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The cultivation of sugarcane (Saccharum officinarum L.) in the face of climate

change requires robust strategies for managing pests, diseases, and weeds. This

systematic review exposes critical deficiencies in current practices and

underscores the need for climate-adaptive strategies. Climate change

differentially influences pest behaviour, disease progression, and weed growth

across various regions, yet the lack of region-specific responses impairs effective

management. The review emphasizes the necessity for localized approaches that

consider specific climatic conditions and the development of predictive models

to anticipate pest and disease outbreaks. These models include Decision Support

Systems (DSS), Support Vector Machines (SVM), Susceptible-Exposed-

Infectious-Recovered (SEIR) models, Geographic Information Systems (GIS),

Species Distribution Models (SDMs), Agricultural Production Systems sIMulator

(APSIM), and Integrated Pest Management (IPM). Crucial strategies encompass

integrated pest and disease management, adaptive breeding, precision

agriculture, and ongoing innovation. Precision agriculture technologies, such

as remote sensing and drones, enable early detection and prompt interventions.

By adopting these adaptive measures and addressing existing research gaps, the

sugarcane industry can bolster its resilience and maintain productivity amidst

evolving climatic conditions.

Systematic review registration: https://www.bmj.com/content/372/bmj.n71.
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1 Introduction

Sugarcane (Saccharum officinarum L.) stands as a vital global

crop, playing a pivotal role in sugar production, bio-energy through

bagasse, and livestock feed from straw (Msomba et al., 2021). Its

cultivation spans 124 countries, with Brazil, India, and China

dominating production. However, the sugar industry faces threats

from climate change-induced shifts in temperature and weather

patterns, amplifying the impact of insect pests, noxious weeds, and

diseases (Bordonal et al., 2018; Sorvali et al., 2021).

Climate change exacerbates the outbreak and spread of pests

like yellow sugarcane aphids (YSA) and diseases like gummosis and

smut, impacting global sugarcane productivity (Cock and Allard,

2013; Lu et al., 2021). The primary driver of the challenges faced by

the sugarcane industry is climate change, affecting temperature,

rainfall, and humidity (Tamiru and Fekadu, 2019). The consequent

impact on insect pests and diseases poses a significant threat to

sugarcane cultivation globally. Yellow sugarcane aphids (YSA)

(Sipha flava (Forbes)), white scales (Pseudaulacaspis pentagona

(Targioni)), and white grubs (Phyllophaga sp.) are recognized

culprits affecting sugarcane productivity worldwide (Ramanujam

et al., 2021). The increasing prevalence of pests such as YSA,

attributed to climate-driven shifts, necessitates a thorough

examination of their impact and strategies for sustainable

management (Way et al., 2015). It is inevitable that climate

parameters significantly impact insect pests and disease pathogens

in agriculture (Raid et al., 2013).

Diseases, including gummosis, ratoon stunting disease, smut,

leaf scald, sugarcane mosaic virus, and leaf rust, further compound

the challenges faced by the sugarcane industry (Lu et al., 2021).

High temperatures are predicted to escalate the incidence of smut

disease (Matthieson, 2007), while dry weather exacerbates ratoon

stunting disease symptoms (Ramanujam et al., 2021). Climate-

induced extreme weather events are cited as major contributors to

diseases like leaf brown rust and orange rust (Raid et al., 2013). The

impact of these diseases on sugarcane requires meticulous study to

develop effective adaptation and mitigation strategies.

The significant sugarcane producers face challenges like insect

pests infestation and disease proliferation, but comprehensive

studies on the prevalence and severity of these factors are lacking

(January et al., 2020). Understanding the influence of climate

variability and sugarcane varieties on pests and diseases in

different regions is critical for tailoring interventions. Economic

thresholds, considering factors like pest density, crop variety, and

market value, are essential for informed decision-making in pest

management (Knutson et al., 2016). The absence of such thresholds

specific to notorious pests like YSA highlights the need for focused

research in this area (Bowling et al., 2016).

Climate change affects population dynamics, distribution, and

activity of pests, necessitating adaptive management strategies

(Mercer, 2020). Yet, limited information exists on the effects of

climate change on sugarcane pests and diseases, emphasizing the

need for research and innovative management tactics (Mercer,

2020). There is also a need to evaluate the influence of agro-

ecological zones and sugarcane varieties on pest and disease

variability. This addresses the gap in understanding how these
Frontiers in Agronomy 02
factors contribute to the source-sink dynamics, timing, and

severity of infestations (Pekarcik and Jacobson, 2021). For

instance, considering the rapid population growth potential of

sugarcane aphids, economic thresholds are crucial for effective

pest management and sustainable sugarcane productivity

(Bowling et al., 2016; Brewer et al., 2017). Therefore, this

systematic review intends to provide a comprehensive

understanding of the factors influencing sugarcane production

globally and their interplay with climate change. The study aims

to contribute valuable insights into sustainable sugarcane

cultivation strategies, considering the increasing challenges posed

by climate-induced changes in pest and disease dynamics by

analyzing existing literature and conducting new research. The

findings can inform policymakers and practitioners, enabling

evidence-based decision-making to ensure the long-term viability

of the sugarcane and sugar industry worldwide.

The rationale of this review emphasizes the impact of climate

change on sugarcane pests and diseases, plus explicitly addressing

potential adaptation and mitigation strategies, especially climate-

driven adaptation strategies. Importantly, Mercer’s (2020)

suggestions modified integrated pest management tactics and

monitoring climate and pest populations, but the study could

benefit from a more detailed exploration of innovative approaches

and practices that could enhance the industry’s resilience to

climate-induced challenges. Much of the existing research focuses

on the global impact of climate change on sugarcane production but

somewhere lacks a detailed examination of region-specific

challenges and solutions. Sugarcane cultivation is highly

influenced by local agro-ecological conditions, and there may be

unique factors affecting pest and disease dynamics in different

regions (Lu et al., 2021). There is also a gap in the exploration of

existing or potential pest and disease forecasting models in

literature (Mulianga et al., 2013; Donatelli et al., 2017; Bhatt et al.,

2022; Koralewski et al., 2022; Daphal and Koli, 2023; Ngcobo et al.,

2023). Developing accurate and reliable models for predicting the

occurrence and severity of pests and diseases can be crucial for

proactive and timely management (Ngcobo et al., 2023; Sharma

et al., 2023; Subedi et al., 2023). The research could delve into

incorporating a more in-depth analysis of the available forecasting

models and propose improvements or new models tailored to the

sugarcane industry, considering the specific challenges posed by

climate change. Addressing these research gaps would contribute to

a more holistic and actionable understanding of the complex

interplay between climate change, sugarcane pests and diseases,

and sustainable cultivation practices.

