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The Precision Nitrogen Project (PNP) worked with more than 80 corn and winter

wheat producers to inexpensively design and implement randomized, replicated

field strip trials on whole commercial farm fields, and to provide site-specific

testing of current nitrogen (N) technologies. This article proposes a conceptual

framework and detailed procedure to select the N technology to be tested;

design and implement field trials; generate, process, and manage field trial data;

and automatically analyze, report, and share benefits from precision N

technology. The selection of the N technology was farmer-driven to ensure a

good fit and to increase the likelihood of future technology adoption. The

technology selection method was called the “N tiered approach”, which

consisted of selecting a technology that progressively increases the level of

complexity without exceeding the farmer’s learning process or farm logistic

constraints. The N tools were classified into (1) crop model-based, (2) remote

sensing-based, (3) enhanced efficiency fertilizers, and (4) biologicals. Field strip

trials comparing producers’ traditional management and the selected N

technology were combined with site-specific N rate blocks placed in

contrasting areas of the fields. Yield data from the N rate blocks was utilized to

derive the site-specific optimal N rate. The benefits of current N technologies

were quantified by comparing their yield, profit, and N use efficiency (NUE) to

growers’ traditional management and to the estimated site-specific optimal N

rate. Communication of the trial results back to the growers was crucial to ensure

the promotion and adoption of these N technologies farm wide. The framework

and overall benefits from N technologies was presented and discussed. The

proposed framework allowed researchers, agronomists, and farmers to carry out

on-farm precision N experimentation using novel technologies to quantify

benefits of digital ag technology and promote adoption.
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Highlights
Fron
• Development and validation of an on-farm research

framework for testing precision nitrogen technologies.

• Determination of site-specific yield response to nitrogen for

unbiased technology benchmarking.

• Open-source code for on-farm research data curation,

aggregation, and analysis.

• Description of project’s potential value to develop

successful cost-share programs for technology adoption.
1 Introduction

Nitrogen (N) is critical for maximizing crop yields and profit.

Recommending N at the economic optimum N rate (EONR)

remains challenging due to spatial and temporal variability and

uncertainty in crop yield, soil N supplying capacity, and N loss

dynamics (Mamo et al., 2003; Puntel et al., 2016; Cassman and

Dobermann, 2022). Unfortunately, most N recommendation

methods largely adopted by producers failed to account for

spatial and temporal variability of the EONR, and as such, do not

lessen the uncertainties of N management often resulting in N

losses and profit losses (Cassman and Dobermann, 2022).

Digital agriculture includes the innovation and application of N

technologies. Rapid development of sensing and modeling

technology coupled with data processing techniques have

provided new opportunities for optimization of N fertilizer

management. For example, sensor-, satellite-, and crop model-

based systems for site-specific fertilization in crop production can

effectively help balance nutrient flows throughout the soil–plant–

environmental system (Franzen, 2008; Sela et al., 2016; Bobryk

et al., 2018). In addition, crop model-based tools can quantify

complex dynamics such as N turnover in the soil and N emissions

into the environment (Sela et al., 2018). Other technologies, such as

enhanced-efficiency fertilizers (e.g., N stabilizers, N inhibitors and

bio-inhibitor) could control transformations in the N cycling

reducing N losses. Overall, the aforementioned technologies

provide paths for increasing NUE which is needed for more

sustainable crop production (Dutta et al., 2023). Despite the

increased available N technologies, their adoption remains low

(Lowenberg-DeBoer and Erickson, 2019; Thompson et al., 2019;

Puntel et al., 2022).

Recently, the advancement of variable-rate application (VRA)

and data collection technologies have enabled large-scale on-farm

precision experimentation (OFPE; Bullock et al., 2019). Conducting

research on-farm and with farmer participation, provides a path for

technology transfer and an avenue to increase adoption of technology

(Kyveryga, 2019; Thompson et al., 2019; Lacoste et al., 2021). In

addition, the OFPE allows researchers and farmers to collect big data

efficiently and economically with an improved statistical

experimental design (e.g., Latin Square, Randomized Block) on
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entire fields (Laurent et al., 2019; Licht and Witt, 2019).

