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Assessing capacitance soil
moisture sensor probes’
ability to sense nitrogen,
phosphorus, and potassium
using volumetric ion content
Zoë J. Stroobosscher1, Akshara Athelly2

and Sandra M. Guzmán2*

1School of Natural Resources and Environment - Department of Agricultural and Biological
Engineering, Indian River Research and Education Center, University of Florida, Fort Pierce, FL, United
States, 2Department of Agricultural and Biological Engineering, Indian River Research and Education
Center, University of Florida, Fort Pierce, FL, United States
Accurate and near real-time volumetric soil water and volumetric ion content (VIC)

measurements can both inform precise irrigation scheduling and aid in fertilizer

management applications in cropping systems. To assist in themonitoring of these

measurements, capacitance-based soil moisture probes are used in agricultural

best management practice (BMP) programs. However, the ability of these sensors

to detect nutrients in the soil sourced from fertilizers is not well understood. The

objective of this study was to evaluate the sensitivity of a capacitance-based soil

moisture probe in detecting Nitrogen (N), Phosphorous (P), and Potassium (K)

movement in the soil. To achieve this, a laboratory-based setup was established

using pure sand soil cores. Raw soil moisture and VIC probe readings from the

cores were contrasted across multiple N, P, and K rates. The N treatments applied

were rates of 0, 112, 168, and 224 kg/ha; for P, were 0, 3.76, and 37.6 kg/ha, and for

K were 0, 1.02, 1.53, and 2.04 kg/ha. Each nutrient was evaluated separately using a

randomized complete block design experiment with three replications for N and K,

and 5 replications for P. The impact of each nutrient rate on the sensitivity of VIC

readings was determined by evaluating differences in three points of the time

series, including the observed maximum point, inflection point, and convergence

value as well as the time of occurrence of those points over a 24-hour period.

These points were assessed at depths 5, 15, 25, 35, 45, and 55 cm. The findings of

this study highlight the capacitance-based soil moisture probes’ responsiveness to

changes in all K rates at most depths. However, its sensitivity to changes in N and P

rates is comparatively lower. The results obtained in this study can be used to

develop fertilizer management protocols that utilize K movement as the baseline

to indirectly assess N and P, while helping to inform those who currently use the

probe which nutrients the probe may be detecting. The probes’ readings could be

incorporated into decision support systems for irrigation and nutrient

management and improve control systems for precision water and

nutrient management.
KEYWORDS

nutrient sensor, electrical conductivity, volumetric ion content, soil moisture sensor,
soil moisture probe, precision nutrient management, fertilizer management, fertigation
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1 Introduction

Agricultural, urban, and industrial water resource management

continue to play a significant role in eutrophication within

freshwater systems, driven by factors such as population growth

and intensification (Lu and Tian, 2017; Wurtsbaugh et al., 2019).

It’s been shown that the management of irrigation and fertigation

has major impacts on the nutrient leachate and runoff coming from

agricultural production (Pérez-Martıń and Benedito-Castillo,

2023). One approach to optimize agricultural production and

minimize the environmental impacts involves high-quality

diagnostic soil, plant, and water testing (Mylavarapu, 2010).

However, a fraction (25%) of surveyed farmers in the USA and

Australia conduct soil tests for monitoring nutrients (Lobry De

Bruyn and Andrews, 2016). Due to these factors, the need for real-

time soil nutrient monitoring is steadily increasing within

agricultural water management. Such monitoring can contribute

to the optimization of farmers’ fertilizer application rates and assist

in implementing effective nutrient management practices (Burton

et al., 2020), thus reducing agriculture’s impacts on water quality.

To promote wider adoption of nutrient monitoring techniques,

several advancements in precision agriculture have emerged to

assess plant and soil nutrient content at the field level. Optical

sensors, satellite-based remote sensing technologies, and drone-

based approaches have been gaining ground (Hunt and Daughtry,

2018; Inoue, 2020; Sishodia et al., 2020). While these technologies

are nondestructive, they are expensive and require skills and

knowledge in data processing before the farmers can effectively

use the collected data for decision-making. Currently, the use of

remote sensing technology is mainly limited to researchers (Weber

and McCann, 2015; Bramley and Ouzman, 2019). An alternative

approach for continuous field-level data acquisition involves in-

ground sensors. Capacitance soil moisture sensors (SMS) for

instance, provide real-time readings of soil water (SM),

volumetric ion content (VIC) or electrical conductivity (EC), and

soil temperature (T). These sensors provide two outputs from

dimensionless frequencies that within conjunction with one

another, give readings of volumetric water content and VIC when

separated by proprietary data model processes. (TriSCAN ®

Agronomic User Manual Version 1.2a, 2003, Adelaide, Australia).

The VIC data derived from SMS represents the dielectric constant,

which is influenced by the presence of salts from fertilizers and

irrigation water. If nutrient salts from fertilizers significantly impact

the soil osmotic potential, the sensor can detect them (Or and

Wraith, 2002). The use of SMS for optimal irrigation scheduling has

been adopted more by farmers than any other technology-based

irrigation scheduling technique in the USA (Taghvaeian et al.,

2020). If this most-adopted approach could also be utilized for

nutrient management, the rate of adoption could be greatly

increased. Based on the VIC-EC measuring capabilities of SMS’s

and soil moisture probes (SMP), it’s hypothesized that a similar

approach could potentially be employed for nutrient monitoring

and management, in addition to irrigation scheduling using SMS

VIC data, if relationships between nutrient movement across the

soil profile and VIC readings are established. If this connection is
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successfully established, decision support systems could utilize this

already commercially-available and adopted technology to quickly

diffuse fertigation management strategies, decreasing agriculture’s

contributions to eutrophication. It is known that decision support

systems already utilize sensor outputs for the management of

irrigation and fertigation practices to reduce environmental

impacts (Zhai et al., 2020). But first, before implementation into

systems as a nutrient-sustainable management strategy, it must be

investigated which nutrients the technology could potentially

be detecting.

