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Palmer amaranth and waterhemp are two invasive pigweed species, which have

become most troublesome to crops, especially corn and soybean. Among these

two weed species, Palmer amaranth is more harmful to crops as it can grow

faster, spread rapidly, and reduce crop yields significantly when compared to

waterhemp. Distinguishing Palmer amaranth from waterhemp is important for

effective weed management and an increase in crop production. However,

differentiating these two weeds in the early stage is considerably difficult owing

to their similar morphological characteristics. In the current study, three artificial

intelligence approaches, namely machine learning (ML), deep learning (DL), and

object detection (OD) were employed to automate the identification of

greenhouse-grown Palmer amaranth and waterhemp within two weeks after

emergence, from their RGB images. Aspect ratio, roundness, and circularity were

measured and supplied as the input for the ML classification models. Among the

four ML models employed, the random forest model achieved the top

classification accuracy of 70% with only 312 training instances. In the case of

deep learning, the proposed convolutional neural network model trained on a

single-object RGB image of Palmer amaranth and waterhemp achieved a

classification accuracy of 93%, outperforming the top ML model. The image

dataset used for the DLmodel increased from the original size of 2,000 to 16,000

by various augmentation techniques. Finally, a transfer-learning-based object

detection model for localized identification of the weeds was designed. The OD

model was developed by fine-tuning the head of YOLOv5 trained on the COCO

dataset with 3,200 single-object images (images with single foliage of either

Palmer amaranth or waterhemp). The OD model developed in this study

achieved an accuracy of 83.5% and it can identify the weed foliages

irrespective of their size and proximity to each other.
KEYWORDS

Amaranthus palmeri, Amaranthus tuberculatus, convolutional neural network, transfer
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1 Introduction

Palmer amaranth (Amaranthus palmeri) and waterhemp

(Amaranthus tuberculatus) are two invasive pigweed species

(Bradley et al., 2022; Roberts and Florentine, 2022) that pose

severe threats to the productivity of several row crops, especially

corn and soybean (Massinga et al., 2001; Bensch et al., 2003; Steckel

and Sprague, 2004). Both these weeds are characterized by rapid

growth under ideal growing conditions (Bradley et al., 2022; Roberts

and Florentine, 2022). They compete with crops for essential

resources (light, water, and nutrients) and cause a drastic

reduction in their yields (Berger et al., 2015; Butts et al., 2018;

Mahoney et al., 2021). However, Palmer amaranth is known to be

more aggressive than waterhemp for several reasons. Palmer

amaranth can grow at a faster rate than waterhemp, for an

instance, a study conducted by Perkins et al. records a growth

rate of 55 mm per day for Palmer amaranth and a growth rate of

44mm per day for waterhemp in untreated cover crops (Perkins

et al., 2021). Furthermore, amaranth species demonstrate a greater

ability to disperse across the fields owing to their smaller seed size,

resulting in a wider infestation of crop fields. Moreover, herbicide-

resistant Palmer amaranth biotypes are commonplace. Jonathon

and Christy (Kohrt and Sprague, 2017) reported Palmer amaranth

is resistant to six herbicide sites of action, including glyphosate.

Chahal et al (2015) reported Palmer amaranth is one of the very few

weeds in the United States to have evolved resistance to herbicide

groups with multiple mechanisms of action including 5-enol-

pyruvylshikimate-3-phosphate synthase inhibitors (EPSPS),

microtubule assembly inhibitors, acetolactate synthase inhibitors

(ALS), hydroxyphenylpyruvate dioxygenase inhibitors (HPPD) and

photosystem (PS) II inhibitors (Heap, 2020). These arguments

indicate the need for distinguishing Palmar amaranth from

waterhemp for effective weed management.

Fully grown Palmer amaranth can be manually differentiated

from waterhemp through its morphological characteristics such as

leaf shape, petiole length, presence of a watermark, presence of leaf

tip hair, and presence of bracts (Ikley and Jenks, 2019). A

comparison of morphological characteristics between Palmer

amaranth and waterhemp is described in detail in Table 1.