Consequently, OFPE provides several advantages over small-plot

research station data and traditional on-farm strip-trials. For

example, knowledge derived from OFPE trials can be used to

develop input recommendations at a larger scale, considering

spatial variability that isn’t captured in small plot trials. The greater

variation in soil and crop characteristics within OFPE allows

statistical analysis of site-specific impact of input effect on yield

(Barbosa et al., 2020a, Barbosa et al., 2020b; De Lara et al., 2023).

Although OFPE data could be used to determine site-specific

yield response functions and ultimately crop optimal N rates, there

is no practical or commercial application available for growers to

make Nmanagement decisions based on this OFPE data. This limits

the short-term impact on growers NUE. Thus, on-farm

experimentation could be used to promote the use of existing N

technologies for more efficient N management while collecting site-

specific yield response functions for future data driven

recommendation methods. Testing of N technologies and the

estimation of site-specific EONR could allow unbiased

benchmarking of the technology and grower’s management.

Nevertheless, the implementation and the analytical framework

for the proposed experimentation has not been yet developed.

The Precision Nitrogen Project (PNP) started in 2020 testing N

technologies and promoting adoption by collaborating with farmers

to implement randomized agronomic field trials on commercial

fields. This work is innovative because it moves beyond the

“checkerboard” OFPE design to determine optimal N rates and the

traditional strip trials to test N managements. It combined the

strengths of both experimental approaches; a side-by-side

comparison between a selected N technology and grower’s

traditional N management practice, and an unbiased benchmarking

using a site-specific EONR derived from targeted N small plots.

Characterization of the site-specific EONR is often limited and

omitted in on-farm N technology testing (Trevisan et al., 2019;

Trevisan et al., 2021). The proposed framework contributes to fill

this gap.

The specific objectives of this work were to describe (1) a

farmer-centric, iterative, and tiered approach for N technology

selection, (2) the use of a novel OFPE to benchmark and evaluate

N technologies, (3) an automated OFPE data processing,

management, analysis, and reporting system, and (4) the impact

on cooperator management from three years of experimentation.

Successful N management via DA technologies can optimize crop

yields and increase profitability while minimizing N losses to the

environment meeting global demands and future standards.
2 Materials and methods

2.1 On-farm precision experimentation
design to test N technologies

The N technologies commercially available were grouped as (1)

crop model-based, (2) remote sensing-based, (3) enhanced
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efficiency fertilizers, and (4) biologicals (Figure 1). To reduce the

barriers of testing a new technology partnering farmers were

provided with financial compensation to negate the cost and risks

associated with a new N management plan.

A novel OFPE design was used to test the N technologies

(Figure 2). The experimental design combined field length strip-

trials and site-specific small N rate blocks with at least four

repetitions. The strip-trials were used to compare farmers’

traditional management (“business-as-usual” N management) to

the N technology they were interested in (“next-level” N

management). For corn most of the participating growers applied

a flat N rate either in the fall, pre plant or at planting with a

proportion of the fertilizer going as sidedress. For winter wheat
Frontiers in Agronomy 03
most of the growers applied the fertilizer at planting or early in

the spring.

Nitrogen rate blocks were placed in contrasting zones within the

field that were expected to have a contrasting yield response to N.

For technologies that provided flat or variable rate N

recommendations such as model-based and sensor-based N tools,

the technology was evaluated in field-length strips and the N blocks

were placed near by the strip trials in contrasting management

zones (Figures 2A, 3A, B). Recommended N rates for the field-

length strips and N blocks were assembled into a VRA that was

implemented on-the-go using the farmer’s VRA controller

(Figure 3C). Nitrogen rate blocks for the biologicals and

enhanced efficiency fertilizers strip-trials were implemented in a
B

A

FIGURE 2

Examples of the on-farm precision experimentation (OFPE) designs utilized to evaluate the performance of nitrogen (N) technologies.
Technologies that are used to adjust rate and/or timing (e.g., model-based and sensor-based technologies) are compared against grower and
the economic optimal N rate (EONR) derived from N blocks established at different zones within the field (A). Technologies such as enhanced
efficiency fertilizers or biologicals are established in a split-plot design with the N block as the main plot and the planting passes with a without
the product as the sub-plot (B).
FIGURE 1

Examples of the nitrogen technology options tested by cooperating farmers for the Precision Nitrogen Project. Technologies included crop model-
based, remote sensing-based, enhanced efficiency fertilizers, and biologicals.
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split-plot design (Figure 2B). Technologies were changed manually