It’s hypothesize that in-ground SMS could be sensitive to

nutrient movement in the soil. This hypothesis arises from three

known principles. First, the nutrients’ influence on EC (Omonode

and Vyn, 2006; Mirzakhaninafchi et al., 2017; Darmawan et al.,

2023). Second, the established correlation between soil cations/

anions and EC (Friedman, 2005), and third, the sensors’ capacity to

detect soil VIC. Notably, fertilizers containing Nitrogen (N),

Phosphorous (P), and Potassium (K) are known to increase EC

(Bhatt et al., 2019). The SMS’s VIC measurements have been found

to be directly correlated to soil EC, with variation across soil types

(Biswas et al., 2007). This correlation indicates the potential of SMS

to detect the presence of N, P, and K in the soil due to fertilizer

applications, inferred from VIC data. To the best of our knowledge,

no published studies have examined the capability of these

capacitance SMS to detect N, P, and K movements individually.

In this study, laboratory-based experiments were conducted to

assess the changes caused in the VIC time series from SMS due to

the presence of N, P, and K in a pure sand media. While the SMS’s

VIC sensing capabilities make direct nutrient detection unlikely, the

ability to indirectly indicate high nutrient content in the soil holds

value for those utilizing the sensors for management or those

creating decision support systems in precision agriculture. Given

that these SMS are readily available on the market and are being

used by farmers in the USA, they could represent a feasible and

rapid solution for implementing efficient in-field nutrient

management plans. However, there is a need for them to be

investigated to fully understand which nutrients are in fact being

detected by the sensors. By harnessing real-time data, these systems

could both maintain optimal agricultural water and nutrient

management while minimizing environmental impacts from

crop production.
2 Materials and methods

2.1 Experiment location, design,
and treatments

The three N, P, and K experiments were conducted individually

at the University of Florida’s Indian River Research and Education

Center in Fort Pierce, FL, USA (27°25'33.9"N 80°24'29.4" W). The

laboratory was kept at a constant temperature of around 21°C. While

constant temperature cannot be expected in field settings, this study

was designed to minimize any variation in the time series created

from temperature variances, so the SMS signals were mostly
frontiersin.org
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influenced by each nutrient. Each experiment followed similar

protocols and had a randomized complete block design where the

SMSs data collection over a 24-hour time was considered the

replication or block (Figure 1). Specifically, the N and K

experiments encompassed three distinct rates and were replicated

three times, while the P experiment tested two different rates of P and

had five replications. Sequentially, the P experiment was conducted

initially, followed by the N and K experiments. After concluding the P

experiment, it was determined that the N and K experiments would

benefit from more rates and fewer repetitions. This was determined

due to literature pointing stronger to impacts of N and K on soil EC

(Carneiro et al., 2017; Guo et al., 2021) while it pointed to smaller

impacts of P on soil EC (Ding et al., 2020). As previous studies

showed weaker P impact on soil EC but still impacting, it was

determined to be beneficial to investigate 2 application rates of P

which were significantly different from each other with higher

numbers of repetitions to determine if P would be detectable

through the SMP. However, as previous studies successfully

registered strong EC signals from N and K in soils, it was

determined to be beneficial to further investigate how sensitive the

SMSs could be to various application rates of N and K beyond simple

detection. Despite the differences in number of repetitions and

applications between the three separate experiments, each

experiment had a randomized complete block design where the 24-

hour time was considered the replication or block. A summary of the

treatments and nutrient rates used in this study is outlined in Table 1.

The N source used was powdered urea (42-0-0), and the N rate

treatments were application rates selected based on local N fertilizer

recommendations for sweetcorn (Hochmuth and Hanlon, 1995).

The low rate indicates split application at the six-leaf stage of the
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crop, the average rate is the preplant application rate, and the high

rate represents the total accumulated N suggested for one crop

season. For P a 1000 ppm orthophosphate standard solution was

purchased from Fisher Scientific. This solution was selected as

inorganic P is a bioavailable source of P (Thien and Myers, 1992)

often found in fertilizers (Cade-Menun et al., 2017). P rates were

determined based on soil P concentration of a local sweetcorn farm

in South Florida, USA, where the high rate represented average P

soil levels, and the low rate was one-tenth of this level. The K source

was KCl 3M solution from Fisher Scientific, with treatments

selected based on groundwater salinity concentrations. According

to Her and Vassilaros (2022), the maximum groundwater salinity

concentration reported was 9.12 dS/m along the South Florida

coastal areas. Thus, in this study, this measurement was used as a

baseline to convert K levels ranging from 5-10 dS/m reflecting

groundwater levels (Her and Vassilaros, 2022) to the kg/ha

measurements of 1.02, 1.53, 2.04 kg/ha treatments. Each nutrient

source was mixed with 500 ml reverse osmosis water, and to ensure

consistency in metrics, units were transformed to nutrient rates per

hectare of land.
2.2 Soil moisture probe and calibration

A TriSCAN Sentek drill and drop (SMP) soil moisture probe

(Sentek Drill and Drop SDI-12 Series III, 2015) was utilized for this

experiment. The SMP is equipped with 6 individual SMSs

distributed equally down the probe. Across the SMP, sensors are

located at specific depths: 5 cm (sensor 1), 15 cm (sensor 2), 25 cm

(sensor 3), 35 cm (sensor 4), 45 cm (sensor 5), and 55 cm (sensor 6)

from the surface. Each SMS provides readings of volumetric soil

water content, soil temperature, and VIC at 15-minute intervals.

The sensors generate two frequencies. The first frequency is

converted through a normalization Equation 1 (Schelter et al.,

2006).

X − Xmin
Xmax − Xmin

(1)

and calibrated to volumetric soil water content. The second

frequency is proportional to soil water content and the presence of

free ions in the soil pore water. Proprietary data modeling integrates

changes in both signals, yielding nominal VIC. These VIC readings

can also be correlated with EC (Sentek TriSCAN ® Agronomic User

Manual Version 1.2a, 2003, Adelaide, Australia). When the SMP is

inserted into soil, each sensor within the SMP begins transmitting

the soil water content, soil temperature, and VIC data in real-time

every 15 minutes, generating a time series that begins from the

moment of installation. This data can be observed by the user on

commercial displays developed by data providers for service.