Though extensive research has been done on their plant

morphologies for their identification (Trucco et al., 2006; Molin

and Nandula, 2017), studies that utilize machine learning and deep
Frontiers in Agronomy 02
learning techniques to distinguish them in the field at a large scale

are lacking. Also, these distinct differences observed in their

morphology are absent in the early stages of their growth (within

two weeks after emergence) and the striking resemblance of Palmer

amaranth to waterhemp at the early stages poses a considerable

challenge in the identification of individual weeds. Alternatively,

genetic testing can be used reliably at the early stage (Montgomery

et al., 2019). Genetic testing involves collecting the weed seed

samples, performing genomic sequencing on them, searching for

specific genetic differences, and designing genetic markers to

distinguish Palmer amaranth from the other species based on

DNA (Jiang and Köhler, 2012). However, the process of genetic

testing (both leaf tissue testing and seed sample testing) is expensive

and also a laborious process that involves manual intervention at

several stages of the testing. Hence, the goal of this study is to

distinguish Palmer amaranth from waterhemp at its early stages (in

the first two weeks after emergence) using automated approaches

such as machine learning, deep learning, and object

detection techniques.

We hypothesize that it is possible to distinguish Palmer

amaranth from waterhemp in the early stages after emergence

automatically employing image data alone. The overall objective

of this study is to train machine learning, deep learning and

localized detection methods employing image data to

automatically distinguish Palmer amaranth from waterhemp in

the early stages. To this end several machine learning methods

and a deep learning approach are employed for distinguishing

Palmer amaranth from waterhemp using leaf features and RGB

images, respectively. In addition, an object model is trained for

locaFlized identification of the weeds in images mixed with both

weed foliage. While early detection of Palmer amaranth is very

advantageous in itself, the proposed methods can serve as

diagnostic methods before more elaborate and time-taking

detection procedures such as genetic testing are resorted to.

Despite this, the proposed methods are highly dependent on the

fidelity of the training data and quality of the images used for

classification of the weeds.

The rest of the manuscript is organized as follows: Section 2

briefs the overall research approach used in the study; Section 3

discusses the process of acquiring the weed images and the pre-

processing involved; Section 4 describes the analysis of leaf

geometrical parameters; Section 5, 6 and 7 discusses the model

details and result obtained from machine learning, deep learning

and object detection methods, respectively; Section 8 summarizes

the conclusions drawn from the study; and finally, Section 9 details

the limitations and future research direction of the current study.
2 Overall study approach

The current study focuses on implementing three important

automated tasks for weed management and analyzing the

performance of the implemented models. The three automated

tasks are 1. Classification of the two weed species (Palmer amaranth

and waterhemp) by employing popular machine learning methods

2. Classification of the two weed species using a deep learning
TABLE 1 Morphological characteristics of Palmer amaranth
and waterhemp.

Features Palmer amaranth Waterhemp

Leaf shape Wide and oval Long and oval

Petiole length Longer petiole Shorter petiole

Watermark
May possess a V-
shaped watermark

No watermark

Leaf-tip hair Presence of tiny hair at their tip
Leaf-tip hair
is absent

Bracts Presence of spiny bracts Bracts are absent
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approach, and 3. Identification of individual weeds in an image

using a state-of-the-art object detection technique. The study

process starts with acquiring images of Palmer amaranth and

waterhemp plants in a laboratory setting. The acquired images

are preprocessed subsequently to eliminate trivial features and are

suitable for training the AI (artificial intelligence) models. The leaf

features are then extracted from the processed images and the

distribution of the leaf features is analyzed. Afterward, the machine

learning models are trained to classify the two weed species with the

use of the extracted leaf features from the preprocessed images

followed by the training of a deep learning model by using the

images directly. The performance of the models is analyzed and

compared subsequently. Finally, using transfer learning, an object

detection model is trained with the images containing a random

mixture of Palmer amaranth and waterhemp plants. The

methodology employed in this study is presented in Figure 1.
3 Research methods

3.1 Methods for data collection
and preprocessing

The data collection process for this study involves capturing

images of the two target weed species: Palmer amaranth (PA) and

waterhemp (WH). Seeds of both species were obtained in separate

packages, and genetic testing was performed prior to planting to

verify species identity. Fifty plants of each species were grown in

pots in a controlled greenhouse environment at North Dakota State

University (NDSU), Fargo, ND. To prevent any mixing of species

during growth and data collection, Palmer amaranth and

waterhemp plants were grown in separate designated areas of the

greenhouse, with permanent floor markers indicating species label.