(in the case of enhanced efficiency fertilizers) or applied with a “split

planter” approach (in the case of biologicals). Nitrogen rate blocks

were implemented as a prescription via the farmers VRA controller.
2.2 Data collection

Before the implementation of the field trial, a soil characterization

was performed to measure organic matter (OM) and soil texture

stratified by depths at contrasting yielding areas of the field. During

the growing season, soil moisture and temperature, soil nitrate, crop

phenology, plant biomass, high-resolution imagery, and leaf area

index was measured (LAI; Figure 3D). Farmers provided as-applied

and yield monitor data for the field-scale trials (Figure 3E).
2.3 Data processing, aggregation, analysis,
and reporting system

An automated OFPE data processing, management, analysis,

and reporting system was developed to enable robust and quick data

processing (Figures 3F–I). This system aggregates data layers from

various sources and implements data quality control methods to

check for overlapping, misalignment, or outliers within yield and

as-applied data. The system does not eliminate yield observation,

instead, they get flagged when issues were found. The system was

coded in R software (R Core Team, 2022) to enable rapid processing

of the on-farm research trials.
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3 Results

3.1 A farmer-centric, iterative, and tiered
approach for N technology selection

Partnering farmers were engaged throughout the process by

first letting them select the technology to test and by providing them

with hands-on experience. To guide this process, we utilized in-

depth discussions with farmers, their crop advisors, extension

educators, graduate students, and specialists to first understand

the farmer’s current Nmanagement and technology capabilities and

then to guide the selection of technology. This customized, farmer-

centric approach increased the potential for future adoption of the

technology tested and allowed growers to progressively increase the

complexity of their N management. For example, 25% of the

growers had no in-season N application experience and they were

more receptive to test enhanced efficiency fertilizers than in-season

N management tools. However, the remaining participants with in-

season N application capabilities were open to test remote-sensing

or crop model-based tools with their available capabilities and

logistics in place.

A total of five public-private partnerships with industry were

established to provide growers with access to the N technologies

(Figure 1). Partnerships with N technology providers played a critical

role in ensuring that technologies were available to the grower and

implemented correctly. This facilitated technology transfer with

expert input and allowed graduate students to be supported

through industry collaborations. In addition, three on-line

workshop training sessions were organized to train the PNP team
FIGURE 3

Precision nitrogen trial implementation workflow diagram: (A) variable nitrogen rate prescription is created with the selected technology, (B) trial
layout is combined with the output of the technology and the nitrogen ramps, (C) trials are applied on the go while the producers applies fertilizer,
(D) in-season data collection, (E) end of season data collection, (F) automatic data processing in R software, (G) data summaries, (H) analysis by
zone, and (I) data sharing and reporting.
frontiersin.org

https://doi.org/10.3389/fagro.2024.1234232
https://www.frontiersin.org/journals/agronomy
https://www.frontiersin.org


Puntel et al. 10.3389/fagro.2024.1234232
and growers on how to use some of these technologies. Workshops

were highly beneficial for the crop model and sensor-based N tools

due to their input requirements and complexity compared to for

example, enhance fertilizer and biological products.
3.2 Use of OFPE to benchmark and
evaluate N technologies

From 2020 to 2022, the PNP project completed 80 trials in corn

and winter wheat. Of these trials, technologies selected were 39%

crop model-based tools, 34% remote sensing-based, 21% enhanced

efficiency fertilizers, and 6% biologicals. Biologicals were offered as

an option for the first time in 2022 and is expected to increase in

2023. 98% of the experiments were successfully established.
3.3 Automated OFPE data processing,
management, analysis, and
reporting system

The automated data processing method developed for N

technology testing and benchmarking with the site-specific

optimal N rate encompassed yield and as-applied data processing,
Frontiers in Agronomy 05
data aggregation and reporting of results. Each step is described in

Sections 3.3.1 to 3.3.4.

The automated data method enabled the PNP team to reduce

the data processing time, cost, manpower, and enabled more

efficient result sharing with farmers right after harvest (Figures 4–

9). 90% of the trials were analyzed using the automatic process and

the remaining trials were analyzed manually due to data quality

issues. The PNP team was able to analyze site-specific yield response

to N curves for winter wheat and corn in more than 70% of

the experiments.