Developing climate-resilient sugarcane varieties through

genetic research and adaptive breeding is essential. Further

studies on integrated pest and disease management (IPDM) that

combine biological, chemical, and cultural practices are necessary

for effective management under changing climates. Advancing

precision agriculture technologies like drones, remote sensing,

and can enhance early detection, monitoring, and targeted

treatment of pest and disease outbreaks. Researching soil health

and biodiversity, particularly the role of soil microbiomes, is vital

for improving resilience. Additionally, sustainable cultivation

practices such as reduced tillage, organic amendments, and crop
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rotation should be investigated. Finally, examining the effects of

extreme weather events on pest and disease dynamics and

developing mitigation strategies is crucial. These research

directions can enhance the resilience and sustainability of

sugarcane cultivation. It would also provide practical insights for

stakeholders in the sugarcane industry, enabling them to make

informed decisions and implement effective strategies to ensure

long-term productivity and resilience (Ncoyini et al., 2022; Kadam

et al., 2023; Shawky et al., 2023). Addressing the research gaps in

understanding the interplay between climate change, sugarcane

pests, diseases, and sustainable cultivation practices is crucial. Key

initiatives include developing climate-resilient sugarcane varieties

through genome sequencing, editing, and field trials. IPDM by

creating biocontrol agents and testing related protocols can improve

pest and disease management. Enhancing precision agriculture

technologies with AI, machine learning, and drone integration

aids in early detection and outbreak management.

Early detection of pests and diseases in sugarcane can be

significantly enhanced through a variety of advanced technologies

and methods (Li, 2024). One crucial tool is remote sensing, which

involves the use of satellites and drones equipped with multispectral

or hyperspectral sensors (Waters et al., 2024). These sensors can

detect subtle changes in plant health and vigour, allowing for early

identification of stress indicators associated with pest infestations or

disease outbreaks. Remote sensing data is processed using

sophisticated algorithms and software to generate maps that

pinpoint areas of concern in sugarcane fields, enabling targeted

intervention (Fresneda-Quintana et al., 2024).

Diagnostic tools play a pivotal role in early detection as well.

These include handheld devices and laboratory assays that analyze

plant samples for specific pathogens or pest infestations (Vinayaka

and Prasad, 2024). Polymerase chain reaction (PCR) techniques, for

instance, can rapidly detect the presence of pathogens with high

accuracy (Archana et al., 2024). Immunological assays and DNA-

based diagnostics also contribute to precise identification and

monitoring of pest and disease threat (Tu et al., 2024).Emerging

technologies such as Internet of Things (IoT) devices and sensor

networks are increasingly integrated into precision agriculture

systems. These devices monitor environmental parameters like

temperature, humidity, and soil moisture in real-time (Narayana

et al., 2024). They can provide continuous data streams that are

analyzed to detect anomalies indicative of pest activity or

disease development.

Artificial intelligence (AI) and machine learning algorithms are

transforming early detection capabilities by analyzing large datasets

from remote sensing, IoT sensors, and diagnostic tools (Vinayaka

and Prasad, 2024). These algorithms can identify patterns and

predict potential outbreaks before visible symptoms manifest,

allowing farmers to implement proactive management strategies

promptly (Chaiyana et al., 2024). Collaboration between

researchers, agricultural extension services, and technology

developers is crucial for advancing these technologies. Funding

opportunities from governmental agricultural departments,

research grants, and partnerships with private sector entities may
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further drive innovation in early pest and disease detection

technologies. By leveraging these advanced tools and methods,

sugarcane growers can achieve more effective pest and disease

management, leading to improved crop health and productivity.

Soil microbiomes, can boost plant resistance (Xiao et al., 2024).

Researching sustainable practices like reduced tillage, organic

amendments, and crop rotation promotes sustainability.

Examining the effects of extreme weather events on pest and

disease dynamics and developing climate adaptation strategies can

mitigate risks. Funding and collaboration opportunities include

national agricultural departments, international organizations,

private sector investments, academic institutions, NGOs, and

innovation grants. These efforts can significantly enhance

sugarcane resilience and sustainability.
2 Methodology for literature search

This baseline desk review of literature and synthesis of the

findings spanned from January to April 2024 (See details in

Table 1; Figure 1). The literature search followed the Preferred

Reporting Items for Systematic Reviews and Meta-Analyses

(PRISMA) framework outlined by Tlatlaa et al. (2023). PRISMA

serves to enhance transparent reporting by elucidating the

motivations behind the study (answering “why”)?, detailing the

actions undertaken by the authors (answering “what”)?, and

presenting the review findings (answering “what”)?. The PRISMA

furnishes a checklist for a systematic literature review report, covering

various sections such as title, abstract, introduction, methods, results,

discussion, and other pertinent information, following the PRISMA

2020 checklist guidelines updated by Page et al. (2021). The PRISMA

emphasizes that the title should unmistakably denote the report as a

literature review, while the abstract needs to provide a structured

summary. It also stresses that the introduction should discuss the

rationale and objectives of the review. Methods entail specifying

eligibility criteria, information sources, search strategy, selection

process, and risk of bias assessment. Results involve detailing the

study selection process, characteristics, risk of bias, and individual

study outcomes. The discussion segment is dedicated to interpreting

results, addressing limitations, and exploring implications. Additional

information includes registration details, funding sources, conflicts of

interest, and the availability of data and materials.
3 Findings of the review and synthesis

The review presents findings organized into six main sections:

(1) Limited emphasis on climate-driven adaptation strategies for

pest and disease control, (2) Inadequate examination of region-

specific climate effects on pest and disease dynamics, (3) Sparse

assessment of pest and disease forecasting models under climate

change, (4) Impact of climate change on insect pests affecting

sugarcane, (5) Impact of climate change on sugarcane diseases,

and (6) Climate change influence on prominent sugarcane weeds.
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3.1 Limited emphasis on climate-driven
adaptation strategies for pest and
disease control

While existing literature comprehensively acknowledges the

influence of climate change on sugarcane pests and diseases, it

somewhat overlooks the need for detailed exploration of climate-

driven adaptation strategies. Some literature highlights the impact

of climate change on the proliferation of insect pests and diseases,
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emphasizing the role of temperature, atmospheric carbon dioxide

levels, and precipitation patterns (Delcour et al., 2015; Skendžić

et al., 2021; Shivanna, 2022; Nguru andMwongera, 2023). However,

the specific measures and practices that can be implemented to

adapt sugarcane cultivation to these changing conditions are not

extensively discussed. Understanding how climate change alters the

dynamics of pest and disease populations is crucial, but equally

important is the identification of adaptive measures that farmers

and stakeholders can employ (Sakdapolrak et al., 2024; Sarkar et al.,

2024). For instance, the study could be required delving into the

development and implementation of climate-resilient agronomic

practices, pest-resistant sugarcane varieties, and precision farming

technologies. Integrating these adaptation strategies into the

research framework would provide a more comprehensive guide

for practitioners seeking sustainable solutions in the face of climate-

induced challenges (Araújo et al., 2023; Durán-Dıáz, 2023).