Multiple data providers service the SMP used in this study. To

ensure uniform measurements across all sensors, the SMPs were

calibrated according to Sentek Technologies’ soil moisture sensors

calibration manual (Calibration Manual for Sentek Soil Moisture

Sensors Version 2.0, 2011). For each soil core, a single SMP was

installed as shown in Figure 2. Data from the SMPs were retrieved

via two data providers currently being used within the state of
FIGURE 1

Diagram of the randomized complete block design for N, P and
K experiments.
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Florida: BMP Logic (https://www.bmplogic.net/) and Pessl

Instruments (http://metosusa.com/). The subsequent data analysis

was performed on the raw data extracted from each platform.
2.3 Experimental protocol

Soil cores were composed of 60 cm tall riser-pipe cylinders with

a 16 cm diameter. Each cylinder was cut through the middle

lengthwise, and fitted together with hose clamps, with the aim of

replication sampling (Figure 3). To prevent soil movement with

leachate, the lower portion of the pipes were sealed using a water-

permeable fabric mulch. The fabric mulch ground cover utilized in

this study was manufactured by Lumite, Inc (http://

www.lumiteinc.com/products/groundcover) and is comprised of a

blend of woven fabrics and UV polypropylene that allows passage of

water and nutrients at a rate of 720 L min/m2.

The cores were filled with 15 kg of silica sand and evenly

trapped along the sides in a uniform manner to prevent air gaps. To

avoid variance in compaction, cores were only proceeded to be used

if greater than 2.5 yet less than 5 cm of space was present at the top

of the core. As each core held the same mass of sand and was equal

in volume, anything outside of these parameters was determined to
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have a variance in compaction and was not used in the experiment.

SMPs were installed in the center of each core following the

manufacturer’s installation protocols (Sentek Drill and Drop SDI-

12 Series III, 2015). Following SMP installation, the cores remained

undisturbed for 1.5 hours to allow for temperature adjustment and

soil settling. Subsequently, the 500ml solution containing either N,

P, or K was applied. The solution was evenly poured onto the core’s

surface using a custom-made strainer, ensuring uniform

distribution across the top surface. After the solution had

thoroughly passed through the strainer, the core remained

undisturbed for 24 hours.

At the end of the 24-hour period, the SMPs were carefully

positioned horizontally to prevent further seepage. The core was

then divided into six distinct 10 cm sections (Figure 3),

corresponding to the descending depths of sensors within the

SMP. These soil sections were compositely, air-dried for P and K

or stored in the refrigerator for N, before being sent for analysis. N

and K soil samples were sent to Water’s Agricultural Laboratory

(Camilla, GA) for extraction and analysis while P soil samples were

sent to UF IFAS Everglades Research and Education Center’s soil

lab for Mehlich III extraction and analysis.
2.4 Data analysis

The time series obtained per treatment were evaluated by

assessing three VIC points within the time series and their

comparison by ANOVA. These points attained were identified as

the maximum point (MP), inflection point (IP), and the

convergence point (CV). The MP was evaluated in two ways: the

MP value (MPv) and its time of occurrence (MPt), which together

represent the highest VIC reading given by the SMS within the SMP

at its given depth. The inflection point was also evaluated in two

ways: the IP value (IPv) and its time of occurrence (IPt), which

together represent the slope of drainage after the nutrient solution

has passed down to deeper soil layers, or the soil is under its water-

available field capacity conditions. The CV was only evaluated in

value as it is the final normalized value taken after 24 hours, making

its time of occurrence equal in each repetition. The CV represents

the ‘settling point’ of the solution. A visual representation of these

points is displayed in Figure 4. Graphs were obtained from each

repetition of each treatment; Figure 4 is a sample of the first

repetition in the K experiment presented here as a visual guide.

As the purpose of this research is to evaluate these currently

used SMP’s ability to detect nutrients in the soil, it was important

that the elements of the VIC curve analyzed were elements that

reflect the current time series management for irrigation scheduling

by farmers. the University of Florida Electronic Data Information

Source (EDIS) offers guidelines to interpret time series elements and

values to assist growers in irrigation management (Zotarelli et al.,

2019). The MP value in this study is equivalent to what a grower

would identify as the irrigation event peak during an irrigation

event. IP represents the major change in the time series slope

(Phlips et al., 2021), which is similar to the practical method used by

growers to identify soil field capacity, or the ‘slope of drainage’. CV

represents the final value in the time series where there is no more
FIGURE 2

Laboratory experimental setup pre-nutrient application.
TABLE 1 N, P, and K rates per treatment.

Treatment
Nutrient Rate (Kg/ha)

N P K

Control 0 0 0

Low 112 3.76 1.02

Average 168 1.53

High 224 37.6 2.04

Replications 3 5 3
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downward movement of nutrients. This is the only value that can be

directly compared to the laboratory analysis as it is static.

Following the identification of the MPs, the raw time-series data

Y = ( y1, y2,  …, ynf g) was normalized to a range of (0,1) for IP and

CV identification. IPs were detected using the changepoint

algorithm following the description from Killick and Eckley

(2014), and adapted as follows in Equations 2–4:

Let (y1 : n) represent the sequence of data points from the first

(y1) to the last observation in the time series (yn) : Under the null

hypothesis (H0), it is assumed that no changepoint exists in the time

series. Let (L0) be the maximum log-likelihood under this

hypothesis, which is defined as:

L0 = logp(y1 : njq̂ ) (2)
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Here, p( · ) represents the probability density function

associated with the distribution of the data, and q̂ = ½m̂ ,   ŝ  � is
the maximum likelihood estimate (MLE) of the mean and standard

deviation that best fit the distribution of Y .