The pots were continually irrigated under controlled

conditions, and image acquisition was performed using a high-

resolution camera (24.2 MP Canon EOS Rebel T7i DSLR, equipped

with an EF-S 18-55mm f/4-5.6 IS STM lens) established on a stable

platform, with the lens focused normally to the leveled soil surface
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of a pot. Images were taken under controlled lighting conditions,

with the greenhouse lights turned off to prevent interference with

the imaging process. Care was also taken to ensure the plants’

growth was not impeded or harmed during the image-

acquiring process.

To ensure accurate data labeling and prevent any mixing of

images between species, the image acquisition was conducted

sequentially - completing all images for one species before

moving to the next. During image acquisition, a temporary

identification sheet displaying the species name was placed within

each image frame for later corroboration. Images were acquired

daily from the day of emergence between 1:00 p.m. to 3:00 p.m. and

were captured at three different heights: 5 cm, 10 cm, and 20 cm

from the soil surface, maintaining a 90-degree angle to the pot soil

surface. The details of the experimental setup are provided in

Table 2. A total of 2,000 images were acquired: 1,000 images each

of Palmer amaranth and water hemp. The raw images were

captured in RAW format and converted to JPEG, consisting of

three channels (red, green, and blue) with a resolution of 4020 ×

6024 pixels. The acquired images underwent preprocessing for

training the classification and object identification models. The

preprocessing protocol involved the systematic removal of

secondary features such as pot area, dead leaves, soil background,

and the temporary identification sheets using the Image Segmenter
FIGURE 1

Illustration of study methodology employed in this work.
TABLE 2 Details of the experiment conducted for image acquisition.

Number of pots involved 50

Number of pots of Palmer amaranth 25

Number of pots of Waterhemp 25

Start date of image acquisition 01/19/2021

End date of image acquisition 02/23/2021

Time of image acquisition 1 p.m. to 3 p.m.

Date of leaf emergence of Palmer amaranth 01/28/2021

Date of leaf emergence of waterhemp 02/05/2021
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tool in MATLAB. The final preprocessed images consist only of

plants against a black background, as illustrated in Figure 2.
3.2 Methods for assessing the accuracy of
the classification models

This study utilizes five key metrics to evaluate the performance

of the artificial intelligence (AI) models: 1) classification accuracy,

2) confusion matrix, 3) precision, 4) recall, and 5) F1-score. For the

classification models, accuracy is reported for the overall dataset,

while confusion matric, precision, recall, and F1-score are applied to

assess class-wise performance. In contrast, for the object detection

model, only classification accuracy is used, but it is also evaluated on

a per-class basis. The details of these metrics are explained below.

Classification accuracy is the ratio of the number of correctly

classified instances to the number of total testing instances.

Confusion matrix is an important performance metric after

classification accuracy. It is a contingency table that summarizes

(as counts or proportions) correct and incorrect classifications of

the data instances of the individual classes. The rows of the

confusion matrix correspond to true classes and the columns of

the confusion matrix correspond to the predicted classes. The size of

the confusion matrix is nc  �nc. Here, nc denotes the number of

class labels, in our case, nc = 2 as the class labels are two: ‘PA’

(Palmer amaranth) and ‘WH‘ (Waterhemp). The diagonal elements

of the confusion matrix record the correctly classified instances of

each class and off-diagonal elements record the instances of each

class misclassified into other classes. Figure 3A shows an illustrative

confusion matrix used in this study. ‘PP’, ‘PW’, ‘WP’, ‘WW’ are

shown as the entries of this confusion matrix. The first script of an

entry signifies the true class, and the second script signifies the

predicted class. For example, ‘WP’ represents the instances that

belong to the waterhemp (W) class classified into the Palmer

amaranth (P) class. Precision, Recall, and F1-score are determined

using the entries of the confusion matrix. These three metrics are

computed class-wise (individually for each class) using the

expressions given in Table 3. Precision is the ratio of the number

of correctly predicted instances of a class to the total number

of predictions made in that class. Recall is the ratio of the
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number of correctly predicted instances of a class to the total

number of instances in that class. Precision measures the preciseness

of the class predictions whereas Recall measures the extent to which

true instances of a class are identified. F1-score combines both these

metrics, and it is a harmonic mean of Precision and Recall.
4 Results and discussion