Limited emphasis on climate-driven adaptation strategies for pest

and disease control of sugarcane reflects a critical gap in addressing the

evolving challenges posed by climate change in agricultural systems

(Shahzad et al., 2021; Grigorieva et al., 2023). Grigorieva et al. (2023)

conducted a comprehensive review of adaptation strategies and

interventions proposed globally to mitigate the impact of climate

change on agricultural development and production and underscored

the importance of context-specific adaptation strategies, cautioning

against limiting discussions to singular “top-down” or “bottom-up”

approaches. Grigorieva et al. (2023) pointed out that some adaptation

measures may be insufficient or even exacerbate vulnerability to

climate change. In many agricultural contexts, including sugarcane

cultivation, historical approaches to pest and disease control have

primarily relied on conventional methods such as chemical pesticides

and resistant crop varieties (Budeguer et al., 2021). While these

methods have been effective to some extent, they often overlook the

complex interplay between climate change and pest/disease dynamics.

Pests and diseases may adapt and spread in ways that traditional

management practices can no longer adequately address as climate

conditions continue to change (Singh et al., 2019; Shahzad et al., 2021).

There is a pressing need for comprehensive studies to

understand how climate variability influences the behaviour, life

cycles, and prevalence of sugarcane pests and diseases. Without

knowledge on these aspects, it becomes challenging to devise

targeted adaptation strategies that can effectively mitigate risks

and enhance resilience in sugarcane production systems

(Grigorieva et al., 2023). Resource constraints further exacerbate

the issue, as agricultural research and development budgets may

prioritize other pressing concerns over climate-driven adaptation

strategies for sugarcane (Khan and Akhtar, 2015). Limited funding

and resources hinder the innovation and implementation of novel

approaches that could bolster the resilience of sugarcane crops

against pest and disease pressures exacerbated by climate change

(Dixon et al., 2014).

Moreover, policy frameworks and agricultural extension

programs may not adequately emphasize the importance of

climate-resilient pest and disease management practices in

sugarcane cultivation (Peng et al., 2020; van Zonneveld et al.,

2020). There is a need for policymakers to integrate climate

adaptation considerations into agricultural policies and provide
TABLE 1 Methods utilized for literature search.

Literature search Steps

Identification of key databases

Utilizes: PubMed, Scopus, Web of
Science, and Agricola

Exploring specialized databases on:
agriculture, climate science, and
pest management

Search string formulation

A search string with keywords:
“sugarcane,” “climate change,” “pests,”
“diseases,” “adaptive strategies”

Use of Boolean operators (AND, OR)
for refining search queries

Inclusion and exclusion criteria

Definition criteria: articles published in
the last decade, peer-reviewed, and
in English

Excluded: Studies lacking relevance to
interconnections in
sugarcane sustainability

Snowballing and citation tracking

Review reference lists for
additional sources

Implement citation tracking to identify
subsequent studies

Grey literature search

Exploring conference proceedings,
reports, theses, and grey literature

Included: relevant institutional
repositories and
government publications

Data extraction

Developing a systematic extraction form
for key study information

Ensure consistency across all
extracted data

Quality assessment

Use of established tools (e.g., Joanna
Briggs Institute Critical Appraisal) for
quality assessment

Document the quality assessment
process clearly

Synthesis of findings

Employing thematic analysis
for synthesis

Considering interconnections between
climate change, pests, diseases, and
adaptive strategies

Risk of bias assessment

Evaluate bias in study design, data
collection, and reporting

Enhance transparency and reliability of
the review
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incentives for adopting sustainable practices. Additionally, raising

awareness among farmers and stakeholders about the implications

of climate change on sugarcane production and the necessity for

proactive adaptation measures is essential for fostering widespread

adoption of climate-smart practices (Vermeulen et al., 2018;

Adesipo et al., 2019; Kalimba and Culas, 2020; Das and Ansari,

2021; Majhi et al., 2023). Increased vulnerability to pest infestations

and disease outbreaks can result in reduced yields, lower-quality

produce, and economic losses for farmers and the sugar industry

(Tripathi et al., 2022; Ward et al., 2022). Moreover, reliance on

chemical pesticides and fungicides may contribute to

environmental degradation, posing risks to soil health, water

quality, and biodiversity (Boudh and Singh, 2019; Mandal et al.,

2019; Alengebawy et al., 2021). Addressing this requires a concerted

effort from multiple stakeholders, including researchers,

policymakers, industry representatives, and farmers (Bartels et al.,

2013). Investments in research and development, capacity building,

policy support, and public awareness are crucial for developing and

implementing effective climate-resilient pest and disease

management strategies in sugarcane cultivation (Khatri-Chhetri

et al., 2019; Shrestha and Thapa, 2019). By prioritizing climate

adaptation in agricultural decision-making processes, stakeholders

can enhance the sustainability and resilience of sugarcane

production systems in the face of climate change (Andrieu

et al., 2019).
3.2 Inadequate examination of region-
specific climate effects on pest and
disease dynamics

There is a notable research gap concerning the exploration of

region-specific climate impacts on sugarcane pests and diseases.

Climate change manifests differently in various geographic
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locations, influencing the prevalence and behaviour of pests and

diseases in distinct ways (Giliba et al., 2020; Hauser et al., 2021;

Skendžić et al., 2021; Singh et al., 2023). To address this gap, the

research could incorporate a more nuanced examination of how

local climate patterns and environmental conditions contribute to

the challenges faced by sugarcane growers (Finch et al., 2021;

Montalvo-Navarrete and Lasso-Palacios, 2024). This regional

focus wou ld fac i l i t a t e the deve lopment of ta i lo red

recommendations and strategies, accounting for the specific

interactions between climate variables and pest/disease dynamics

in sugarcane fields. For instance, Nguru and Mwongera (2023)

assessed the impact of climate change on the suitability of natural

habitats for crop pests and diseases, and project an increased

geographical spread of suitable habitats for crop pests in warmer

environments by the 2030s. According to Nguru and Mwongera

(2023), the importance of future-facing, long-term climate

adaptation and mitigation measures create less suitable

microclimates for crop pests and diseases.

Finch et al. (2021) conducted a study focusing on the global

increase in mean surface temperatures, drawing attention to the rise

of approximately 0.7°C per century since 1900 and a more accelerated

pace of 0.16°C per decade since 1970. Studies emphasize that the

primary driver of this warming trend is the heightened concentration

of greenhouse gases resulting from human activities (Jorgenson et al.,

2019). Literature also addresses changes in precipitation patterns,

acknowledging their variability compared to temperature changes

(Alexander, 2016). Despite this variability, it is argued that future

climatic changes, even under conservative emission scenarios, are

likely to include further temperature increases and a significant

increase in drought conditions in some regions, as highlighted by

the Intergovernmental Panel on Climate Change (IPCC) in 2007

(Finch et al., 2021).

The alterations in temperature and precipitation patterns will

affect invasive species in various ways. Notably, climate change is
FIGURE 1

Quantity of studies identified and incorporated into the analysis. Adapted from Tlatlaa et al. (2023).
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anticipated to challenge conventional perceptions of nonnative

invasive species, as the impacts on some species may shift while

others remain unaffected (Hume et al., 2021). Moreover, certain

nonnative species could become more invasive, posing additional

challenges for ecosystems. Additionally, Finch et al. (2021)

anticipate shifts in the geographic ranges of native species into

novel habitats due to climate change. These changes in distribution

patterns among both invasive and native species are expected to

have profound ecological implications (Gaertner et al., 2017). The

importance of considering these dynamics is also acknowledged

when addressing the challenges posed by invasive species in the

context of a changing climate (Finch et al., 2021; Hume et al., 2021).