Under the alternative hypothesis (Ha), a changepoint at (t1) is
assumed to exist. Let L(t1) be the maximum log-likelihood under

this hypothesis, which is defined as:

L(t 1) = log   p(y(1 : t 1)jq̂ 1) + log   p(y(t 1+1 : n)jq̂ 2) (3)

The likelihood ratio test statistic l is constructed using L0 and

L(t1), and is defined as:

l = 2 max
t 1

L(t 1) − L0

� �
(4)

Therefore, the test is performed by selecting a threshold (c) such

that the null hypothesis is rejected if l > c. If the null hypothesis is

rejected the position t1 is estimated and considered as the

detected changepoint

Following the identification of the MP, IP, and CV values, the

one-way ANOVA followed by the post hoc Tukey test was performed

to identify differences among the treatments. By utilizing ANOVA,

MPs IPs and CVs could be compared across application rates, and

immediately determine if the MPs IPs and CVs changed in a

significant matter with the application of N, P, or K. Significant

changes in MP IP or CV would indicate the SMPs’ sensitivity to the

presence of the nutrient, while the absence of significance would

indicate a lack of SMPs’ sensitivity to the presence of the nutrient. The

two-way ANOVA followed by post hoc Tukey was performed on the

laboratory analysis results for the N, P, and K using both treatment

and SMS depth as variables to understand the individual variable

impact and their interactions. The remaining of this study will use the

following nomenclature for clarity in the results. ‘Experiments’ will

refer to the entire set of measurements taken from either N, P, or K.

‘Applications’ will refer to the nutrient rates applied, including the
A B

FIGURE 4

Identification of signal dispersions in the time series from raw data (A) and normalized data (B) from the potassium trial at 5 cm depth. Circles
represent the maximum points per treatment (MP), squares represent inflection points per treatment (IP), and triangles represent the convergence
points per treatment (CV).
FIGURE 3

Sand core and extraction of soil samples for laboratory analysis
based on the sensor depth. Horizontal colored lines represent the
location of each soil moisture sensors across the core.
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control, low, average, and high application rates. ‘Repetition’ refers to

how many times the applications were repeated. For example: The 1st

repetition of the low application in the N experiment would refer to

the time series obtained from the first time the low nitrogen nutrient

application was applied to a core.
3 Results and discussion

3.1 Maximum point

3.1.1 Value of maximum point
Among the three tested nutrients, only K has significant

differences (Table 2). The analysis of MPv differences related to K

was approached by comparing MPv across different treatments.

When comparing MPv per depth and application rate, an increase

in MPv was observed in direct correlation with each application rate

except at 15 cm depth, where the highest K application yielded a

lower MPv than the low and average applications (Figure 5). Results

from the control treatment showed that the top five SMSs displayed

similar MPv, ranging from 894-945 VIC units. However, the sixth

SMS, situated at 55 cm depth, recorded a VIC measurement of 1079

units, which is higher than the readings of the top five sensors. This

deviation might be attributed to a change in sensor sensitivity, due

to increased soil water resulting from downward water movement

within the soil core, In this context, higher water content leads to a

higher VIC reading.

The mean values displayed in Table 2 confirm that each K

application rate resulted in a higher MPv than the control, as

indicated by the Tukey letter groupings. However, while treatments

were different from the control, they did not differ from each other

in the 5-35 cm depths. There is an increase in MPv in the average

and high treatments compared to the low treatment at 45 cm, and

increases in MPv across all applications at 55 cm. A steady increase

in MPv at those depths is observed as the concentration of K

increases. Differences in VIC at the lower depths could be attributed

to soil water influence. Soil water has an influence and positive

correlation on the electrical conductivity (EC) of soils (Mojid et al.,

2007). In a study conducted by Brevik et al. (2006), to understand
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the effect of soil water content changes on soil EC, it was shown that

the electrical conductivity was greatly influenced by soil water.

3.1.2 Time of maximum point occurrence
After evaluating the MPt, it was evident that, among the three

tested nutrients, only K exhibited significant differences. When

comparing MPt at each depth within individual application rates,

an increase in MPt was observed in direct correlation with each

increasing application rate. Figure 6 shows that each application rate

at each depth showed an increase in MPt compared to the control

application. While every application yielded higher MPt than the

control, the greatest application of K did not always result in the

greatest MPt reached. In Figure 6, at the 15 cm depth, the highest K

application yielded a slightly lower MPt than the average application.

Table 3 shows that the difference between these values are statistically

similar. The 5, 25, and 35 cm depths display a steady increase in MPt

consistent with the increase in K application applied.

Table 3 shows that, from 15 cm though 45 cm depth, each K

application yields a significantly higher MPt than the control.

However, the increase in MPt at 5 cm depth is only significant

for the high application rate if compared to the control.

Furthermore, at 15 cm, the high and average application MPts are

higher than the low application, showing the sensor ability to

differentiate between application rates.

In this study, the sensor VIC changes are used as an indication of

their sensitiveness to K presence and movement in the soil. As the VIC

sensor readings are potentially impacted by soil water, it is possible that

the presence of any nutrient increasing electrical conductivity has the

potential to delay the MPt. This delay of the MPt could potentially be a

method of K detection in soil media. These results are in accordance to

the findings of Thompson et al. (2007), where it was shown that ,in a

sand column experiment, the soil water content increases

approximately 2-5% with 1 dS/m increase in the EC. Peddinti et al.

(2020) used KCl to examine salinity effect on capacitance based sensor

volumetric water content readings and observed similar results where

the sensor’s sensitiveness to measuring volumetric water content is

affected by soil solution salinity.

Table 4 shows that K generally remained in the top 30 cm of the

soil core. These laboratory results were in agreement with the results
TABLE 2 ANOVA maximum point value means for N, P, and K treatments at each sensor depth (5-55 cm).