3.3.1 Yield data processing
The resultant raw yield data processing was based on yield values

and harvester speed. Yield-based cleaning occurs by treatment block. By

default, the yield observations that were below 5% and above 95%

quantiles are removed, and the standard deviation is then calculated for

each treatment block. The yield data points that were four standard

deviations above or below the median yield were flagged as outliers

(Figure 4A). Speed-based cleaning finds the standard deviation and

median of the harvester speed for the entire field and any data points

that were above or below four standard deviations from median were

flagged as outliers (Figure 4B). While four standard deviations from the

median is the default metric and value, the computer program was

written so that the user can change the method (e.g., for the median
B

C

A

FIGURE 4

Yield data processing for precision nitrogen on-farm research trials. Yield cleaning detects outliers based on the standard deviation of yield
observations (A), speed-based cleaning using the standard deviation and median of the harvester speed (B) and integrates both flags (A, B) into a
single variable called “dropped as outliers” (C).
frontiersin.org

https://doi.org/10.3389/fagro.2024.1234232
https://www.frontiersin.org/journals/agronomy
https://www.frontiersin.org


Puntel et al. 10.3389/fagro.2024.1234232
absolute deviation) and value. Yield data points that were within 10

meters of the data points that were considered either yield or speed

outliers due to spatial misalignment were detected. Outliers weremarked

and should not be used in the final analysis. All data was flagged and not

deleted; the combination of yield flags facilitated the data processing

once the final spatial databased is aggregated (Figure 4C).
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The yield flag processing was followed by transforming yield data

points to polygons (Figure 5). Specifically, polygons were created

from the yield observation points where the width of the polygons is

determined by the harvester width. This input was either detected

from the yield monitor data or provided by the user. This step was

crucial in identifying areas with yield overlap during harvest.
B

C

A

FIGURE 6

Example of as-applied nitrogen (N) fertilizer data analysis when data is missing due to zero N recommended (A), recreating of as-applied N input
data parallel to the adjacent path with zero N (B), and as-applied data polygonised after outlier detection (C).
FIGURE 5

Corn yield data points polygonised based on harvester machine width for one site in Nebraska during the 2021 growing season.
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3.3.2 Nitrogen fertilizer as-applied maps
data processing

The input data (N application data) was processed in a very

similar manner as yield data (Section 3.3.1). Outliers were detected

using the same criteria (four standard deviation away from the

median) by treatment block. However, an additional step was

necessary to accommodate when trials prescribed no N, such as a

0 kg ha-1 N rate block. In these areas, the as-applied data would not

record data points for the zero rate areas (Figure 6A). To fill in these

missing data points, the processing code created input data points
Frontiers in Agronomy 07
parallel to the adjacent input path with as-applied N equal zero

(Figure 6B). The creation of these zero rate data points was needed

to ensure that these areas are not falsely flagged for underlap. After

this step, as with the yield data, input data polygons were created

such that the width of the polygons match the N applicator width

(Figure 6C). This process would need to be repeated for each

fertilizer input as-applied file.

3.3.3 Data aggregation
The resultant yield polygons were superimposed on the input

polygons to check for overlap between the two layers and mixed

treatment issue (Figure 7). Lack of overlap between yield and input

polygons happened when the applicator deviated from the planned

path. When overlap happened, parts of the yield polygon area did

not receive any N treatment. On the other hand, excessive overlap

happened when the applicator went through the same area more

than once. The overlap criteria is by default 95% but user can

modify this parameter.

For those trials where the lack or excessive overlap was not an

issue, was found possible that yield polygons overlapped with

multiple input polygons associated with different N rates. For

example, a yield polygon is overlapping with two N polygons that

share 90% and 10% or the area, respectively. The N polygon with

the highest share of the area is the “dominant” polygon. If the

share of the dominant polygon is below a threshold (the default is

95%) then, the yield polygon is flag as low-quality. The user can

decide the threshold in the program. The proposed method was

implemented to also account for the fact that GPS accuracy is not

perfect so this way we don’t discard something that isn’t 100%

when in reality it probably is 100% aligned but GPS recorded

isn’t perfect.
B

C D

A

FIGURE 8

Example of whole field yield (A), total nitrogen [N, (B)], N use efficiency [NUE, (C)] and partial profit (D) summary for grower’s traditional
management and crop model-based N tool for corn. Vertical bars indicate the standard deviation of the mean (n= 4). Symbols indicate the following
levels of statistical significance: <0.001 ‘***’; 0.001 ‘**’; 0.01 ‘*’; 0.05 ‘.’.
FIGURE 7