4.1 Classification of Palmer amaranth and
waterhemp using machine
learning approach

Machine learning (ML) models are computer algorithms that

can make decisions or predictions by implicitly learning from the

data fed to them. ML approaches are less data-intense and thus

suitable when the predictions are to be made with a small amount of

data (Mahesh, 2020). Accordingly, ML approaches demand less

computational overhead and take a smaller training period. In our

current study, four popular machine learning approaches namely

support vector machines (SVM), k-nearest neighbors (KNN),

random forest (RF), and logistic regression (LR) are employed to

classify palmer amaranth and waterhemp. The training of these

machine learning models begins with data generation through

feature extraction, followed by the preparation of a structured

(tabular) dataset, configuration of the classification models, and

subsequent performance analysis.
4.2 Data generation for machine
learning approach

The dataset that is required to train machine learning models

for the classification of Palmer amaranth and waterhemp involves

two steps: 1. Extracting geometrical features of the weed species

from leaf images, and 2. Compute non-dimensional input features

(predictors). The geometrical parameters were obtained from the

preprocessed images of Palmer amaranth and waterhemp leaves

were captured from Day 8 to Day 14 after emergence (refer to

Section 3). A total of 36 individual leaves from each species were
FIGURE 2

(A) Original image of weed foliage, and (B) image after removing the extraneous features.
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randomly selected, yielding 312 total observations (156 for each

species). Leaf images with distortions were excluded from the

analysis to ensure accurate measurements. Leaf geometrical

parameters namely length (L), breadth (B), perimeter (P), and

area (A) were measured from the preprocessed images of each

weed species (Palmer amaranth and waterhemp) using ImageJ

software. Length (L) was measured along the petiole axis (major

axis) of the leaf, while the breadth (B) was measured perpendicular

to the major axis. Perimeter (P), and area (A) are obtained by

tracing a curve along the leaf boundary. The geometrical parameters

were then used to compute dimensionless quantities, including

aspect ratio (q), circularity (y ), and roundness (R), using the

formulas outlined in Table 4. These dimensionless features were

selected as input predictors for the machine learning models

because previous studies (Aakif and Khan, 2015; Salve et al., 2016;

Elnemr, 2017) have demonstrated that they effectively capture the

essential discriminatory information from the raw geometrical

parameters. Furthermore, the use of dimensionless parameters

ensures that the features are unaffected by image magnification,

providing consistency across different image scales. Additionally,

using a smaller number of features allows the machine learning
Frontiers in Agronomy 05
models to learn more efficiently, often requiring fewer examples to

identify the underlying patterns.
4.3 Dataset preparation for machine
learning approach

A tabular dataset was then prepared with these dimensionless leaf

geometrical quantities as input features (predictors) from 312 data

instances equally divided between the two weed species. The tabular

dataset, D1, consists of a feature array, X1 ∈ Rn�m, and a label vector,

Y1 ∈ Rn�1, where n is the number of data instances and m is the

number of input features. In the current case, n and m are 312 and 3

respectively. A kth row of the feature array is defined as x(k) =

(x(k)1, ⋯, x(k)m ), where x(k)1, :::, x
(k)
m are the input features and k ranges

from 1  to  n. The tabular dataset is divided into training (D1,tn) and

testing (D1, tt) dataset with a 70:30 split ratio. Afterward, the ML

models employed in the study are trained with the training dataset,Dtn

. The performances of the models are then evaluated with the testing

dataset, Dtt using metrics such as classification accuracy, confusion

matrix, precision, recall, and F1-score (Naser and Alavi, 2021).
A
ct
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Random Forest SVM

PA 17 15 21 11

WH 4 28 12 20

Logistic KNN

PA 18 14 18 14

WH 8 2 6 26

PA WH PA WH

Confusion matrix

PA PP PW

WH WP WW

PA WH

A
ct

ua
l

Predicted

Predicted

(a) (b)