Variable/Sensor Depth Nitrogen (Kg/ha) Phosphorus (Kg/ha) Potassium (Kg/ha)

Rate 0 112 168 224 0 3.76 37.6 0 1.02 1.53 2.04

5 921 a* 935 a 919 a 906 a 993 a 952 a 989 a 916 b 2699 a 2622 a 2898 a

15 876 a 896 a 767 a 864 a 886 a 874 a 916 a 908 b 2402 a 2808 a 2303 a

25 920 a 934 a 943 a 922 a 906 a 773 a 809 a 894 b 2172 a 2256 a 2437 a

35 960 a 983 a 963 a 924 a 781 a 743 a 754 a 945 b 1922 a 2141 a 2079 a

45 953 a 841 a 873 a 951 a 778 a 877 a 982 a 921 c 1580 a 1856 b 2020 b

55 1045 a 976 a 915 a 828 a 816 a 756 a 661 a 1079a 1232a 1316ab 1588 b
frontie
* Within each depth of the experiment, the means followed by the same letter are not significantly different among the treatments rates (p<0.05).
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obtained for MPt (Table 3), as the two depths with distinction between

treatments are at 5 and 15 cm sensor depth, below the 30 cm mark. It

was observed that there was a stronger difference in MPt at the 15 cm

sensor than the 5 cm sensor, which could be attributed to K settling in

that layer. The passage of K and the settling of residual K could have

provided greater signal delay at 15 cm than at 5 cm. This phenomenon

is observed for all K application rates. After 25 cm, each treatment’s

MPt occurred at or very near the end of the 24 hours’ period. As there

was only one water application for each repetition, this delay is likely

the combined impact of water and K not reaching the depth until much

later, as well as the possible overshadowing of the soil water signal over

the lower application rates of K at those depths.

Comparing the K results with those from N, there was not a MPt

delay. This response could be attributed to the high mobility of N in

water causing lesser accumulation of it at one depth, which therefore
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resulted in no impact on the MPt. NH4
+ is highly soluble in water and

do not easily bind with the soil particles moving quickly through the

core. According to Casey et al. (2002) the mobility and availability of

N is increased with an increase in soil moisture. The low cation

exchange capacity (CEC) of the pure sand media used in this study

might have enhanced N mobility, particularly in the NH4
+ form

(Matschonat and Vogt, 1996; Bigelow et al., 2001; Phillips, 2002).
3.2 Inflection point

3.2.1 Inflection point value
Similar to MPv andMPt, significant differences in IPv were only

present in the K experiment. When comparing IPv at each sensor

depth within application rates, an increase was observed in direct

correlation with each application (Figure 7). As is observed in

Figure 7, each application at depths 5 and 15 yielded a higher IPv

than the control application, in the general form of an upward

trend. However, 5 and 15 cm were the only depths in the

experiment that yielded an IPv across each application rate. The

25 and 35 cm depths showed an increase in IPv in the low

application, but no IPv occurred at the average or high

application. The 45 and 55 cm depths only yielded an IPv within

the control.

While Figure 7 exhibited general increasing trends in IPv across

all applications at both the 5 and 15 cm depths, Table 5 shows that

the 5 cm depth was the only depth at which IPv increased at a

significant rate as K application rate increased. At the 5 cm depth,

each application rate was different from each other in addition to

the control and display the ability for IPv to distinguish between

application rates of K applied. The absence of IPv below the 15 cm

depth could be attributed to the nature of the experimental design

in our study, where a single water/nutrient application was

performed per repetition. Although results were not significant

for N, and P application rates and depths, IPv were observed up to

the 35 cm depth for N, and across all depths for P. Future

experiments should consider longer repetitions and more

frequent watering to identify the sensitivity of sensors below 30

cm depth to nutrient availability.

3.2.2 Time of inflection point occurrence
When comparing IPt at each depth within individual K

application rates, there is a direct correlation between the

increase in IPt and each application rate at depths 5 and 15 cm

(Figure 8). At the 5 cm depth, IPt increases directly with the

increased rate of K applications. At the 15 cm depth, there is an

overall increase at application rate increases, with a slight decrease

at the highest application rate. IPts only occur at the lowest

application rates for 25 and 35 cm depths, and only occur

within the control application at the 45 and 55 cm depths.

Table 6 shows that only the SMS at the 5 cm depth shows

significant increases in IPt across the K application rates.

Similarly, each application rate had a higher IPt compared to

the control and was significantly different from each other. This

indicates IPt’s potential to detect differences in K concentration

within the soil at the 5 cm depth after 24 hours post-application.
FIGURE 6

Maximum Point Time (MPt) averaged from each repetition in relation
to the K (KCl) rate (0, 1.02, 1.52, and 2.04 kg/ha) at each sensor
depth (5-55 cm).
FIGURE 5

Maximum Point Values (MPv) averaged per repetition in relation to
the K (KCl) rate (0, 1.02, 1.52, and 2.04 kg/ha) at each sensor depth
(5-55 cm).
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3.3 Convergence value

Table 7 shows no significant differences in the N and P

experiments, while K yielded results indicating its detection

through CV analysis. When comparing CVs across applications at
Frontiers in Agronomy 08
each depth, there is a strong observable increase in CV as the

K application rate increases within the 5 to 35 cm range

(Figure 9). Unlike the MP and IP analysis, in each of the

instances the increased application rate yielded an increased

mean value CV down to the 35 cm depth. At the 45 and 55 cm
TABLE 4 ANOVA results from N, P, and K laboratory samples mean at various depths and rates.

Treatment Depth N (total N %) P (lb/A) K (mmhos/cm)

Control

5 0.050 a bdl b 0.029 e

15 0.050 a bdl b 0.029 e

25 0.083 a bdl b 0.032 de

35 0.073 a bdl b 0.026 e

45 0.077 a bdl b 0.029 e

55 0.060 a bdl b 0.033 cde

Low

5 0.070 a bdl b 0.092 abcde

15 0.067 a bdl b 0.086 abcde

25 0.070 a bdl b 0.088 abcde

35 0.067 a bdl b 0.080 abcde

45 0.080 a bdl b 0.098 abcde

55 0.087 a bdl b 0.055 bcde

Average

5 0.087 a 0.138 ab

15 0.050 a 0.159 a

25 0.087 a 0.155 ab

35 0.103 a 0.101 abcde

45 0.080 a 0.134 abc

55 0.073 a 0.086 abcde

High

5 0.053 a 4.6 a 0.131 abcd

15 0.077 a 3.0 a 0.139 ab

25 0.093 a 0.4 b 0.163 a

35 0.063 a 0.2 b 0.092 abcde

45 0.080 a bdl b 0.125 abcde

55 0.070 a bdl b 0.107 abcde
fron
* Within each nutrient, the means followed by the same letter are not significantly different (p<0.05). bdl represents undetectable concentrations.
TABLE 3 ANOVA Maximum Point Time (MPt) means for N, P, and K treatments at each sensor depth (5-55 cm).