Example of the mixed treatment issue where yield polygons
overlapped with multiple distinct input polygons with different
nitrogen rates. Red polygons showing yield monitor data points
coverage are overlapped on as-applied nitrogen application map.
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The described issue was called a mixed treatment problem and

had a significantly negative impact on the statistical analysis (Edge

et al., 2023). These yield polygons were flagged and excluded from

the subsequent statistical analysis.

A final data processing step was developed to aggregate the

clean yield polygons with additional data such as terrain, soil, or

weather (e.g., soil texture, slope, elevation). For a given yield

polygon, the area intersecting with the additional data layer was

calculated, then the area-weighted average of the values of the data

layer was attached to the yield polygon.
3.3.4 Data analysis and reporting
Code for analysis and reporting was implemented after filtering

yield and as-applied data that did not meet the criteria within the

field-length strips and the N blocks. The user could review the

flagging and decide the impact of the detected issues to eliminate or

not the flagged observations.

Once the data filtering was in place, the software summarizes the

yield and as-applied data points by treatment, repetitions,

management zones, and any other variable aggregated as additional

data (Figures 3F, G). For all trials, the farmer’s business-as-usual N

management was compared to the next-level technology on a whole-
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field basis. Total N used, yield, profit, and NUE was evaluated

(Figures 3I, 8). Then, economic optimum N rate (EONR) was

estimated for each N rate block to spatially benchmark the

technology tested and the farmer’s traditional N management

(Figures 3H, 9). In the example shown in Figure 9, field length

strip repetitions of each treatment (Rep) were compared with the

closest EONR. Additional data layers could be used to delineate

different zones within the field and change the scale of the

comparison. Despite that N blocks were located in assumed to be

contrasting zones based on available information at the time of the

trial design, the data processing is flexible to allow user for

additional comparisons.
3.4 Nitrogen technology testing and the
impact on growers management

Results were published in the annual on-farm research results

extension publications (Thompson et al., 2021; Thompson et al.,

2022). Results were shared with over 200 individuals annually

through the on-farm research meetings and 12 presentations.

Additionally, individual meetings were held at the end of the

growing season to share results with the partnering farmers.
BA

FIGURE 9

Example of total nitrogen rates for model-based tools and grower’s management (A) and site-specific economic optimal nitrogen rates (EONR,
(B) for a subset of site-specific locations within the field. In this example, field length strip repetitions for each treatment (Rep) were compared
with the closest EONR. Dashed lines on panel (A) represent the observed EONR.
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Farmer comments and stories revealed they were more

comfortable using technology because of participating in this

project. One producer noted, “I’ve had crop canopy sensors for

years but didn’t feel confident using them. Now that I’ve seen the

results, I will use them farm wide.”

Growers also benefitted from seeing the results of the NUE

analysis for their management practices. One producer commented,

“I’m shocked that our NUE is 1.1 [lb N/bu grain]. I want to push the

efficiency below 1 [lb N/bu grain]. I was planning on purchasing

some more fertilizer for the upcoming year, but now that I see these

results, I think what I have is enough.”