FIGURE 3

(A) Illustrative confusion matrix for the classification of Palmer amaranth (PA) and waterhemp (WH). The first letter of a label inside a matrix cell
signifies the true category and the second letter on the label signifies the predicted category. (B) Confusion matrices of the ML models: 1. Random
Forest (RF), 2. Support Vector Machine (SVM), 3. Logistic Regression (LR), and 4. K-nearest neighbors (KNN) employed for the classification of PA and
WH. The diagonal elements of the confusion matrices show the counts of correctly classified instances, and the off-diagonal elements show the
counts of misclassified instances.
TABLE 3 Expressions to compute class-wise performance metrics.

Metrics Class PA Class WH

Precision PP =
PP

PP +WP
PW =

WW
WW + PW

Recall RP =
PP

PP + PW
RW =

WW
WW +WP

F1-score FP =
2PPRP

PP + RP
FW =

2PWRW

PW + RW
TABLE 4 Expressions to compute dimensionless leaf quantities.

Aspect ratio q = L=B

Circularity y = 4pA=P2

Roundness R = 4A=pL2
Where L and B are the length and breadth of a leaf along the major axis and minor axis
respectively, A is the area of the leaf and P is the perimeter.
frontiersin.org

https://doi.org/10.3389/fagro.2024.1425425
https://www.frontiersin.org/journals/agronomy
https://www.frontiersin.org


Venkataraju et al. 10.3389/fagro.2024.1425425
4.4 Preliminary data analysis on the
extracted data

Before applying machine learning models for classification,

preliminary data analysis was conducted to examine the evolution

of the dimensionless geometric quantities for each weed species. This

analysis aimed to understand how the input features (predictors) –

aspect ratio (q), circularity (y ), and roundness (R)—change over

time after emergence for both Palmer amaranth and waterhemp.

The evolution of mean values of these quantities from Day 8 to Day

14 after emergence were plotted in Figure 4. The mean aspect ratios

of Palmer amaranth and waterhemp plotted in Figure 4A exhibit an

overall downward trend over the days of growth. The mean aspect

ratio of Palmer amaranth gradually falls from 3.01(day 8) to 2.74

(day 14) whereas waterhemp falls from 2.39 to 2.10. Figure 4A also

illustrates that the mean aspect ratios of Palmer amaranth are

considerably less than the mean aspect ratios of waterhemp at all
Frontiers in Agronomy 06
the days of growth (day 8-day 14). Figures 4B, C confirm an overall

increasing trend of mean circularity and mean roundness for both

Palmer amaranth and waterhemp. However, both these quantities

exhibit only narrow variation over the days of growth. The mean

circularity of Palmer amaranth and waterhemp are in the range of

0.64-0.67 and 0.74-0.78, respectively, whereas the mean roundness

values are in the range of 0.38-0.42 and 0.46-0.54, respectively.

Figures 4B, C also indicate the mean circularity and roundness of

waterhemp is considerably higher than Palmer amaranth between

day 8 and day 14. Even though, the mean values of these

dimensionless parameters display a clear demarcation between

Palmer amaranth and waterhemp, the spread of these individual

quantities at each day of the growth (between day 8 and day 14)

demonstrates wider variation and significant overlap between the

two weed species (refer Figure 5). Evidently, the plots in Figures 5A–

C display the need for machine learning models for accurate

classification of Palmer amaranth and water hemp.
FIGURE 4

Plot of the (A) mean aspect ratio, (B) mean circularity, and (C) mean roundness of the weed leaves over the second week of growth of Palmer
amaranth (PA) and waterhemp (WH).
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4.5 Configuration of machine learning
classification models

4.5.1 Support vector machine
SVM (Pisner and Schnyer, 2020) is one of the most widely used

supervised machine learning algorithms, known for its ability to

classify data by constructing hyperplanes that maximize the margin

between support vectors. For linearly separable data, a hard margin

is applied, while for non-linearly separable data, a soft margin is

used. SVM also employs the kernel trick to handle non-linear

classification problems. Commonly used kernels include linear,

polynomial, radial basis function (RBF), and sigmoid kernels.

