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quantitative weather forecasts
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Ieyasu Tokumoto3 and Tadaomi Saito4

1Sustainable Natural Resources Management Section, International Center for Biosaline Agriculture
(ICBA), Dubai, United Arab Emirates, 2Division of Dryland Agriculture, Arid Land Research Center,
Tottori University, Tottori, Japan, 3Department of Environmental Science, Graduate School of
Agriculture, Saga University, Saga, Japan, 4Department of Agricultural, Life and Environmental
Sciences, Faculty of Agriculture, Tottori University, Tottori, Japan
Numerical models of crop response to irrigation and weather forecasts with internet

access should be fully utilized in modern irrigation management. In this respect, we

developed a new numerical scheme to optimize irrigation depth that maximizes net

income over each irrigation interval. The scheme applies volumetric water prices to

inspire farmers to save water, and it provides growers with real-time estimates of

irrigation depth and net income over the growing season. To evaluate this scheme,

we carried out a field experiment for groundnut (Arachis hypogaea L.) grown in a

sandy field of the Arid Land Research Center (ALRC), Tottori University, Japan. Two

treatments were established to compare the net income of the proposed scheme

with that of an automated irrigation system. Results showed that although the

proposed scheme gave a larger amount of seasonal irrigation water 28%, it achieved

2.18 times of net income owing to 51% higher yield compared to results of the

automated irrigation system. The accuracy of rainfall forecast had little effect on the

scheme outputs, where the root mean square error (RMSE) between observed and

forecasted rainfall was 4.63 mm. By utilizing numerical simulation information of the

soil–plant–atmosphere system into the proposed scheme, it would be amore cost-

effective tool for optimizing irrigation depths than automated irrigation systems.
KEYWORDS

automated irrigation, soil water content, drought, transpiration, net income,
numerical simulation
1 Introduction

Irrigation is a vital factor for agriculture in both arid and semi-arid regions. Even in the

humid and sub-humid regions, it is essential for rain-fed crops during drought periods

when rainfall fails to provide sufficient moisture for stabilized crop production (Debaeke

and Aboudrare, 2004). Approximately 70% of global water resources are used for irrigation
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(WWAP (World Water Assessment Programme), 2012). By 2050,

the global population is forecasted to reach 9 billion (United

Nations, 2012); therefore, the world needs to produce at least 50%

more food (World Bank, 2017). This makes irrigation a significant

issue in future decades to meet the global demand for food,

especially in nations with scarce water resources.

To manage irrigation more efficiently, both frequency and

amount of watering must be properly determined. Farmers may

schedule irrigation water more efficiently by using computer

simulation models and innovative electronics technology.

Mbabazi et al. (2017) used an average of the previous 5-day crop

evapotranspiration to develop an irrigation scheduling using smart

irrigation avocado app. Yet, irrigation scheduling is more efficiently

accomplished in terms of enhancing water use efficiency if advanced

technologies of soil water sensors are used (Schattman et al., 2023).

Consequently, automated irrigation systems with sensors can be

used to meet crop water needs more precisely (Cancela et al., 2015;

Osroosh et al., 2015). Liang et al. (2016) used data of soil water

tension from wireless soil moisture sensors and the van Genuchten

model (Van Genuchten, 1980) to schedule irrigation water.

Stirzaker et al. (2017) used electronic detectors to detect the

wetting front of infiltrated irrigation water through the soil profile

to close a solenoid valve at a certain value to manage irrigation

water. Those technologies, however, require high initial investment;

therefore, the development of low-cost technology will motivate

farmers to save irrigation water. For example, numerical simulation

of water flow and crop growth can be utilized as a substitute for

sensing drought stress.

Linking weather forecasts with irrigation scheduling may

improve irrigation water management since the availability of

quantitative weather forecasts of acceptable accuracy with internet

access. Lorite et al. (2015) used free accessible online weather

forecasts to determine irrigation scheduling based on daily and

weekly reference evapotranspiration. Delgoda et al. (2015) validated

their framework, which aimed to minimize both irrigation depth

and soil moisture deficit under limited water conditions using

weather forecasts and AquaCrop model (Steduto et al., 2009).