The analysis by Finch et al. (2021) provides valuable insights into

the interconnected impacts of climate change and invasive species,

based on a robust examination of global temperature trends and

their implications for ecological systems.
3.3 Sparse assessment of pest and disease
forecasting models under climate change

Sparse assessment of pest and disease forecasting models under

climate change encompasses the limited evaluation of predictive

models designed to anticipate the emergence, spread, and impact of

pests and diseases on agricultural and ecological systems amidst

shifting climatic conditions (Hamdi et al., 2022; Fassnacht et al.,

2024). This field of study is of paramount importance due to the

significant threats posed by pests and diseases to global food

security, ecosystem health, and economic stability, particularly in

the face of climate change-induced alterations in temperature,

precipitation patterns, and extreme weather events (Abbass et al.,

2022; Mwangi et al., 2023).

Model development involves constructing predictive models

based on historical data and assumptions about environmental

conditions, incorporating factors such as temperature, humidity,

precipitation, host plant physiology, pathogen biology, and insect

behaviour to simulate the spread and impact of pests and diseases

(Donatelli et al., 2017; Lee and Yun, 2023). Climate change

considerations are crucial as climate change alters environmental

conditions, including temperature regimes, rainfall patterns, and

the frequency of extreme weather events (Lee et al., 2022).

Incorporating climate change variables and scenarios into

predictive models presents significant challenges due to

uncertainties in future climate projections and complex

interactions between climate and biological systems (Kamga et al.,

2022). Data limitations contribute to sparse assessment, arising

from challenges in the availability, quality, and spatial/temporal

resolution of data required to calibrate, validate, and refine

forecasting models (Petropoulos et al., 2022; Yang et al., 2022).

Insufficient data on pest and disease occurrences, environmental

variables, and management interventions can hinder the accuracy

and reliability of predictive models, particularly in regions with

limited monitoring infrastructure and research capacity (Akhter

and Sofi, 2022; Dhanaraju et al., 2022; Taylor et al., 2023).

This systematic review emphasizes the critical role of predictive

models in developing adaptive strategies for sugarcane
Frontiers in Agronomy 06
sustainability. Decision Support Systems (DSS), such as the

DSSAT framework, integrate crop growth models, weather data,

and management practices to simulate crop growth and predict pest

and disease outbreaks (Equation 1). Tailoring DSSAT for localized

climate patterns allows for the anticipation of pest and disease

threats, enabling timely interventions.

Y = f (T , P,N ,W) (1)

Where Y is yield, T is temperature, P is precipitation, N is

nutrient availability, and W is water availability.

Machine learning models, including Random Forest and

Support Vector Machines (SVM), analyze large datasets,

including climate variables and historical disease incidence, to

forecast future disease outbreaks (Equation 2). These models,

trained on localized climate data, are effective in predicting

specific disease threats.

ŷ =
1
no

n

i=1
ŷ i (2)

Where y ̂ is the predicted outcome, and yî are the predictions

from individual trees in the forest.

Epidemiological models like Susceptible-Exposed-Infectious-

Recovered (SEIR) can be adapted to predict the spread of

sugarcane diseases by incorporating local climate variables, pest

population dynamics, and crop growth stages, thus helping devise

targeted control measures (Equation 3).

dS
dt

= −bSI,    
dE
dt

= bSI − sE,    
dI
dt

= sE − g I,  
dR
dt

= g I (3)

Where S is susceptible, E is exposed, I is infectious, R is

recovered, b is the transmission rate, s is the incubation rate, and

g is the recovery rate.

Geographic Information Systems (GIS) combined with Species

Distribution Models (SDMs) predict pest infestations by analyzing

spatial and climatic data (Equation 4), identifying high-risk areas

for pest outbreaks and enabling proactive pest management

strategies.

P(x) =
1

1 + e−(b 0+o
n
i=1

bixi  )
(4)

Where P(x) is the probability of species presence, b0 is the

intercept, bi are coefficients, and xi are the predictor variables.

Climate-driven crop simulation models, such as Agricultural

Production Systems sIMulator (APSIM), simulate the growth and

yield of sugarcane under different climate scenarios (Equation 5).

The APSIM predicts the impact of climate variables on sugarcane

growth and the likelihood of pest and disease problems, facilitating

the development of adaptive strategies to enhance crop resilience by

incorporating localized climate data.

G = Gmax �
Topt − T − Topt

�� ��
Topt − Tmin

 !
� P

Popt

 !
(5)

Where G is growth, Gmax is maximum growth, T is temperature,

Topt is optimal temperature, Tmin is minimum temperature, and P

is precipitation.
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Bioeconomic models, which combine climate data with pest and

disease management costs, optimize Integrated Pest Management

(IPM) strategies by predicting the most cost-effective and

sustainable approaches to pest and disease control, tailored to

localized climate patterns (Equation 6). These predictive models

present the necessity of adapting to localized climate patterns to

effectively manage pest and disease threats, ensuring the resilience

and productivity of sugarcane cultivation amidst evolving climate

conditions.

NPV =o
T

t=0

Bt − Ct

(1 + r)t

� �
(6)

Where NPV is the net present value, Bt are benefits in year t, Ct

are costs in year t, r is the discount rate, and T is the time horizon.

While literature explains upon the importance of monitoring

climate and pest populations, there is a notable gap in the

exploration of existing or potential pest and disease forecasting

models. Climate change not only affects the prevalence of pests and

diseases of sugarcane but also alters their spatial and temporal

distribution (Srinivasan et al., 2024). Robust forecasting models can

play a pivotal role in predicting the occurrence and severity of

outbreaks, enabling proactive and targeted management strategies

(Subedi et al., 2023).

There exists complex relationship between the explosive growth

of the global population, technological advancements, and the

challenges posed by climate change to agricultural e production

(Subedi et al., 2023). Subedi et al. (2023) indicated that the

confluence of these factors has given rise to a complex scenario

where the progress that has fuelled increased food demand is under

threat due to the adverse impacts of climate change. The

significantly acknowledged issues arising from climate change

include rising carbon dioxide levels, frequent droughts, and

temperature fluctuations (Waheed et al., 2023; Yanagi, 2024).