In this study, we utilized an SVM with the RBF kernel. Two key

hyperparameters in SVM are the penalization parameter (C) and

the kernel coefficient (g). The parameter C controls the trade-off

between maximizing the margin and minimizing classification

errors by imposing a penalty on misclassifications. A higher value

of C results in a model with lower bias and higher variance, meaning

it prioritizes minimizing errors but may overfit the data. The

parameter g determines the curvature of the decision boundary by
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controlling the influence of each data point on the boundary. A

higher g makes the model more sensitive to individual data points,

resulting in a more complex decision boundary.

To find the optimal values for C and g, we employed a grid

search with cross-validation (using the ‘GridSearchCV’ technique

from the SciPy package). In this process, C was varied

logarithmically from 10−1 to 103 in powers of 10, while g was

varied from 10−4 to 1. We used fivefold cross-validation to evaluate

the performance across different splits of the dataset, optimizing for

the most accurate model. As a result of this hyperparameter tuning,

the best parameter estimates for C and g were found to be 100 and

1, respectively.

4.5.2 Random forest classifier
A RF classifier (Probst et al., 2019) is an ensemble learning

method that consists of multiple decision tree classifiers, often

referred to as estimators. Each estimator is built by randomly

sampling a subset of features from the input data, and it classifies

the input by casting a vote for a specific class. The final prediction of

the RF classifier is determined by aggregating the votes from all
FIGURE 5

Box plot comparison of leaf (A) aspect ratio, (B) circularity, and (C) roundness. Blue (left) represents Palmer amaranth, and red (right)
represents waterhemp.
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individual trees, with the class receiving the majority of votes being

selected as the output.

Several hyperparameters influence the performance of the RF

classifier. These include the number of estimators, which controls

how many decision trees are used; maximum depth, which limits

the depth of each tree to prevent overfitting; minimum samples per

leaf, which restricts the number of samples required at each leaf

node; and minimum samples per split, which controls how many

samples are needed to split a node. Additionally, bootstrapping can

be applied to introduce variance by sampling subsets of data when

building trees.

In our study, we varied these hyperparameters by testing the

number of estimators from 10 to 200, maximum depth from 10 to

100, minimum samples per leaf with values of 1, 2, and 4, minimum

samples per split with values of 2, 5, and 10, and we considered both

bootstrapping and no bootstrapping. To efficiently search for the

best hyperparameters, we used a randomized search technique with

100 iterations and fivefold cross-validation, as implemented in

SciPy ’s ‘RandomizedSearchCV ’ . This approach, a more

computationally efficient alternative to grid search, helped identify

the optimal hyperparameters: 73 estimators, a maximum depth of

50, minimum samples split of 10, a minimum samples leaf of 4, and

bootstrapping enabled. These settings resulted in the best model

performance for the RF classifier in this study.

4.5.3 K-nearest neighbors approach
KNN approach (Taunk et al., 2019) involves distance functions

to find a group of ‘ k‘ instances that are closest to the unknown

samples. Euclidean, Minkowski, Manhattan, and Cosine are some

of the distance functions generally used. In our study, Euclidean

distance, a widely used distance function is employed. In KNN, the

choice of k directly impacts the model’s bias-variance trade-off. A

lower k value results in low bias but high variance, leading to

potential overfitting, while a higher k value leads to high bias and

low variance, risking underfitting. In this study, we varied the k

value from 3 to 30 in steps of 1F and selected the k value of 5 as the

one that yielded the best performance on the test set.

4.5.4 Logistic regression
LR (Gladence et al., 2015) models the relationship between the

input features and the target variable using the sigmoid function,

which maps outputs to probabilities between 0 and 1. The model is

trained using maximum likelihood estimation as the loss function.

For binary classification, data instances with a predicted probability

less than or equal to 0.5 are classified as class 0, while those with a

probability greater than 0.5 are classified as class 1. Unlike other

models, logistic regression does not require hyperparameter tuning,

making it a straightforward and efficient approach for binary

classification tasks.