Integration of weather forecasts and a multi-objective function

was used to determine the optimal yield–irrigation combinations

(Linker and Sylaios, 2016), which was based on the total yield and

irrigation at the end of season. Wang and Cai (2009) used a genetic

algorithm (GA) to schedule irrigation water assuming perfect

weather forecasts for either non-overlapping 2 weeks or the entire

growing season.

Irrigation scheduling is generally targeted to improve water use

efficiency; however, it is worth considering net income as well.

Concerning the economic benefits in relation to irrigation water,

Yang et al. (2017) used four multiple objective functions to

maximize the economic benefits per unit cubic meter of irrigation

water supply. Those functions, however, were based on uncertain

data of crop evapotranspiration, which would be a major constraint

of that model. Moreover, Wang and Cai (2009) developed an

optimization framework combined the SWAP model (van Dam

et al., 1997) and the GA to search for both irrigation dates and

depths that maximize entirely season profits.
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It is worth setting a price on water to motivate farmers to save

irrigation water (Bozorg-Haddad et al., 2016). This can be made

even more effective by incorporating quantitative weather forecasts.

Accordingly, Wang and Cai (2009) and Jamal et al. (2019)

determined daily irrigation depth by combining seasonal weather

forecasts with volumetric water pricing, with an objective to

maximize seasonal net income. This may result in significant

inaccuracies if predicted decisions do not match those acquired

with actual weather. To mitigate uncertainty of weather forecasts

and real-time net profit over irrigation interval, Fujimaki et al.

(2014) developed an optimization scheme to determine irrigation

depths that maximize net income at each irrigation interval

considering the volumetric water pricing and short-term weather

forecasts. This scheme was incorporated into a two-dimensional

model of water, solute, and heat movement in soils (WASH_2D,

Fujimaki et al. (2014)). They evaluated their scheme by carrying out

two preliminary field experiments at two different locations under

various weather, soil, and crop conditions. However, results of those

experiments were not sufficient to validate such a scheme.

Therefore, several studies have been conducted to validate the

proposed scheme using the preliminary results of earlier

experiments, including the data provided in this study. These

results could aid in enhancing the accuracy of the proposed

optimized scheme. For example, the two functions describing the

dynamic development of basal crop coefficient and normalized root

length density distribution in terms of cumulative transpiration

were modified, which could enhance the performance of the

proposed scheme (Abd El Baki et al., 2020). The scheme also

showed a good performance in terms of water savings and

boosting farmers' net income when employed or compared with

other methods such as sensor-based irrigation (Abd El Baki and

Fujimaki, 2021) and both refilling (returning soil moisture content

to field capacity) and simplified versions of the proposed scheme

(Abd El Baki et al., 2023). Further advantages of the optimized

scheme in terms of supplemental irrigation management and N

uptake efficiency were reported by Abd El Baki et al. (2018) and

Liang et al. (2022). All of these reviewed studies regarding the

optimized scheme in addition to other research studies (Fujimaki

et al., 2020, 2022) were performed using the WASH 2D model. The

proposed scheme, which aims to determine the irrigation depth that

maximizes net income of each irrigation interval, was developed for

smallholder farmers, but it can potentially be applied on a larger

scale if it is coupled with smart solenoid valves equipped with a

wireless communication system. By acquiring cumulative

transpiration, which is predicted by numerical modeling utilizing

crop characteristics and weather forecast information, farmers may

maximize their net income at each irrigation event. Further research

with various crops and weather circumstances is needed to validate

the scheme. This paper, however, is one of the initial steps to

improve the performance of the scheme. Therefore, the major

objective was to evaluate the feasibility of the optimization scheme

to determine irrigation depth that maximizes net income using a

major crop, groundnut. The specific goal was to replace capital-

intensive automated irrigation methods with a low-cost scheme

based on freely available weather data and numerical simulation.
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2 Materials and methods