Although the research still on-going and while limited, farmer

statements provided evidence that the proposed N technology

testing approach was having immediate impact in growers’ NUE

and in their willingness to adopt technology. For example, a central

Nebraska producer participated in a study looking at sensor-based

fertigation technology. Using the responsive sensor-based

fertigation approach, the grower was able to reduce N fertilizer

rate by nearly 100 kg N/ha compared to his normal management

with no impact on yield. Reflecting on his results, the farmer stated,

“the project has proved to me that with the sensor-based approach,

we can get by with a lot less nitrogen.” In the following year, he

adopted this technology across his farm. Quantitative data

supporting the impact from the described N technology testing

framework will be published future publications.
4 Discussion

4.1 Benefits of the Precision Nitrogen
Project testing methodology

The unique OFPE methodology presented here allowed

researchers, agronomist, and growers to test a combination of DA

technologies to direct N rate applications and/or to enhance the

efficiency of the N fertilizer (Figures 1, 2). Compared to small plot N

trials (Bullock and Bullock, 1994; Makowski et al., 2002; Kitchen

et al., 2017), large-scale N trials (Bullock et al., 2019), and traditional

strip trials (Sela et al., 2016; Kyveryga et al., 2018), the PNP

framework provided three major novel aspects: on-farm testing of

commercially available N technologies, side by side comparison of

the N technology with growers’ current N management, and

unbiased benchmarking of both N management approaches using

site-specific EONR (Figures 8, 9).

Major advances in Nmanagement have been made by employing

OFPE. For example, the Data-Intensive Farm Management Project

(DIFM) (Bullock et al., 2019), enhanced the utilization of small-plot

trials at a commercial field level, allowing site-specific determination

of the EONR and evaluation of novel modeling strategies (De Lara

et al., 2023; Hegedus et al., 2023).While this method allowed growers’

current N management to be benchmarked against the observed

EONR, there is no tool available for growers to utilize trial results to

direct future site-specific N recommendation. Thus, the applicability

for these trials to result in immediate change in growers’management
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and adoption of more efficient N management practices is limited.

Although the framework presented here is still under evaluation for

one more year, grower attitudes following participation revealed an

immediate increase in the grower’s knowledge of the technology,

willingness to continue using the tested practices beyond the life of

the trial, and rapid diagnosis of their current NUE. This supports the

hypothesis that solving N related environmental issues in agriculture

cropping systems will need to first rely on determining NUE of

current N management practices (Tenorio et al., 2020; Cassman and

Dobermann, 2022).

Strip trials, on another hand, are often used for testing products

(e.g., N inhibitors, N sources), limited numbers of N rates

(Kyveryga and Blackmer, 2012) and N tools (Sela et al., 2016)

compared to growers’ standard management. However, in most

cases these trials do not have sufficient treatment layout and data to

determine EONR, thus unbiased benchmarking of the proposed N

management is not possible. It is important to note, that the PNP

framework took the evaluation of special fertilizers and biologicals

to the next level (Figure 2B). First, site-specific performance of the

product can be evaluated by aggregating metadata and auxiliary

information about soil and crop characteristics (Section 2.2.3).

Second, testing N technologies under an array of N rates below

and above grower’s traditional N rate, allows to determine impact of

these technologies on EONR and under what N level the technology

offered the biggest benefits. This is particularly true for the case of

biological products that are aimed at reducing total N rate but often

applied at excessive N rates, undermining potential benefits.

Similarly, N inhibitors aimed at protecting the synthetic N

fertilizer source from losses, were beneficial when the N rate is

already optimized. The PNP approach enhanced the testing of these

technologies on farmer fields, at commercial scales, and across

diverse landscapes.

The site-specific EONR determination provides a unique and

unbiased capability to evaluate both new technology and growers’

current N practice on a whole-field and site-specific basis (Figure 2).

Soil types, management zones, and other crop and soil

measurements can be used to derive where the technology

performed the best and where the recommended N rates were

closer to the observed EONR. For example, in the field shown in

Figure 9, we observed EONR values higher than both grower and

model-based N management in two of the three replications

demonstrating that both approaches were potentially under-

recommending N in these areas. This illustrates the potential for

the insights derived from benchmarking to be utilized for further

technology improvements.

This overview of the PNP introduced the main steps for the trial

design, data processing, and analysis as part of a novel framework

for conducting on-farm experiments to test N technologies and

benchmark them with grower’s management practices and the

observed EONR. However, in some cases, lack of access to GPS

to enable site-specific applicators and planters limited the growers

that could participate in this project. Despite this, the future of these

testing strategies is promising as national trends suggest that use of

GPS and VRT increased steadily since 1990 (McFadden, 2023).
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4.2 Importance of automated data
processing, aggregation, analysis, and
reporting system