Variable/
Sensor depth

Nitrogen (Kg/ha) Phosphorus (Kg/ha) Potassium (Kg/ha)

Rate 0 112 168 224 0 3.76 37.6 0 1.02 1.53 2.04

5 2.7 a* 2.3 a 2.3 a 3.7 a 5.6 a 4.4 a 2.8 a 3.7 a 8.7 a 13.3 a 28.3 b

15 4.0 a 6.3 a 6.3 a 2.3 a 11.8 a 15 a 13.4 a 6.3 b 27.3 ab 40.7 a 39.3 a

25 11.7 a 4.0 a 3.0 a 4.0 a 18.4 a 14.8 a 4 a 9.7 b 39.3 a 43.3 a 49.0 a

35 5.0 a 10.3 a 17.3 a 11.0 a 16.6 a 19.4 a 24.8 a 4.3 b 44.3 a 48.3 a 49.0 a

45 23.3 a 48.7 a 29.3 a 29.7 a 11.2 a 30 a 41.2 a 20.0 b 49.0 a 49.0 a 49.0 a

55 47.7 a 32.7 a 49.0 a 40.3 a 36.8 a 29.8 a 19.4 a 41.0 a 49.0 a 49.0 a 42.7 a
tie
* Within each depth of the experiment, the means followed by the same letter are not significantly different among the treatments (p<0.05).
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depths, the CV maintains high both at the control and each K

application treatment.

From the surface down to 35 cm, the statistical comparison of CV

between treatments showed that the SMP successfully distinguished

each treatment from the control (Table 7). CVs did not distinguish

between treatments however, and were only capable of detecting the

presence or absence of K. The laboratory results are consistent with

the CV findings were it was confirmed the presence of K from the soil

surface down to 35 cm. A slight contrast found in the laboratory

result was the identification that K was present down to the 40-50 cm

depths, while difference in CV were not found across treatments at

that level. Although there were not differences below the 35 cm depth,

a pooling effect may have occurred due to the movement of water to

the lower layers of the core. This might have influenced the VIC

signals due to the presence of K in the solution.

3.4 Soil nutrient laboratory results

Table 4 suggests no significant difference in N rate throughout

each sensor depth and each treatment, ranging from 0.05 – 0.103%
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TN. Laboratory analysis confirmed undetectable P concentrations

for the control and low treatments. In the high treatment, P mostly

remained in the top 20 cm of the soil core, with a smaller amount

descending up to the 40 cm depth. K analysis suggests this nutrient

was mobile, up to the 60 cm depth for the average and high

treatments. Despite its mobility, mean values suggest the highest

concentrations of K were mostly found at 20 and 30 cm depth for

average and high treatments, respectively. The treatment and the

SMS depth interaction results indicated significance for P (p-value =

1.12E-11), whereas the N (p-value = 0.883) and K (p-value = 0.778)

displayed no significant interaction effects.

4 Discussion

4.1 VIC sensor values as indicators of
nutrient presence in the soil profile

K’s presence in the soil and nutrient location can be determined

by assessing MP, IP, and CV values from SMS readings. MPv was

particularly successful at differentiating between the control and

each application rate. In the topsoil layers, regardless of the

application rate applied, MPv showed higher values than the

control. IP was the most successful at distinguishing between

application rates. Each application rate at the 5 cm mark had an

increasing IPv and IPt as application rate increased. CV gave the

strongest indication of whether K was present in the cores. While

this method could not differentiate between application rates, CVs

clearly increased in the presence of K at each rate. Related studies

evaluating sensing conductance methods have found that sensor

readings can be an indirect method to assess major nutrients in the

soil (Eigenberg et al., 2002; Korsaeth, 2005).

MP measurements could be a good indicator for the

development of real-time precision nutrient management

systems. As more studies on conductance-based sensor

development are produced (Basterrechea et al., 2020; Rocher

et al., 2020), more information would be available for the

development of robust decision-support systems related to the

potential nature, concentration, or location of K within a field,

after in-field sensor calibration is completed. Progress in the

incorporation of in-field sensors for the indirect assessment of
FIGURE 7

Inflection Point value (IPv) averaged per repetition in relation to the
K (KCl) rate (0, 1.02, 1.52, and 2.04 kg/ha) at each sensor depth (5-
55 cm).
TABLE 5 ANOVA inflection point value means for N, P, and K treatments at each sensor depth (5-55 cm).

Variable/Sensor Depth Nitrogen (Kg/ha) Phosphorus (Kg/ha) Potassium (Kg/ha)

Rate 0 112 168 224 0 3.76 37.6 0 1.02 1.53 2.04

5 0.22 a* 0.22 a 0.31 a 0.26 a 0.43 a 0.57 a 0.44 a 0.22 c 0.63 a 0.76 ab 0.91 b

15 0.55 a 0.54 a 0.48 a 0.57 a 0.64 a 0.87 a 0.76 a 0.55 a 0.86 a 1.00 a 0.96 a

25 0.82 a 0.54 a 0.85 a 0.73 a 0.82 a 0.81 a 0.73 a 0.54 0.92

35 0.90 a 0.86 a 0.86 a 0.91 a 0.83 a 0.78 a 0.84 a 0.82 0.98

45 0.97 0.94 0.99 0.78 a 0.79 a 0.93 a 0.96

55 0.99 0.27 0.98 1.00 a 0.44 a 0.55 a 1.00
frontie
* Within each depth of the experiment, the means followed by the same letter are not significantly different among the treatments (p<0.05).
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nutrients through fertigation are underway (Avs ̧ar and Mowla,

2022) and under development. This, along with the findings from

this study, can contribute to a more practical and data-based in-

field nutrient management.

While IP does not provide immediate results and is dependent

on the CV, IP showed the best ability to distinguish between
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application rates and correlate them to K rates within the soil.