2.1 The process model

Unlike the commercial software, we employed a two-

dimensional physically based model, WASH_2D, which is freely

available on the website of the ALRC, Tottori University. This

software simulates water, solute, and heat movement in soils with

the finite difference method. It includes a module for simulating

root water uptake and crop growth. Further details about the model

were given by Fujimaki et al. (2014).
2.2 Numerical scheme

2.2.1 Maximization of net income
Net income, In($ ha−1), was calculated in proportion to the

increment in dry matter attained during the irrigation interval as

follows:

In = Pcetiki − PwW − Cot (1)

where Pc is the producer's price of crop ($ kg−1 DM); e is

transpiration efficiency of the crop [produced dry matter (kg ha−1)

divided by cumulative transpiration (kg ha−1)], ti is cumulative

transpiration rate during each irrigation interval, i (kg ha−1); ki is

the income correction factor, which was considered to avoid

possible underestimation for the contribution of initial

transpiration to the entire quantum of growth as transpiration in

the initial growth stage is smaller than that in later stages (Abd El

Baki et al., 2023); Pw is the price of water ($ kg−1);W is the irrigation

depth (mm, where 1 mm equals 10,000 kg ha−1); and Cot is other

costs ($ ha−1).

In order to maximize the In at each irrigation interval, we used

the optimization problem presented in Equation 2:

max
Wi

Pcetiki − PwWi − Cot

Subject to

ti = WASH   2D   (Wi,  wf ,  wa,  Cprop)

0 ≤ Wi <  Wmax (2)

where wf is weather forecasts, wa is actual weather conditions,

Cprop is crop properties, and Wmax is upper boundary of irrigation

depth. The ti was calculated by the sum of the transpiration rate, Tr

(cm h−1), over time, which was calculated by integrating the water

uptake rate, S, over the root zone:

ti =
Z k

j=1
Tr 

where  Tr  ¼  L�1
x

Z Lx

0

Z Lz

0
Sdxdz; (3)

where j is the start hour of an irrigation interval, k is total hours

of an irrigation interval, and Lx and Lz are width and depth of root
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zone. A macroscopic root water uptake model (Feddes and Raats,

2014) was used to predict the water uptake rate, S (cm h─1):

S  ¼ Tpawb (4)

where Tp, aw, and b are the potential transpiration (cm h─1),

Feddes reduction factor, and active root length density, respectively.

The Tp was computed using the approach proposed by Allen et al.

(1998) as follows:

Tp = ET0kcb, (5)

where ET0 is reference evapotranspiration (cm h─1), calculated

by the Penman–Monteith (PM) equation (Allen et al., 1998), and

kcb is the basal crop coefficient, which was expressed as a function of

transpiration as it is largely affected by growth stage (Equation 5):

kcb  ¼  akcb ½1 – exp(bkcbt)� þ  ckcb , (6)

where akcb , bkcb , and ckcb are fitting parameters. This function

was updated in a recent publication (Abd El Baki et al., 2023) to

consider the decline of kcb in the late growth stage. The estimated

value of those parameters depends on each growth stage of the

plant. Fujimaki et al. (2014) suggested their values by measuring

cumulative transpiration rate via a weighing lysimeter. The aw was

described by the additive function as follows:

aw  ¼  
1

1 þ   ( y
y50

 þ   yo
yo50

)p
(7)

where y and yo are the matric and osmotic heads, respectively,

and y50, yo50, and p are adjusting coefficient (van Genuchten,

1987). The b was described as follows:

b  ¼  0:75(brt þ  1)drt(−brt−1) (drt – z þ zr0)
brtmrt(1 – x

2g−2rt ) (8)

where brt is an adjusting coefficient; drt and mrt are the depth

and width of the root zone (cm), respectively; x is the horizontal

distance; z is the soil depth; and zr0 is the depth below which roots

exist (cm). In general, the roots of cultivated plants start from

approximately 2.5 cm below the soil surface; therefore, we have

added a new parameter to make the model more realistic. The drt
was also expressed as a function of transpiration as follows:

drt  ¼  adrt½1 – exp(bdrtt)� þ  cdrt (9)

where adrt, bdrt, and cdrt are fitting parameters. By expressing

both Kc and drt as functions of cumulative transpiration as

independent variables instead of days after sowing, WASH_2D

may express plant growth more dynamically responding to drought

or salinity stresses.

