on CFR occurrence.

Species diversity and composition confirmed the constant

dynamic of CFR over time and space as reported in previous

studies (Stiles and Oudemans, 1999; Wells-Hansen and
A

B

FIGURE 3

Diversity variation (A) and species relative abundance variation (B) of cranberry fruit rot fungi over two years and three farms. Only significant
statistical differences detected with Wilcoxon tests are reported in grey for between years per farm comparisons, in red and blue for between farms
comparisons in 2018 and 2020, respectively. Asterisks denote level of significance (ns: p > 0.05, *: p<= 0.05, **: p<= 0.01, ***: p<= 0.001, ****: p<=
0.0001). In (B), a dot represents the mean of species relative abundance (SRA) and vertical bar gives the 95% confident interval. Horizontal axis is
organized according to farms (F1: Farm 1. F2: Farm 2 and F3: Farm 3). Facets are organized from the most to the less abundant species and inform
on species with A.cyt, Allantophomopsis cystisporea; A.lyc, Allantophomopsis lycopodina; B.vac, Botryosphaeria vaccinii; C.emp, Coleophoma
empetri; C.acu, Colletotrichum acutatum; C.glo, Colletotrichum gloeosporioides; G.cas, Godronia cassandrae; M.oxy, Monilinia oxycocci; Pl.vac,
Phyllosticta vaccinii; Po.vac, Phomopsis vaccinii; Ps.vac, Physalospora vaccinii; S.gen, Strasseria geniculata.
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McManus, 2017; Conti et al., 2022). Spatial divergences and

temporal fluctuations of species diversity were estimated by using

three different indexes (SR, H’ and J’, see Figure 3A). Based on the

strict number of species by field, the SR showed an overall increase

from 2018 to 2020 in the three farms with the greatest difference

observed in farm 3. Such temporal variations supposed one or more

fluctuating factor(s), such as weather variables, impacted the system

under study. When observed among farms, farm 3 presented the

lowest diversity in 2018, but, surprisingly, the second one in 2020.

This increase of SR in farm 3, using recurrent fungicides to control

the disease, implies an interaction between weather and fungicides,

especially in the context of fungicide resistance (see below).

Incidentally, Pielou’s evenness (J’), measuring diversity along with

species richness, was drastically lower in the conventional farm

(farm 3) compared to the other ones, denoting the presence of

dominant species in fields for this farm. Considering the recurrent

use of fungicides and the impact of fungicides on species diversity

(Ma et al., 2021), dominant species could evolve because of

resistance mechanisms.

Among the main species detected in Quebec, M. oxycocci, the

causal agent of cotton ball disease, was exclusively found in the

organic farm (farm 1) suggesting its sensitivity to fungicides. This

observation is in adequation with fungicide sensitivity observed for

other Monilinia spp. (Luo et al., 2010; Hily et al., 2011). This may

also explain the absence of this species in previous surveys

conducted in areas where fungicide applications are common

(Oudemans et al., 1998). The causal agent of bitter rot, C.

gloeosporioides, was detected without distinction in the three

farms, but SRA changed greatly between years, suggesting no
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fungicide efficiency and high probable impact of weather change

between 2018 and 2020. These results corroborated numerous

reports on fungicide resistance commonly found in this species

(Chung et al., 2010; Gama et al., 2021).

Among the three black rot (BKR) species, A. cytisporea and S.

geniculata and A. lycopodina, only the latter, reported as sensitive to

QoI fungicides, Quadris ® (Syngenta, Crop Protection AG, n.d.)

was not detected in Quebec in any of the three farms (Figure 3B).

The two other BKR species are the third and the fourth most

abundant CFR fungi found in Quebec (Figure 3B) and showed two

SRA patterns. In the organic farm (farm 1), A. cytisporea presented

a lower SRA than in transitional and conventional farms (farm 2

and farm 3, respectively) indicating a potential fungicide resistance

for this species.

If the impact of fungicides was already reported to reduce fungal

diversity and alter the composition of fungal communities in other

agricultural systems (Bending et al., 2007; Cwalina-Ambroziak and

Nowak, 2012; Sang and Kim, 2012; Ma et al., 2021), disease severity

can also shift under micrometeorological changes (Huber and

Gillespie, 1992). Consequently, the fluctuations both in diversity

and species abundance observed in the three studied cranberry

farms could have resulted from yearly weather changes. For this

reason, we attempted to link different weather factors with CFR by

applying machine learning approaches. Of the five variables taken

into consideration, only the year-based time trend was found as a

key feature in the specific models. When considered as a global

disease, this indicates that the CFR occurs recurrently in Quebec,

independently of the year, although data over more years would

help refine the observation. The contribution of farms (farm
TABLE 1 Predictive performance and optimal hyperparameters for the fully trained XGBoost Models obtained from cranberry fruit rot or main species
presence (Godronia cassandrae (G.cas), Coleophoma empetri (C.emp), Allantophomopsis cytisporea (A.cyt), Starsserai geniculata (S.gen),
Colletotrichum gloeosporioides (C.glo) and Monilinia oxycocci (M.oxy)) in thre three Québec farms surveyed.