These environmental shifts pose substantial challenges to crop

production and, consequently, jeopardize global producing

systems. The focus of much literature in this discipline lies in

understanding how these climatic variables affect the biology and

ecology of insect pests, which play a pivotal role in the delicate

balance of agricultural ecosystems (Skendžić et al., 2021; Abbass

et al., 2022). Given the dependence of insect pests on climate factors,

any alterations in these variables have far-reaching implications for

crop productivity (Subedi et al., 2023). The interconnectedness of

insect pests, climate change, and crop yields underscores the

urgency of comprehending the impact of climate change on

insect pest dynamics (Table 2). A key contribution of literature

lies in its exploration of modern pest monitoring technologies and

prediction tools. Literature advocates for the integration of these

advanced tools to enhance ability to monitor and predict pest

behaviour in the face of changing climatic conditions. Despite the

valuable insights provided by literature, there remain certain

research gaps that merit further investigation. One crucial aspect

is the need for more extensive field studies to validate the efficacy of

the proposed pest monitoring technologies and prediction tools in

diverse agricultural settings (Chawade et al., 2019; Preti et al., 2021).

Additionally, understanding the socio-economic impacts of
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implementing these technologies, especially in resource-limited

regions, is crucial for ensuring the practicality and accessibility of

these strategies (Maduka et al., 2023). Furthermore, studies

emphasize the importance of climate variables in influencing

insect pest biology, but there is room for additional research into

the potential feedback loops between insect pests and climate

change (Barton et al., 2019; Yang et al., 2021). How, for instance,

changes in pest populations may further exacerbate climate issues
TABLE 2 Interconnections between sugarcane cultivation
and sustainability.

Interconnections Key elements

Sugarcane cultivation:

Climate change catalyst

Altered temperature,
rainfall patterns

Atmospheric conditions

Dynamic environment

Pest proliferation

Rising temperatures

Yellow sugarcane aphid (YSA)

Direct threat to yield and quality

Disease dynamics

Shifts in temperature and extreme
weather events

Impact on diseases like smut and
ratoon stunting disease

Local variability

Region-specific climate patterns

Interaction with agro-
ecological conditions

Influences specific challenges in
different regions

Adaptive management strategies

Modified integrated pest
management tactics

Climate-resilient
agronomic practices

Development of pest-resistant
sugarcane varieties

Economic thresholds

Define thresholds for intervention

Consider pest density, crop variety,
market value

Guide timely interventions
for sustainable

Sustainability in diverse climates:

Forecasting models

Incorporate climate variables

Predict occurrence and severity of
pests and diseases

Enable proactive
management decisions

Global and local perspectives

Balance global insights with
local variability

Ensure comprehensive strategies
for sugarcane
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or create new challenges for agricultural sustainability is an

intriguing avenue for future exploration.

These gaps may be addressed by the research that could include

a more thorough evaluation of existing forecasting models,

examining their applicability to changing climate conditions

(Balogun et al., 2020). Moreover, it could explore the

development of new models that incorporate climate change

variables, providing accurate predictions for sugarcane growers.

This emphasis on forecasting would empower stakeholders with

timely information, helping them anticipate and mitigate the

impact of emerging pest and disease threats in the context of a

changing climate (Rocklöv et al., 2023). By incorporating these

considerations, the research could bridge critical gaps and offer a

more holistic understanding of the relationship between climate

change, sugarcane pests and diseases, and the adaptive measures

necessary for sustaining the industry (Grandis et al., 2024).
3.4 Impact of climate change on plant
growth-reducing factors of sugarcane

Sugarcane growth is significantly hindered by insect pests,

diseases, and weeds, with climate change exacerbating these

challenges. Elevated temperatures and altered precipitation

patterns enhance pest populations and disease prevalence,

disrupting plant health. Weeds thrive under these warmer

conditions, competing aggressively with sugarcane and reducing

yields. Climate change also disrupts the phenology and life cycles of

pests, diseases, and weeds, making traditional management

practices less effective. These shifts necessitate integrated

management strategies, including cultural, biological, and

chemical controls, alongside precision agriculture and adaptive

breeding programs to develop resilient sugarcane varieties and

ensure sustainable cultivation amidst evolving climatic conditions.

The details of these factors are described in subsequent sections.

3.4.1 Influence of climate change on insect pests
of sugarcane

Climate change profoundly influences insect pest dynamics in

sugarcane cultivation, complicating efforts to maintain sustainable

production. The relationship between shifting climatic conditions

and pest behaviour necessitates a comprehensive understanding to

develop long-term strategies for sustainability (Weier et al., 2024). A

primary effect of climate change is the alteration of temperature

patterns (Balasundram et al., 2023; Bibi and Rahman, 2023;

Johnson, 2023; Singh et al., 2023). Pests such as white scales

(Aulacaspis tegalensis) (Sarjan et al., 2021), white grubs (Cochliotis

melolonthoides) (Kumar and Prasad, 2020), and yellow sugarcane

aphids (Sipha flava) (Dumont et al., 2023) impact sugarcane

productivity globally.

The yellow sugarcane aphid (YSA) is particularly sensitive to

temperature variations (Skendžić et al., 2021; Bhattacharyya et al.,

2023; Bouri et al., 2023; Prajapati et al., 2023). Climate change-

induced temperature increases expand YSA’s suitable habitat range,

leading to greater prevalence in sugarcane fields (Chen et al., 2023;
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Li P. et al., 2024; Nikpay et al., 2023). Higher temperatures also

accelerate YSA’s reproductive capacity, exacerbating challenges for

growers (Bhagarathi and Maharaj, 2023; Walia and Kaur, 2024).

Changing rainfall patterns further contribute to insect pest

proliferation in sugarcane fields (Valencia Arbeláez et al., 2021).

Altered precipitation affects water availability, influencing pest

abundance and distribution (Subedi et al., 2023). In regions with

changing rainfall, pests like white scales, white grubs, and YSA may

find new ecological niches, shifting population dynamics (See

Table 3). This necessitates adaptive pest management strategies

that consider evolving climatic conditions (Janousek et al., 2023;

Waheed et al., 2023).

Climate change also alters the phenology and behaviour of

insect pests (Subedi et al., 2023; Shafiq et al., 2024). Shifts in life

stage timing, such as reproduction and larval development, are

linked to climatic signals. Disruptions in these signals can increase

pest pressure on sugarcane crops, impacting yield and quality (Tait

et al., 2021; Zheng et al., 2024). For instance, the reproductive

patterns of Heteronychus paolii Arrow (Dynastinae) and

Schizonycha vastatrix Chiaramonte (Melolonthinae) are

influenced by temperature and rainfall variability, causing

population fluctuations (Cock and Allard, 2013). Extreme weather

events associated with climate change, such as hurricanes and

cyclones, complicate insect pest dynamics in sugarcane cultivation

(Cilas and Bastide, 2020; Volk et al., 2023). These events disrupt

habitats and pest behaviour, leading to altered infestation patterns

(Volk et al., 2023). Post-hurricane conditions may favour rapid pest

proliferation, threatening sugarcane production sustainability

(Palanivel and Shah, 2021).