2.2.2 Estimation of optimal irrigation depths
To minimize repetition of numerical prediction in non-linear

optimization, we used the following scheme proposed by Fujimaki

et al. (2014). First, it is assumed that the cumulative transpiration

rate at each irrigation interval may be empirically described as:

ti  ¼  
Z

Trdt  ¼  at½1 – exp(btW)� þ  t0 (10)
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where at and bt are fitting parameters and t0 is t atW = 0. Note

that even when W equals to zero, the plant can still uptake

remaining available water from the soil. Second, the W is

determined at the maximum In when the slope of the line tangent

of Equation 1 becomes zero. This can be attained by substituting

Equation 10 into Equation 1 and determining the first derivative

with respect to W as:

dIn
dW

= −Pcekiatbtexp(btW) − Pw = 0, (11)

By rearranging Equation 11, the optimal W is calculated as:

W¼   −
1
bt

ln (
Pw

Pcekiatbt
) (12)

Since W corresponds to a stationary positive point (Inmax)

where the In function (Equation 1) is neither increasing nor

decreasing, and the slope on the left side of Inmax is positive

[f 0(In) > 0] and negative on the right side [f 0(In) < 0], the stationary

point is considered as a maximum. In order to confirm whether

Inmax is a maximum, the second derivative is given as:

d2In
dW2 = −Pcekiatb

2
texp(btW) < 0, (13)

This indicates that the curve describing the relation between In
and W is concave down, and thus, Inmax represents the maximum

value. The hard constraints value of at and bt must be determined

by defining the minimum, intermediate, and maximum points of

the decision variables (Wmin,  tmin), (Wmid,  tmid), and (Wmax,  tmax),

respectively. The point (Wmin,  tmin) is known as (0, t0), whereas the
other two points (Wmid,  tmid) and (Wmax,  tmax) are defined using

Equation 10 as:

tmin  =   at½1 – exp(btWmin)� þ  t0, (14a)

tmax  =   at½1 – exp(btWmax)� þ  t0, (14b)

By subtracting Equations 13a, 13b, the at can be estimated as:

at  ¼  
tmax – tmid

exp(btWmid) – exp(btWmax)
(15)

Then, the value of bt can be easily searched using the bisection

numerical method.

tmax – tmid

exp(btWmid) – exp(btWmax)
 – 

tmax – t0
1 – exp(btWmax)

  ¼  0 (16)

The user has to input the value of Wmax, which is suggested to

be equal to the average value of the sum of potential transpiration

and reference ET over an irrigation interval. Finally, by predicting t
using numerical simulation at three irrigation depths, zero, the

upper limit, and an intermediate value, we can determine an

optimal value of irrigation depth that maximizes the net income.
2.3 Optimization procedure

The optimization procedure (Figure 1) consists of two major steps:

Step 1, update run, whichwas done in the earlymorning of each irrigation
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day. It uses records of irrigation, weather, and cumulative transpiration

since the last irrigation day to estimate the initial condition of soil

moisture status. Then, Step 2, optimization run, is implemented, which

was carried out using results of update run and weather forecast data

retrieved from the website of Yahoo! Japan (https://weather.yahoo.co.jp/

weather/jp/31/6910/31302.html Abd El Baki et al., 2023; accessed on 2

September 2017) to determine W for the next irrigation interval.