MP from in-field SMPs and SMSs could be used as a real-time water

saving parameter for nutrient management as this data is available,

but underutilized. An increased or delayed MP during a fertigation

event, when nutrients are applied through irrigation, would be an

indicator of potentially increased K within the soil. This could

determine how far down into the soil the K is moving and provide

information to prevent nutrient leaching and environmental

pollution in freshwater systems (Pathan et al., 2007). After such

irrigation event occurs, as the soil begins to dry and IP and CV

points are identified, IP could be used to quantify the concentration

of K in the soil that may have been or was a risk of leaching, and CV

used to finalize the resting place of the K after the event. This

information would be useful in both identifying the movement of K

in the soils during an irrigation event, as well as identifying the final

location of K after the event. Furthermore, the nutrients in this

experiment were studied separately but understanding the

interactions between the nutrients, soil types and their combined

effect of VIC is dynamic and should be studied to provide precise

real time information to the end users.

The N and P control treatments at 55 cm have higher MPv,

MPt, IPv, and IPt (Tables 2, 3, 5, 6) than the other treatments,

potentially indicating an effect of the fertilizer presence on the

moisture movement or a water cumulation effect. This scenario was

not observed in K due to its high solubility nature compared to N

and P and using pure sand as a medium, allowing more rapid

nutrient movement (Table 4). The soil medium can influence
FIGURE 8

Inflection Point Time (IPts) averaged per repetition in relation to the
K (KCl) rate (0, 1.02, 1.52, and 2.04 kg/ha) at each sensor depth (5-
55 cm).
TABLE 6 ANOVA inflection point time means for N, P, and K treatments at each sensor depth (5-55 cm).

Variable/Sensor Depth Nitrogen (Kg/ha) Phosphorus (Kg/ha) Potassium (Kg/ha)

Rate 0 112 168 224 0 3.76 37.6 0 1.02 1.53 2.04

5 21.7 a* 27.0 a 22.3 a 24.0 a 23.7 a 24.3 a 22.5 a 24.0 a 27.3 a 30.3 ab 39.7 b

15 28.0 a 29.7 a 27.7 a 21.7 a 25.8 a 31.3 a 33.0 a 27.7 a 36.7 a 44.5 a 43.0 a

25 30.3 a 29.0 a 25.0 a 25.7 a 25.2 a 27.2 a 24.0 a 37.3 41.5

35 27.0 a 30.7 a 27.3 a 26.0 a 31.0 a 27.2 a 29.0 a 18.7 48.0

45 38.0 36.5 35.5 24.3 a 37.2 a 47.3 a 28.7

55 49.0 22.0 49.0 40.0 a 31.5 a 18.3 a 43.5
frontie
* Within each depth of the experiment, the means followed by the same letter are not significantly different among the treatments (p<0.05).
TABLE 7 ANOVA convergence value means for N, P, and K treatments at each sensor depth (5-55 cm).

Variable/Sensor Depth Nitrogen (Kg/ha) Phosphorus (Kg/ha) Potassium (Kg/ha)

Rate 0 112 168 224 0 3.76 37.6 0 1.02 1.53 2.04

5 0.05 a* 0.08 a 0.17 a 0.08 a 0.22 a 0.43 a 0.24 a 0.00 b 0.55 a 0.64 a 0.85 a

15 0.38 a 0.34 a 0.23 a 0.25 a 0.52 a 0.73 a 0.61 a 0.20 b 0.84 a 0.97 a 0.97 a

25 0.63 a 0.41 a 0.69 a 0.55 a 0.76 a 0.73 a 0.67 a 0.33 b 0.90 a 0.99 a 1.00 a

35 0.81 a 0.80 a 0.78 a 0.82 a 0.83 a 0.75 a 0.80 a 0.74 b 0.99 a 1.00 a 1.00 a

45 0.94 a 0.96 a 0.90 a 0.98 a 0.78 a 0.79 a 0.94 a 0.95 a 1.00 a 1.00 a 1.00 a

55 0.97 a 0.67 a 0.99 a 0.64 a 0.85 a 0.80 a 0.71 a 0.99 a 1.00 a 1.00 a 0.95 a
* Within each depth of the experiment, the means followed by the same letter are not significantly different among the treatments (p<0.05).
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sensor conductivity. Generally, the impacts of soil-water osmotic

potential alterations are not considered for soil-water movement

unless the solutes are in substantial amounts (Or andWraith, 2002).

However, in this study, this might have influenced the SMS

readings. Masrie et al. (2017) developed and tested an optical

transducer sensor for the detection of N, P, and K in soil, and

found that soil characteristics in the presence of nutrients influence

the frequency wavelength for sensor detection. This study suggest

that SMSs require voltage thresholds that variates based on the

nutrient assessed. Laboratory results confirmed that P was primarily

present in the top 20 cm of the cores, yet despite statistical analysis

comparing MPv, MPt, IPv, IPt, and CVs no significant differences

were observed.

Our results-keeping in mind this study only tested one form of

each element in a pure sand soil type-suggest that the SMP

primarily detects K ions from the fertilizers applied and can be

used as part of currently available irrigation scheduling decision

support systems (DSS). Several methods of combining irrigation

sensing technology with soil moisture prediction models (Kashyap

and Kumar, 2021) and DSSs (Rinaldi and He, 2014) are available.

Any variation in the MP, IP, or CV could indicate potential K

presence in the soil. However, this signal variation could also

originate from other ions in the soil with a sufficiently strong

osmotic potential. Although the interactions between N, P, and K

when combined has yet to be explored, such interactions could

potentially enhance their VIC signals.
5 Conclusion

This study demonstrated that the SMPs’ VIC readings have the

ability to detect K within the soil profile and provide an indication

of its rate and location. The statistical analysis fromMP, IP, and CV

from 24-hour VIC readings has proven to be an effective method for
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K detection. While our study did not yield significant results for N

and P, mean value comparison hints at the potential for detection,

possibly through other indirect methods, or different forms of N

and P that yield strong VIC in soil. The results from this study can

serve as a foundation for implementing fertigation management

programs, focusing on water and K movement in the soil, and

indirectly managing N and P by maintaining water within

the effective root zone depth for crops. Future work should

investigate temperature differences related to in-field seasonal

patterns. Utilizing IP as a way of differentiating nutrient

concentrations showed great promise at the 10 cm depth. Overall,

integrating nutrient management strategies into existing

agricultural technologies, such as the SMPs investigated in

this study, is crucial to accelerating the adoption of precision

agriculture technology in practical applications within the

agricultural industry.
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FIGURE 9