3.4.2 Influence of climate change on diseases
of sugarcane

Climate change presents numerous challenges to sugarcane

production, particularly through its influence on disease

pathogens (Savary and Willocquet, 2020). Understanding the

relationship between changing climatic conditions and sugarcane

diseases is crucial for developing effective long-term sustainability

strategies (See Table 4). One significant impact of climate change on

sugarcane diseases is the alteration in temperature patterns

(Linnenluecke et al., 2020). Rising global temperatures create

favourable conditions for the proliferation of certain disease

pathogens. For instance, smut disease, caused by the fungus

Sporisorium scitamineum, thrives in warmer conditions (Bhuiyan

et al., 2021; Rajput et al., 2021). Increased temperatures associated

with climate change contribute to the incidence and severity of

smut, posing a substantial threat to sugarcane yields. Similarly, leaf

scald, caused by the bacterium Xanthomonas alibilineans, is

influenced by temperature shifts, with high temperatures

exacerbating its symptoms (Bini et al., 2023; Li H. et al., 2024).

Changing rainfall patterns also play a pivotal role in the spread

and severity of sugarcane diseases (Kim et al., 2024). Climate change

leads to shifts in rainfall timing, distribution, and intensity, affecting

the water-dependent life cycles of disease-causing organisms.

Gummosis, caused by the bacterium Xanthomonas axonopodis

pv. vasculorum, is highly influenced by moisture conditions
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(Hussain et al., 2024; Li H. et al., 2024; Parthasarathy et al., 2024).

Altered rainfall patterns can facilitate the spread of this bacterium

or create conducive conditions for its development, increasing

gummosis incidences in sugarcane fields. Leaf rust, caused by

Puccinia melanocephala, is also sensitive to moisture levels, with

deviations from normal rainfall patterns affecting its prevalence

(Wójtowicz et al., 2020).

The geographical distribution and behaviour of disease vectors,

such as insects and fungi, are influenced by climate change. These

vectors are crucial in transmitting pathogens, and their altered

patterns contribute to disease spread in sugarcane fields. Climate-

induced shifts in the distribution and behaviour of pests like white

scales, white grubs, and yellow sugarcane aphids can lead to

variations in disease transmission patterns, further complicating

disease dynamics in sugarcane cultivation (Dumont et al., 2023).

Extreme weather events associated with climate change, such as

hurricanes and cyclones, also impact sugarcane disease dynamics
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(Badillo-Márquez et al., 2021; Christina et al., 2021). These events

can cause physical damage to sugarcane plants, creating entry

points for pathogens and facilitating disease spread. Hurricanes

and cyclones can increase sugarcane crops’ vulnerability to diseases

like leaf rust and smut (Ahmad, 2023). Additionally, the aftermath

of extreme weather events can create conditions favourable for

rapid pathogen proliferation, threatening sugarcane production

sustainability (Singh et al., 2018; Noureen et al., 2022).
3.4.3 Influence of climate change on notorious
weeds of sugarcane

Climate change has a multifaceted impact on the dynamics of

notorious weeds affecting sugarcane cultivation, presenting

challenges to the sustainability of this vital crop (Chaki et al.,

2023; Vasileiou et al., 2024; Nath et al., 2024). The interplay

between shifting climatic conditions and the behaviour of noxious

weeds requires a comprehensive understanding to develop effective

strategies for long-term sustainability.

One of the primary effects of climate change on weeds is the

alteration in temperature and precipitation patterns (Sreekanth

et al., 2023; Kachare et al., 2024). Rising global temperatures

influence the germination, growth, and reproductive processes of

weeds, with some species thriving in warmer conditions. Weeds

such as Imperata cylindrica (cogon grass) and Sorghum halepense

(Johnson grass), recognized as notorious competitors with

sugarcane, may experience increased vigour and expansion of

their ecological range in response to elevated temperatures

(Shumail et al., 2022; Othman et al., 2023; Tan et al., 2024).

Changes in precipitation patterns, including altered onset and

distribution of rainfall, further contribute to the weed

proliferation challenge. Weeds like Cyperus rotundus (purple

nutsedge) and Echinochloa colona (jungle rice) are adapted to

varying moisture conditions, and climate-induced shifts in

precipitation can create favourable habitats for these aggressive

competitors (Eslami and Arpanahi, 2023; Keerthi Sree et al., 2023;

Mahgoub, 2023).

Climate change also influences the phenology and life cycles of

notorious weeds in sugarcane fields (Pires da Silva et al., 2014;

Giraldeli et al., 2021). The timing of seed germination, emergence,

and flowering is intricately linked to environmental cues, including

temperature and photoperiod. As these cues undergo alterations

due to climate change, the phenological patterns of weeds may be

disrupted, impacting their synchronization with sugarcane crops

(Anwar et al., 2021; Deeksha et al., 2022; Santosh and Pavithran,

2024). This mismatch in timing can result in increased weed

pressure on susceptible crops, affecting overall yields and

hindering sustainable sugarcane production. The impact is

particularly pronounced with weeds like I. cylindrica, known for

its aggressive growth and ability to outcompete sugarcane in various

agro-climatic conditions (Sivakumar et al., 2018).

Changing climatic conditions also influence the distribution

and spread of notorious weeds, creating challenges for weed

management practices (Anwar et al., 2021; Rao et al., 2023). Most

notorious weeds often disperse their seeds through wind, water, or

human activities (Balah, 2021; Khattak et al., 2024). Climate-
TABLE 3 Common insect pests affecting sugarcane and the target parts.

Insect pest
Commonly
affected
parts

References

Sugarcane
Borer (Diatraea
saccharalis
(Fabricius))

Stalks,
particularly
internodes

Joyce et al. (2014); Simões et al. (2015);
Fogliata et al. (2016); Pavinato et al.
(2017); Valencia Arbeláez et al. (2021);
Simões et al. (2022)

Aphids
(Melanaphis
sacchari)

Leaves, young
shoots,
and stems

Calvin et al. (2021); Esquivel et al.
(2021); Pekarcik and Jacobson (2021);
Faris et al. (2022)

Whiteflies
(Aleurolobus
barodensis)

Undersides of
leaves,
sap-sucking

Askarianzadeh and Minaeimoghadam
(2018); Behnam-Oskuyee et al. (2020)

Termites
(Odontotermes
assmuthi)

Roots and base
of
sugarcane plants

Saha et al. (2016); Zaman et al. (2022)

Armyworms
(Spodoptera
frugiperda)

Leaves, can
cause defoliation

Li et al. (2021); Makgoba et al. (2021);
Soumia et al. (2023)

Wireworms
(Melanotus
communis
Gyllenhal)

Roots and
underground
plant parts

Karounos et al. (2020); Williams
et al. (2022)

Leafhoppers
(Pyrilla
perpusilla)

Leaves and
young shoots

Mahesh et al. (2019); Sharma and
Shera (2021)

Mealybugs
(Saccharicoccus
sacchari)

Leaves, stems,
and nodes

Qin et al. (2020)

Root Borers
(Polyocha
depressella)

Roots and base
of
sugarcane plants

Dessoky et al. (2021); Viswanathan et al.
(2022); Muhammad et al. (2023)

Grasshoppers
(Hieroglyphus
banyan)

Leaves and
stems, can
cause defoliation

Bam et al. (2020)

White grubs
(Holotrichia
serrata)

Roots and base
of
sugarcane plants

Cock and Allard (2013)
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induced alterations in wind patterns and increased frequency of

extreme weather events can facilitate the long-distance dispersal of

weed seeds, leading to the colonization of new areas (Table 5). This

expansion of weed distribution zones poses a significant threat to

the sustainability of sugarcane cultivation, as it increases the

likelihood of weed infestations in previously unaffected regions

(Allsopp et al., 2021; Baltazar and De Datta, 2023).