Meteorological data including solar radiation, air temperature,

relative humidity, wind speed, and rainfall were collected from a

weather station approximately 20 m away from the experimental

field as presented in Figure 2. This website provides all required

parameters except solar radiation but provides categorical estimates

of cloud cover. Therefore, we used an empirical relationship

between cloud cover and the ratio of extraterrestrial radiation to

solar radiation. The estimated values of solar radiation in terms of

the three classes of cloud cover were "clear" = 0.82, "cloudy" = 0.63,

and "rain" = 0.32.
2.4 Field experiment

A field experimentwas carried out in a sandyfield of theALRC, Tottori,

Japan in 2017 (latitude, 35° 32′ 8.88″N and longitude, 134° 12′ 40.3194″ E).
Two treatments were established: (1) treatment A, an automated irrigation

system based on a threshold value of soil water potential of 45 cm, and (2)

treatment S, the proposed scheme. Each treatment had two plots as

replicates. Each plot was 10 m long and 16 m wide.

The soil texture was sand, and its hydraulic properties are shown in

Figure 3. In treatment A, three tensiometers were installed at the depth

of 10 cm below three plants to automatically manage irrigation. In

treatment S, the determined W through the numerical simulation was

applied manually. In order to check the feasibility of the model in

simulating volumetric water content (VWC), two replicates consisting

of six TDR probes (TDR-SK10, Sankeirika Inc., Tokyo, Japan) were

connected to a time domain reflectometry system (TDR 100 by

Campbell Scientific, Ltd., Logan, UT 84321-1784, USA). Each

replicate was inserted in six observation points [(5, 0), (15, 0), (45,

0), (5, 15), (5, 45), and (15, 15)] represented in (z, x) format, where z

and x refer to soil depth and distance away drip tube, respectively.

Irrigation was applied through a drip irrigation systemwith emitters

spaced at 20 cm along laterals spaced at 90 cm. The discharge rate of

emitters was 1 L h─1, and corresponding irrigation intensity was

5.55 mm h−1. The distribution uniformity (DU) test was performed

by selecting a group of emitters randomly. DU was calculated by

dividing the average collected water volumes of the lowest quartile by

the overall average, which was approximately 90%. In treatment A, W

was applied for an hour when the average suction of three tensiometers

exceeded −45 cm. This value was set in respect to the value of y50

reported in Table 1. The value of W was determined at constant

intervals of 2 days in treatment S. We set the value of both transpiration

efficiency and water price as 0.004 according to Ratnakumar et al. (2009)

and 0.0003 ($ kg−1) according to Cornish et al. (2004), respectively.

A constant daily rate of liquid fertilizer (N = 12%, P2O5 = 5%, and K2O

= 7%) and calcium chloride were supplied with irrigation for the entire

growing season in which the total injected amounts were 8.56 gm−2 and

12.96 g m−2, respectively. When there was no irrigation owing to a rain
frontiersin.org
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forecast, the fertilizer amount was calculated as the number of off days

multiplied by a fixed daily rate. Groundnut (Arachis hypogaea L.) was

selected as an important legume crop cultivated globally as a source of

protein and edible oil. It was planted in rows (laterals) at 20 cm spacing

on 9 May. We independently determined parameter values of the stress

response function for groundnut as listed in Table 1 using method

described by Yanagawa and Fujimaki (2013).

Parameter values of the crop coefficients were updated four

times throughout the growing season such that simulated

evapotranspiration matched the measured values (Figure 4). Leaf

area index (LAI) was calculated as the ratio of sampled leaf area to

harvested ground area. Vegetative biomass was measured by

separating leaves and stems of plant samples and then oven-dried

at 70°C until constant weight. The seasonal income was calculated

by setting the price of seed crop at 5 $ kg−1 based on average
Frontiers in Agronomy 05
marketable prices in Japan in 2017. Irrigation application was

stopped on 5 September and the crop was harvested on October 31.
3 Results and discussion