Convergence values (CVs) averaged per repetition in relation to the
K (KCl) rate (0, 1.02, 1.52, and 2.04 kg/ha) at each sensor depth (5-
55 cm). A direct correlation between CVs and application rate of KCl
applied is observable.
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Pérez-Martıń, M., and Benedito-Castillo, S. (2023). Fertigation to recover nitrate-
polluted aquifer and improve a long time eutrophicated lake, Spain. Sci. Total Environ.
894, 165020. doi: 10.1016/j.scitotenv.2023.165020

Phillips, I. R. (2002). Nutrient leaching losses from undisturbed soil cores following
applications of piggery wastewater. Aust. J. Soil Res. 40 (3), 515–532. doi: 10.1071/
SR01058

Phlips, E. J., Badylak, S., Nelson, N. G., Hall, L. M., Jacoby, C. A., Lasi, M. A., et al.
(2021). Cyclical patterns and a regime shift in the character of phytoplankton blooms in
a restricted sub-tropical lagoon, Indian river lagoon, Florida, United States. Front. Mar.
Sci. 8. doi: 10.3389/fmars.2021.730934

Rinaldi, M., and He, Z. (2014). Decision support systems to manage irrigation in
agriculture. Adv. Agron. 123, 229–279. doi: 10.1016/B978-0-12-420225-2.00006-6

Rocher, J., Basterrechea, D. A., Parra, L., and Lloret, J. (2020). “A new conductivity
sensor for monitoring the fertigation in smart irrigation systems,” in Ambient
Intelligence – Software and Applications –,10th International Symposium on Ambient
Intelligence. Eds. P. Novais, J. Lloret, P. Chamoso, D. Carneiro, E. Navarro and S.
Omatu (Cham, Switzerland: Springer International Publishing), 136–144. doi: 10.1007/
978-3-030-24097-4_17
frontiersin.org

http://www.sentek.com.au
http://www.sentek.com.au
http://www.sentek.com.au
http://www.sentek.com.au
https://doi.org/10.1016/j.adhoc.2022.102982
https://doi.org/10.3390/app10207222
https://doi.org/10.3390/app10207222
https://doi.org/10.13189/ujar.2019.070502
https://doi.org/10.21273/JASHS.126.1.151
https://doi.org/10.1007/s11119-018-9589-y
https://doi.org/10.1007/s11119-006-9021-x
https://doi.org/10.1149/1945-7111/ab6f5d
https://doi.org/10.2134/jeq2016.09.0373
https://doi.org/10.1590/1807-1929/agriambi.v21n5p310-316
https://doi.org/10.1590/1807-1929/agriambi.v21n5p310-316
https://doi.org/10.2113/1.2.300
https://doi.org/10.1177/00202940221122177
https://doi.org/10.3390/su8040304
https://doi.org/10.1038/s41598-020-59650-8
https://doi.org/10.1016/S0167-8809(01)00256-0
https://doi.org/10.1016/S0167-8809(01)00256-0
https://doi.org/10.1016/j.compag.2004.11.001
https://doi.org/10.1016/j.compag.2004.11.001
https://doi.org/10.1016/j.ccst.2021.100011
https://doi.org/10.32473/edis-ae574-2022
https://edis.ifas.ufl.edu/publication/CV235
https://doi.org/10.1080/01431161.2017.1410300
https://doi.org/10.1080/00380768.2020.1738899
https://doi.org/10.1080/00380768.2020.1738899
https://doi.org/10.1109/ACCESS.2021.3052478
https://doi.org/10.1109/ACCESS.2021.3052478
https://doi.org/10.18637/jss.v058.i03
https://doi.org/10.1007/s10705-005-1668-6
https://doi.org/10.5194/essd-9-181-2017
https://doi.org/10.1109/ICSIMA.2017.8312001
https://doi.org/10.1007/BF00011432
https://doi.org/10.13031/aim.201700892
https://doi.org/10.1111/j.1365-2389.2006.00831.x
https://doi.org/10.21273/HORTTECH.20.1.19
https://doi.org/10.1097/01.ss.0000199698.94203.a4
https://doi.org/10.1071/EA05189
https://doi.org/10.3390/s20247041
https://doi.org/10.1016/j.scitotenv.2023.165020
https://doi.org/10.1071/SR01058
https://doi.org/10.1071/SR01058
https://doi.org/10.3389/fmars.2021.730934
https://doi.org/10.1016/B978-0-12-420225-2.00006-6
https://doi.org/10.1007/978-3-030-24097-4_17
https://doi.org/10.1007/978-3-030-24097-4_17
https://doi.org/10.3389/fagro.2024.1346946
https://www.frontiersin.org/journals/agronomy
https://www.frontiersin.org


Stroobosscher et al. 10.3389/fagro.2024.1346946
Schelter, B., Winterhalder, M., and Timmer, J. (2006). in Handbook of time series
analysis: Recent theoretical developments and applications (Freiburg, Germany:
Weinheim: Wiley-VCH), 31–41.

Sishodia, R. P., Ray, R. L., and Singh, S. K. (2020). Applications of remote sensing in
precision agriculture: A review. Remote Sens. 12 (19), 1–31. doi: 10.3390/rs12193136

Taghvaeian, S., Andales, A. A., Allen, L. N., Kisekka, I., O’Shaughnessy, S. A., Porter,
D. O., et al. (2020). “Irrigation scheduling for agriculture in the United States: The
progress made and the path forward,” in Transactions of the ASABE, vol. 63. (St. Joseph,
Michigan: American Society of Agricultural and Biological Engineers), 1603–1618.
doi: 10.13031/TRANS.14110

Thien, S. J., andMyers, R. (1992). Determination of bioavailable phosphorus in soil. Soil
Sci. Soc. America J. 56 (3), 814–818. doi: 10.2136/sssaj1992.03615995005600030023x

Thompson, R. B., Gallardo, M., Fernández, M. D., Valdez, L. C., and Martıńez-
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