Target (Presence/Absence)

CFR G.cas C.emp A.cyt S.gen C.glo M.oxy

Performance

ROC 0.930 0.856 0.907 0.869 0.916 0.776 0.946

Sensitivity 0.958 0.763 0.740 0.782 0.861 0.677 0.859

Specificity 0.847 0.871 0.883 0.877 0.822 0.649 0.740

Hyperparameters

nrounds 900 450 350 300 450 600 600

max_depth 5 5 5 5 5 5 5

eta 0.3 0.3 0.3 0.3 0.3 0.3 0.3

gamma 0.05 0.5 0.7 0 0.7 0.9 0.9

colsample_bytree 1 1 1 1 1 1 1

min_child_weight 2 2 2 2 2 2 2

subsample 0.5 0.5 0.5 0.5 0.5 0.5 0.5
front
Number of trees (nrounds in XGBoost), the maximum tree depth (max_depth), the learning rate (eta), the minimum loss reduction (gamma), the column sampling (colsample_bytree), the
Minimum leaf weight (min_child_weight), and the row sampling (subsample). See Supplementary Data for more information (Supp Text 1).
Final model was selected based on the maximal ROC value.
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considered according with its fungicide use) was also very low when

plotting the SHAP estimates, revealing that fungicides did not alter

species diversity. On the other hand, the presence predictions of C.

gloeosporioides were also marked by a low rank position of the farm

variable by SHAP estimates. In modeling presence-absence of this

species, farms were split based on fungicide usage. Consequently,

the low contribution of this variable shows that fungicides do not

act efficiently on this species in Quebec farms and reveals a

resistance potential against chemical control in cranberry.

Colletotrichum species are well-known to have a strong

propension to develop resistance (e.g Chung et al., 2010; Gama

et al., 2021). Even if it is not yet a major concern because C.

gloeosporioides is only the fifth species of importance in Quebec,
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monitoring of its resistance level should be implemented. The same

consideration applies to other regions of production where the

species is more problematic. A similar concern can be raised for A.

cytisporea, the third main CFR species detected in this study.

Fungicide impact ranked last in the model prediction of the

presence-absence of this species. More worrying again, the

highest values (i.e. for conventional farm) were linked with the

higher value of absence prediction, highlighting the presence of this

species mainly in the conventional farm. Allantophomopsis

cytisporea is one of the three species involved in black rot (BKR),

a major storage rot in cranberry and its resistance was unexpected

because chemical control of the disease is recommended. By

contrast, the farm was in the third key variable in the presence-
A B

D

E F

G

C

FIGURE 4

Sina plots for cranberry fruit rot (CFR) and six individual fungal species causing CFR show the distribution of feature contributions to predictions of
absence using SHAP values of each feature for every field. The subpanels show models for cranberry fruit rot (A) and the main six fungal species (B–
G). Features were ordered on the y axis by their mean absolute SHAP values over all observations (bold on the right of the variable names). The color
is scaled to the feature value (purple high, yellow low).
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absence prediction of the four other species (G. cassandrae,

C.empetri, S. geniculata and M. oxycocci). Monilinia oxycocci

presented the strongest impact of fungicide on the model

prediction, with low value (corresponding to the organic farm)

associated with the lowest value of prediction. This confirms the

great sensitivity of Monilinia sp. to fungicides, especially

strobilurins (Hily et al., 2011).

As for the CFR global model, atmospheric pressure was among

the key variables explaining the model, except for C. empetri. In a

recent study, Sadyś et al. (2016) suggested that spore release and

germination of fungal pathogens may be influenced by air pressure.

It was interesting to observe that in CFR fungi, high air pressure

values had a negative impact on the presence of CFR species. These

results suggest that in the context of cranberry culture, because

wines grow close to the ground, monitoring air pressure at the

ground level could be a useful option to manage CFR.

In conclusion, many factors contribute to climate change effect

on fungal distribution, including physiology, reproduction, survival,

allocation of resources, and competition with the fungal community

(Duñabeitia et al., 2004). The effect of environmental factors

illustrates that each species’ behavior is unique, and that a one-

sided approach cannot be considered for all species. If XGBoost

machine learning showed promising solutions to help explain CFR,

binary classification was chosen in this study as an approach to

assess the presence of CFR or CFR species in accordance with

different weather variables. Although commonly used, binarization

implies the loss of quantitative information linked with the

abundance of species detected. Consequently, a way of improving

the model should be to further consider multiclass or Poisson

regression models directly. These models can be implemented in

machine learning approach such as XGBoost (Chen and Guestrin,

2016). Another level of complexity was the multi-species system

involved in CFR. As 12 fungi can cause CFR and up to eight

different species were found simultaneously in one field,

multioutput models (Pedregosa et al., 2011) may be a suitable

alternative to generating models applied to a such complex

disease. The next step could focus on exploring geographically

distant locations with varying climate conditions. Conducting this

study over an extended period could yield more comprehensive

insights into the CFR complex disease. In light of meteorological

data, identifying specific pathogens in problematic CFR farms could

aid in developing targeted disease management programs, assuming

the climatic conditions are conducive to the disease. This approach

could result in cost-effective measures that reduce the need for

environmentally harmful fungicides. However, given the

complexity of the disease and the diverse environmental factors

contributing to its occurrence, devising a general guideline to

predict its incidence remains a daunting challenge.
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