3.1 Leaf area index and biomass

Results of five observations for both leaf area index and

biomass throughout the growing season are demonstrated in

Figure 5. Despite that treatment S has received more water than

treatment A from the sowing date until 74 days after sowing

(DAS), there were no significant differences between the two

treatments in terms of leaf area indices and biomass. When the

plant reached the reproductive stage, which began with blooming
FIGURE 1

Numerical procedure of determining irrigation depth that maximizes net income.
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at 31 DAS and ends with full seeding at 74 DAS (Boote, 1982), the

pegging and pod development compete for nutrients and

carbohydrates, which may slightly reduce leaf growth in the

treatment S. On the other hand, leaf growth and biomass

production increased more in treatment S than treatment A

from the full seed filling until harvest. This might be due to less

water applied in treatment A than treatment S. These results

agreed with the findings of Haro et al. (2008). We observed that

the crop canopy remained green with full vegetative cover until

harvest, with no decline or senesce in plant leaves, resulting in

greater LAI values at harvest time. This could be attributed to

persistent rainfall events and low reference ET values, as

illustrated in Figure 6.

3.2 Accuracy of soil water simulation

Accurate measurement of soil hydraulic characteristics can lead

to more realistic estimates of soil water contents, which leads to

better irrigation management (Minasny and McBratney, 2002;
FIGURE 2

The observed meteorological data via a weather station installed at the field during the growing season.
FIGURE 3

The soil hydraulic properties of a sandy soil, Tottori, Japan (Fujimaki
et al., 2014).
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Heathman et al., 2003). Therefore, we assessed the model accuracy

in terms of simulated soil water content. Figure 7 demonstrates a

comparison example of two-dimensionally simulated and observed

volumetric water contents (VWC) from 12 July to 11 August under

two distinct circumstances of irrigation and rainfall events. The

highest irrigation depth determined through the model was

15.6 mm, and owing to water block, it was applied twice on 4

August. It is obviously shown that the VWC responded to irrigation

and rainfall events. The observed VWC at the point (5, 0) was

overestimated with an RMSE of 0.023 compared to the simulated

one, most likely due to overestimated potential transpiration.

Hence, the function of kcb was updated downward. In the deeper

layer at the point (45, 0), the model overestimated VWC with an

RMSE of 0.01, most likely due to overestimation in normalized root

length distribution. Whereas the model at the observation point (5,
Frontiers in Agronomy 07
45) could consider the internal drainage and accurately simulate

VWC with an RMSE of 0.016. These findings were consistent with

those of Abd El Baki et al. (2017) and Abd El Baki et al. (2018), who

tested the same scheme for potatoes and sweet potatoes under the

same soil and at the same spatial observation points. The results

were likewise comparable to those obtained by Fujimaki et al.

(2014) for sweet corn, but their simulations for VWC in the

deeper layer were slightly underestimated. For the combination of

clay soil, arid climate, and maize crop, Abd El Baki and Fujimaki

(2021) found that the model fairly simulated the VWC at the top

layer of soil (5 cm), but they were unable to evaluate the accuracy of

the model in the deeper layers, as the sensor (5TE, METER Inc.,

Pullman, Washington, USA) gave unrealistic readings due to high

clay content of the soil. This is in agreement with the findings of

Datta et al. (2018), who observed that all five tested dielectric

moisture sensors, including 5TE, did not give satisfactory

readings with high soil salinity and clay content. Therefore, the

presented scheme is more applicable for determining irrigation

depths in sandy textured soils, whereas further evaluation work is

needed to test the proposed scheme in clay soils, even if it increased

farmers' net income, according to Abd El Baki and Fujimaki (2021).
3.3 Impact of quantitative weather
forecasts on irrigation optimization

The utilization of quantitative weather forecasts together with

the presented scheme was effectively used to optimize irrigation

depths. For instance, the simulation conducted on 10 August

revealed that soil water would be sufficient to meet crop water

requirements due to a 12-mm forecasted rainfall. As a result, the

irrigation depth determined by the scheme was equal to 0. In

contrast, 4.8 mm was applied through the automated irrigation

system on 11 August just 5 h before rainfall occurrence (Figure 8).

This is the only case encountered during the experiment period.
TABLE 1 Representative coefficient values of the crop growth module
used to simulate cumulative transpiration rate.