Extreme weather events associated with climate change, such as

hurricanes, cyclones, and floods, further exacerbate the challenges

posed by notorious weeds in sugarcane fields. These events can

disrupt weed management practices and create conditions

conducive to rapid weed proliferation. For example, flooding can
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displace weed seeds and rhizomes, redistributing them across fields

and complicating efforts to control their spread (Smith et al., 2021;

Haring, 2022). The aftermath of extreme weather events may

necessitate intensive weed control measures to prevent the

establishment of weed populations that could jeopardize the

health and productivity of sugarcane crops.
3.5 Managing insect pests, diseases, and
weeds in sugarcane fields amid
climate change

Integrated management practices are vital for addressing the

complex challenges posed by insect pests, diseases, and notorious

weeds in sugarcane fields, especially in the context of climate

change. These integrated approaches combine cultural, biological,

and chemical control measures to mitigate impacts while

minimizing environmental risks. Integrated Pest Management

(IPM) strategies include crop rotation, the use of natural

predators, and targeted pesticide applications (Koshariya et al.,

2023; Lantero et al., 2023). These measures collectively help in

reducing pest populations and protecting the environment (Baste

and Watson, 2022; Morya and Kumar, 2023). Adaptive breeding

programs are essential, focusing on developing pest-resistant

sugarcane varieties that can adapt to evolving pest pressures, such

as breeding for YSA resistance (Bakala et al., 2020; Naqvi et al.,

2022; Shahid et al., 2024).

Integrated Disease Management (IDM) practices involve

adjusting planting schedules, optimizing irrigation, and using

biological controls such as natural predators or beneficial

microorganisms (Bhuiyan et al., 2021; Ram et al., 2022). Chemical

control, when carefully managed, remains a crucial tool against

disease outbreaks (Grigorieva et al., 2023; Gyamfi et al., 2024).

Breeding programs are also vital in developing disease-resistant

varieties by incorporating traits that enhance resistance to specific
TABLE 4 Correlation between climate change and sugarcane diseases.

Disease Transmitting agent
Targeted
plant parts

Climate change influence References

Sugarcane
mosaic

Viruses Leaves, stems
Climate shifts alter vector behaviour and
virus transmission patterns

Rice et al. (2019); Lu et al. (2021)

Red rot
Fungi (Colletotrichum
falcatum Went)

Stalks, roots
Increased rainfall and humidity enhance
fungal growth and spread

Hossain et al. (2020)

Smut Fungi (Sporisorium scitamineum)
Inflorescence,
stalks

Higher temperatures increase incidence
and severity

Bhuiyan et al. (2021)

Pokkah
boeng

Bacteria (Fusarium moniliforme)
Leaves,
stalks, roots

Higher humidity and temperature
fluctuations increase occurrence

Singh et al. (2006)

Leaf rust Fungi (Puccinia sp.) Leaves, stems Moisture changes affect prevalence Virtudazo et al. (2001); Hoy and Hollier (2009)

Leaf scald
Bacteria (Xanthomonas albilineans
(Ashby) Dowson)

Leaves, stems High temperatures worsen symptoms
Govindaraju et al. (2019); Cervantes-Romero
et al. (2021); Zhao et al. (2022)

Gummosis
Bacterium: Xanthomonas
axonopodis pv. vasculorum

Leaves, stems
Altered rainfall boosts spread
and development

Cock and Allard (2013); Lu et al. (2021)

Ratoon
stunting

Phytoplasma (Candidatus
Phytoplasma sacchari)

Stalks, roots
Water stress and variable temperatures
contribute to disease spread

Viswanathan (2022)
TABLE 5 Notorious weeds of sugarcane.

Weed References

Nutgrass (Cyperus rotundus)
Pires da Silva et al. (2014); Giraldeli
et al. (2021)

Bermuda grass
(Cynodon dactylon)

Girolamo-Neto et al. (2019);
Spaunhorst (2021)

Johnson grass
(Sorghum halepense)

Johnson et al. (2023)

Goosegrass (Eleusine indica) Odero et al. (2013); Li et al. (2022)

Dallisgrass
(Paspalum dilatatum)

Evers and Burson (2004)

Crabgrass
(Digitaria sanguinalis)

Wang et al. (2018); Ghirardello et al. (2022)

Pigweed
(Amaranthus retroflexus)

Lovelli et al. (2010)

Milkweed (Asclepias syriaca) Karounos et al. (2019)

Pokeweed
(Phytolacca americana)

Kim et al. (2005); Awasthi et al. (2015)

Thistle (Cirsium arvense) Aysu (2016); Jogi et al. (2019)
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pathogens influenced by climate change (Legros et al., 2021; Nunes

et al., 2024; Parveen and Rashtrapal, 2024).

Integrated Weed Management (IWM) combines cultural,

mechanical, biological, and chemical control measures to manage

weed populations effectively (Scavo and Mauromicale, 2020; Kousta

et al., 2024). Strategies such as crop rotation, cover cropping, and

targeted herbicide applications play integral roles in IWM,

enhancing sugarcane resilience against weed encroachment

(Cherubin et al., 2021; Schrader et al., 2024). Adaptive breeding

programs also focus on developing sugarcane varieties that can

better compete with and resist notorious weeds, ensuring

sustainable production amidst evolving climatic conditions (Gobu

et al., 2020; van Antwerpen et al., 2022; Geng and Yufeng, 2023;

Spelman, 2024).

Precision agriculture utilizes cutting-edge technologies such as

drones, sensors, and data analytics to offer transformative real-time

monitoring and management of pests, diseases, and weeds (Ayoub-

Shaikh et al., 2022; Karunathilake et al., 2023). This approach

enhances resource efficiency and reduces environmental impacts

through optimized interventions (Ahmad, 2023; Nikpay et al.,

2023). Precision agriculture aligns with the broader goal of

sustainable and efficient farming practices, ensuring the resilience

of sugarcane cultivation amid changing climatic conditions

(Grandis et al., 2024; Pachiappan et al., 2024; Shaktawat and

Swaymprava, 2024).

Early detection of pest, disease, and weed infestations allows for

targeted interventions, optimizing resource use and minimizing

impacts on sugarcane (Mylonas et al., 2020; He et al., 2024).

Research into innovative resistant varieties and novel control

methods is essential for staying ahead of emerging challenges in

sugarcane cultivation (Storkey et al., 2021; Gautam and Hens, 2022;

Roy et al., 2023; Kamath et al., 2024). Continued research and

innovation are crucial for sustainable sugarcane cultivation in a

changing climate, as they inform adaptive management strategies

and develop resistant varieties and novel control methods (Hill

et al., 2011; Bordonal et al., 2018; Singh et al., 2019; Ali et al., 2023).