There is a general agreement that requisite data handling,

processing, and interpretation are major bottlenecks limiting

advancements in digital agriculture (Kutter et al., 2011; Wolfert

et al., 2017; White et al., 2021). Usually, data sets derived from

OFPE trials are characterized by unstructured, heterogenous data

coming from various sources which requires interaction with skilled

data scientists and domain experts. The protocols applied in PNP

for data processing, analysis, and reporting (Section 2.2), constitute

important steps toward reducing these barriers. In addition, the

open-source software has the potential to expand the approach to

more users, increasing knowledge of N technologies performance

and promoting adoption. The PNP is planning to release the source

code for public use by the end of the project in 2024.
4.3 Role of on-farm precision
experimentation in adoption of digital
N technologies

The PNP developed and validated a successful framework to

accelerate adoption of proven and industry available solutions

(Scharf et al., 2005; Weber and McCann, 2015; Sela et al., 2016;

Morris et al., 2018). The recorded trends in this project indicated

that more than 50% of the growers continue to use the N technology

tested during this project. Although a more comprehensive

assessment is needed to confirm this observation, we conclude

that several barriers are eliminated once the technology is explained

in detail to growers and their advisers and when agronomic,

economic, and environmental benefits from technology are clearly

communicated (Figure 8). Access to training, close relationships

with industry partners, compensation for participation, and

reduced cost of technology are among other factors that support

the proposed framework.

Growers are pulled in different directions due to a vast offering

of DA tools and often do not have the support to evaluate the

effectiveness of a particular N technology in their own operation

(Bolfe et al., 2020; Puntel et al., 2022; McFadden, 2023). This is

evidenced by the larger proportion of growers testing and/or

implementing products compared to other technologies (models

and sensors) (Castle et al., 2015; Weber and McCann, 2015). In

addition, products such as N inhibitors or biologicals are simpler to

utilize than other technologies. Crop models and remote sensing-

based technologies require larger data inputs, more knowledge and

investment. However, as already presented, the PNP removed some

of these limitations. This confirms that incentive programs that

provide financial and/or technical support like those existing for

other management practices (e.g., cover crops, no-till, etc.) could

greatly impact the adoption of N technologies. Incentive programs

to increase adoption of N technologies should be considered as: (1)

increasing NUE and reducing environmental N impacts while
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maintaining production remains a major challenge of modern

agriculture and (2) most of the commercially available

technologies tested by the PNP provided an increase in efficiency

compared to typical grower management. Thus, the effectiveness of

the PNPmodel serves as evidence to support incentive programs for

DA adoption in agriculture.

In addition to the immediate benefit to the growers of testing N

technologies in their own fields, this state-wide method is building a

substantial dataset for future technology testing with a standardized

protocol. This confirmed that public-private partnerships could lead

tomajor contributions to develop or validate N fertilizer management

practices (Kitchen et al., 2017; Ransom et al., 2021). Similar public-

industry partnerships should be encouraged. Although this research

was conducted in the U.S., the methodology and research outcomes

will be applicable to agronomic studies across larger regions

throughout the world. Further, the framework presented here can

be expanded to other practices such as sensor- and model-based

irrigation management or chemical use.
5 Conclusion

The presented framework described a unique approach to test

and benchmark N technologies and current N management

practices in an unbiased and site-specific manner to support

producer technology adoption. The following items were

recognized as the main conclusions from implementing

this framework:
1. The unique aspects of the PNP framework including data

processing and interpretation, reimbursement of

technology cost, and technical support to evaluate and

utilize these technologies allowed us to overcome

common barriers to technology adoption as evidenced by

increased grower adoption.

2. The validated framework and quantification of the success of

the various N technologies tested in the PNP can provide

valuable guidance regarding the anticipated level of impact

from these technologies. This information can be used to

inform the development of cost share or incentive programs.

3. The dataset generated in this study encompassed a wide array

of weather and soil conditions that can be used to perform a

comprehensive, multi-environment evaluation of current N

technologies. Additionally, this and analysis can facilitate the

optimal placement for existing technologies and support post-

hoc testing of future technologies.

4. The integrated research-extension and public-private

collaborations utilized in this project are critical for

increasing adoption of management practices that

improve productivity and sustainability goals.

5. The model and experiences described in this paper have

potential to be expanded to other DA technologies thereby

accelerating the adoption of technologies that can improve

crop productivity and sustainability.
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The potential impact derived from massive adoption of DA

technologies remains largely untapped. Effective and long-term

adoption of these technologies could help effectively attain the

productivity and sustainability goals in future cropping systems.
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