Parameter Value Remark

akcb 1.2

Equation 5bkcb −0.5

ckcb 0.1

y50 −48

Equation 6yo50 −3000

p 4.7

brt 1

Equation 7mrt 30

zr0 2

adrt 43

Equation 8bdrt −0.4

cdrt 5
FIGURE 4

Basal crop coefficient as a function of cumulative transpiration. The
values were updated for four time periods over the growing season.
FIGURE 5

The status of leaf area index and biomass at each growth stage for
the proposed treatments (treatments A and S refer to automated
and simulation-based irrigation schemes).
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According to Abd El Baki et al. (2023), such a case example was

repeated six times, emphasizing the importance of rainfall

forecasting in irrigation scheduling. The workability of automated

irrigation system is shown in Figure 9. The irrigation was

automatically applied when the average trigger value of three

tensiometers reached to −45 cm. The significant rainfall events

occurred only on 25 July and after 12 August; therefore, the example

presented in Figure 8 was the only case that occurred over the

growing season. Higher precision in weather forecasting can lead to

accurate forecasts of ET0 that can improve the feasibility of the

presented scheme and potentially saving over irrigated water

amounts by farmers (Wang and Cai, 2009; Jamal et al., 2019).

Combining numerical weather forecasts with the PM method has

the potential to forecast daily ET0 with reasonable accuracy (Perera
Frontiers in Agronomy 08
et al., 2014; Yang et al., 2016). According to Xiong et al. (2015), the

daily forecasts of ET0 are highly dependent on weather conditions;

therefore, utilizing weather forecasts derived from historical

weather data, which are typically generated for medium or long

term, is not feasible to forecast daily ET0 . In our presented scheme,

we used short-interval weather forecasting to ensure higher

accuracy of ET0 prediction.
3.4 Effectiveness of the proposed scheme
on net income

As described in the previous section, the proposed scheme

optimizes irrigation depth that gives maximal net income when
FIGURE 7

The accuracy of VWC simulations in comparison with the observed ones with TDR probes. the observation points represented by (z, x), in which z
and x are soil depth and horizontal distance from the lateral, respectively.
FIGURE 6

The fluctuation of ET0 and rainfall throughout the growing season.
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three values of transpiration are predicted. An example of the

optimization for irrigation scheduling on 6 August is shown in

Figure 10. At the maximum value of the net income curve, an

irrigation depth of 0.87 cm was determined, which was

corresponded to lower cumulative transpiration value compared

to the maximum value at 1.5 cm. This indicates that the proposed

scheme employs mild water deficits.

Under scarce water conditions, the primary goal of farmers

should be maximizing net income per unit of water (Fereres and

Soriano, 2007). In this context, the presented scheme has a

tremendous advantage to maximize farmers' net income and

enable them to predict it at each irrigation event, whereas other

research (e.g., Wang and Cai, 2009) focused on the seasonal net
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income. According to Abd El Baki et al. (2023), the scheme gave a

similar value of total predicated net income compared to virtual

one, making it a valuable economic tool for growers. In this respect,

we assessed the effect of the proposed scheme on total net income as

shown in Figure 11. Although treatment S gave more seasonal

applied water by 28%, it achieved 2.18 times of net income of

treatment A. Seed yield of groundnut of treatments A and S was

0.97 Mg ha−1 and 1.47 Mg ha−1, respectively. It means that

treatment S was 51% larger than treatment A, which could justify

the cost of applied water. Under the current crop and water pricing

combination, the trigger value of soil suction (−45 cm) might be set

too stringent, resulting in yield reduction due to inadequate water

supply for treatment A. The difficulty in determining economically

optimum trigger value without expensive field trials is another

disadvantage of the automated irrigation system. We also obtained

a lot of pops (pods in full size with no kernels inside), which

contributed to a drop in yield in both treatments A and S. This

might be due to an inadequate amount of Ca applied to the crop in

the early stages of reproductive stage. This scheme is only applicable

when irrigation water is volumetrically priced. Thus, the scheme

could be a robust way of optimizing irrigation water supplies and

meeting sustainability goals in the face of a near future water crisis.
3.5 Comparison between forecast and
actual rainfall