Integrating IPM, IDM, and IWM strategies with precision

agriculture and early detection ensures sustainable and productive

sugarcane cultivation worldwide (Maxwell et al., 2019; Mercer,

2020; Walsh et al., 2020; Srinivasa Rao et al., 2022). These

approaches help the sugarcane industry navigate the complexities

of climate change and ensure long-term resilience (Chen et al.,

2023; Harvey et al., 2023; Ranganathan et al., 2023).
3.6 Climate-resilient strategies for disease
and pest management in sugarcane

Adaptive strategies play a pivotal role in mitigating the impact

of climate change on sugarcane diseases and insect pests, offering

prospects for the long-term sustainability of sugarcane cultivation

(Shahzad et al., 2021; Bhatt et al., 2023; Kurmi et al., 2024). These

strategies encompass a holistic approach that addresses the dynamic

interactions between shifting climatic conditions and the complex

ecosystems harbouring pathogens and pests. By integrating

adaptive measures, the sugarcane industry can enhance resilience,
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minimize losses, and secure the sustainability of this crucial crop.

One key adaptive strategy involves the development and

implementation of climate-resilient sugarcane varieties (Taylor

et al., 2023). Understanding the evolving dynamics of diseases

and insect pests influenced by climate change allows breeders to

incorporate traits that confer resistance or tolerance. For instance,

breeding for resistance against yellow sugarcane aphids can lead to

the creation of varieties capable of withstanding the changing pest

pressures (Ademe et al., 2024). These climate-resilient varieties act

as a frontline defence, reducing the susceptibility of sugarcane crops

to diseases and pests, thereby contributing to sustainability in the

face of climatic uncertainties.

Integrated disease management (IDM) practices represent a

comprehensive adaptive strategy that combines cultural, biological,

and chemical control measures to manage diseases effectively

(Taylor et al., 2023). Cultural practices, such as adjusting planting

schedules and optimizing irrigation, are tailored to mitigate disease

risks influenced by climate change (Mishra and Mishra, 2023;

Ademe et al., 2024). Biological control methods involve the

introduction of natural predators or beneficial microorganisms to

regulate disease vectors (Muhammad et al., 2024; Barathi et al.,

2024). Chemical control, while being judiciously managed to

minimize environmental impact, remains an essential tool in the

arsenal against disease outbreaks (Collett et al., 2020; Dolatabadian

et al., 2022). The IDM allows for a dynamic and adaptable

approach, ensuring the sustainability of sugarcane production

amidst the changing disease landscape. The use of drones,

sensors, and data analytics in precision agriculture practices

provide valuable insights into the status of crops, allowing early

detection of outbreaks and targeted interventions (Shahi et al., 2023;

Chaudhari et al., 2024). By staying ahead of disease and pest

dynamics through real-time monitoring, precision agriculture

contributes to the resilience of sugarcane cultivation in the face of

evolving climatic conditions.

Climate-resilient agronomic practices play a crucial role in

adapting sugarcane cultivation to the changing climate (del Pozo

et al., 2019; Röling, 2019). Optimizing planting schedules, irrigation

practices, and crop rotations based on climatic conditions helps

mitigate the risks associated with diseases and insect pests (Richard

et al., 2022; Kowalska et al., 2023). These adaptive practices ensure

that sugarcane crops are strategically positioned to withstand

varying environmental stresses. Farmers can proactively address

challenges posed by diseases and pests, promoting the long-term

health and sustainability of sugarcane crops by aligning agronomic

activities with the evolving climatic conditions (Usman et al., 2020;

Gonçalves et al., 2024).

On-going innovation ensures that the sugarcane industry

remains dynamic and resilient in the face of climate-induced

uncertainties (Aggarwal et al., 2022; Anekwe et al., 2023).

Economic thresholds, another vital aspect of adaptive strategies,

offer a systematic approach to making treatment decisions for

diseases and insect pests. Determining the pest density at which

management action should be taken to prevent economic losses

guides intervention strategies (Hendrichs et al., 2021; Wolff, 2023).

Economic thresholds are dynamic and can vary based on factors

such as crop variety, growth stage, market value, and growing
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conditions. Ensuring effective control while minimizing

unnecessary interventions by establishing and regularly updating

economic thresholds, sugarcane growers can optimize pest

management practices (Nikpay et al., 2023; Mangena et al., 2024;

Reddy et al., 2024).

Adaptive strategies for sugarcane sustainability involve monitoring

and predicting climate trends to anticipate future challenges

(Linnenluecke et al., 2018; Grigorieva et al., 2023). Studying trends in

rainfall and temperature over an extended period in sugarcane

cultivation areas allows for the identification of potential shifts in

disease and pest prevalence (Caron et al., 2018; Khatri et al., 2023).

Growers can proactively plan interventions and implement adaptive

measures by understanding how climate variables influence the

dynamics of pathogens and pests (Heeb et al., 2019; Taylor et al.,

2021). This forward-looking approach enables the development of

climate adaptation and mitigation actions necessary to contain crop

pests and diseases, fostering sustainability in the sugarcane industry

(Altieri, 2002; Grigorieva et al., 2023; Mrabet, 2023). Adaptive strategies

play a critical role in mitigating the impact of climate change on

sugarcane diseases and insect pests, offering prospects for sustainability

in the face of evolving climatic conditions (Shahzad et al., 2021).

Climate-resilient agronomic practices form a comprehensive toolkit for

the sugarcane industry (Tan et al., 2022; Alotaibi, 2023; Lopes, 2023).
4 Conclusions

Climate change exerts a profound impact on sugarcane

production, affecting insect pests, diseases, and notorious weeds.

Variations in temperature, altered rainfall patterns, and extreme

weather events significantly reshape pest and disease dynamics,

posing severe challenges to sustainable sugarcane cultivation.

Integrated pest and disease management practices are essential to

adapt to these changing environmental conditions. Implementing

comprehensive control methods can help mitigate the effects of

climate change on pest and disease proliferation. Adaptive breeding

is another critical strategy, focusing on developing climate-resilient

sugarcane varieties. These varieties are better equipped to withstand

shifting climates and maintain productivity. Precision agriculture

utilizes advanced technologies to monitor and manage crop health

and environmental conditions more effectively. This approach can

significantly enhance the ability to respond to climate-induced

changes in pest and disease behaviour. Early detection and

monitoring systems are crucial for the timely identification and

control of pest and weed outbreaks. Establishing these systems can

help manage infestations before they cause significant damage to

sugarcane crops. Ongoing research and innovation are vital to

continuously advancing knowledge and techniques to combat the
Frontiers in Agronomy 12
effects of climate change on sugarcane cultivation. By staying at the

forefront of agricultural science, the industry can better adapt to

evolving climatic conditions. The sugarcane industry can enhance

its resilience, minimize potential losses, and ensure the

sustainability of this vital crop amidst the challenges posed by

climate change.
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