Since the accuracy of rainfall forecasts may affect the performance of

the proposed scheme, we compared the forecasted daily effective rainfall

to the actual one as shown in Figure 12. In the data analysis procedure,

we set the daily effective rainfall as 20 mm because additional rainfall
FIGURE 9

An example of the workability of automated irrigation under both irrigation and rainfall events.
FIGURE 8

An example of improper water application by the automated system
(4.8 mm was applied, while the proposed simulation scheme
suggested no irrigation with respect to the forecasted rain).
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larger than adjusted value is lost due to deep percolation and cannot be

taken up by crop roots. During the 88-day simulation run, actual and

forecasted rainfall events occurred on 26 and 25 days, respectively, with

195.5 mm and 235 mm. The forecasted rain events that coincided with

the observed ones were 18 days and had an RMSE 7.86 mm. The RMSE

between both of them was 4.63 mm over the entire simulation period. It

should be noted that the RMSE concept is insufficient to assess the

accuracy of rain forecasts. For example, total actual rainfall on August 11

and 12 was 11.5 mm, while 12.5 mm was forecasted on 11 August and

zero on 12 August. The accuracy of rainfall forecast depends on the

utilized website, and several attempts were established to enhance it. For

example, Frnda et al. (2022) improved the daily rainfall accuracy by 45%

using neural network modeling. In comparison with Fujimaki et al.

(2014), we found that accuracy of weather forecasts is improving and

that would enhance efficiency of the proposed scheme to determine

irrigation depth. Even if rain is poorly anticipated, the performance of
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the presented scheme will not be significantly affected. This is because

executing an update run (a simulation of the previous irrigation interval

with actual weather data, irrigation records, andwater flow information)

and using the resulting data as inputs in an optimization run, in addition

to setting short irrigation frequencies, can reduce the effect of the

uncertainty of rain forecasts even if a mis-forecast occurs. Thus, the

proposed schememay be considered as an efficient and economical tool

to determine irrigation depths considering the useful information of rain

forecasts irrigation water management.

4 Conclusions

In this study, we evaluated the effectiveness of the proposed scheme

in the determination of optimum irrigation depth that maximizes net

income using a major crop, groundnut (Arachis hypogaea L.). This

scheme combined local weather forecasts and a plant growth model to

predict cumulative transpiration in response to irrigation depth. It also

considers volumetric water pricing, which should be set at a high level

that may give farmers incentive to save irrigation water. In this regard, a

field study was carried out to assess the viability of the proposed

numerical simulation scheme in comparison to an automated

irrigation scheme triggered by soil suction. We compared both

schemes in terms of total yield, applied irrigation, and net income.

Both applied irrigation and total net income achieved by the numerical

scheme resulted in a total of 1.28 and 2.18 times that of the automated

irrigation scheme, respectively. This was because it achieved a 51% higher

seed yield than the automated irrigation scheme. The overestimation of

root water uptake parameters reduced the accuracy of VWC simulations,

but in general, the model results matched the observed ones. This study

was one of the initial investigations that was used in the development of

the proposed numerical scheme. In comparison to earlier research, this

novel scheme has the potential to maximize farmers' net income at each

irrigation event and provide them with real-time estimates of how much
FIGURE 11

Total income and net income of the two irrigation treatments (treatment A, automated irrigation scheduling based on soil water suction monitoring,
and treatment S, the proposed simulation scheme-based optimization).
FIGURE 10

An example of how the irrigation depth was determined at the
maximum net income on 6 August.
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they can gain within a specific time period. In contrast, it is difficult to set

an optimum trigger value for controlling automated irrigation systems,

and they are not always employed to boost farmers' net income. Based on

this research and other studies published by the authors, the numerical

scheme has a significant impact on determining optimal irrigation

depths that boost farmers' net income when compared to the

expensive automated irrigation methods.
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