All these four machine learning models were trained with

hyperparameters optimization using SciPy 1.7.3 package in the

Python environment.
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4.6 Classification performance of the
trained ML models

The classification accuracies of the employed ML models are

compared in Figure 6, and it is evident from the figure that the

random forest model achieved the top classification accuracy of

70%. Nevertheless, the classification accuracies of the other three

models are not far from the accuracy of the random forest model.

The classification accuracies of the ML models are in the range of

64% to 70%. Figure 3B shows confusion matrices obtained for the

four ML models. Confusion matrices of all the ML models except

SVM show that the number of misclassifications of PA instances (to

WH) is higher than the number of misclassifications of WH

instances (to PA). Consequently, the number of correctly

classified PA instances is less than the number of correctly

classified WH instances in the confusion matrices of those

models. Interestingly, even though misclassifications of both PA

and WH are higher in SVM than the other three models, it is the

only model where misclassification of PA and WH are almost equal

or balanced. The precision of PA and WH for the ML models are

plotted in Figure 7A, recall values are plotted in Figure 7B and F1-

score values are plotted in Figure 7C. Precision of PA (0.81) is

greatest for the Random Forest model. The precision of WH is

almost the same in all the models (0.63-0.65) and it is lower than the

Precision of PA in all the models except for the SVM model. Recall

of PA is highest (0.66) for the SVM model and Recall of WH is

highest (0.88) for the random forest model. The F1-score of PA is

highest (0.64) for the SVMmodel and the F1-score of WH is highest

(0.75) for the random forest model. The random forest model either

outperforms the other three models or performs marginally better

than them in most cases. It only performs the poorest in the case of

Recall of PA (0.53).
FIGURE 6

Comparison of classification accuracies of the ML models: 1.
Random Forest (RF), 2. Support Vector Machine (SVM), 3. Logistic
Regression (LR), and 4. K-nearest neighbors (KNN) employed in the
study. The random forest model achieves the top classification
accuracy of 70.3% among the ML models.
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5 Classification of Palmer amaranth
and waterhemp using a deep
learning approach

The performance of the ML models discussed in the previous

section (Section 5) clearly illustrates the inadequacy of the ML

approach in satisfactorily distinguishing palmer amaranth from

waterhemp. Moreover, the process of hand-crafting the features that
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are extracting the morphological characteristics and engineering them

for further classification by ML models is labor-intensive and time-

consuming. Alternatively, Palmer amaranth and waterhemp can be

classified directly from their images using a convolutional neural

network (CNN), a deep learning model, without the need to extract

their leaf geometrical features. Deep learning, a subset of machine

learning, is preferred when the input (images, texts, and other media

input formats) or the model relationship is too complex to be handled

by standard ML approaches (Dargan et al., 2020).
FIGURE 7

Comparison of (A) precision, (B) recall, and (C) F1-scores of Palmer amaranth (PA) and waterhemp (WH) for the employed ML models. The random
forest model has the highest values of precision for both PA and WH. The highest value of recall of PA and WH is 0.66, for the SVM model, and 0.88,
for the random forest model respectively. The F1-score of PA is almost the same for all the models and the highest value is 0.65 for SVM.
The highest F1-score of WH is 0.75 for the random forest model.
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5.1 Background: Working of a CNN

CNN is an artificial neural network extensively used for image-

related tasks, notably for image classification. A standard CNN

consists of convolutional and pooling layers in addition to fully

connected layers. Convolution and pooling layers form the

backbone (lower and intermediate layers) of a CNN network and

fully connected layers form the head of the network (upper layers).

The final layer of the CNN head is the output layer. Convolution

layers extract spatially related features from the input image.

Convolution involves matrix operations between input and kernel

filters and results in feature maps. These feature maps are further

transformed with activation functions to impart more non-linearity

to the model. ReLU, tanH, and eLU are some commonly used

activation functions. Activated feature maps of a convolutional

layer or a convolutional block (a stack of convolutional layers) are

normally subjected to pooling before subsequent convolution.

Pooling decreases the spatial size of the convoluted feature by

combining the output of one layer’s neuron cluster into a single

neuron in the following layer. Pooling is of two types: max pooling

and average pooling. The pooling operation involves sliding a

window over feature maps and extracting only the highest (max

pooling) or average (average pooling) values of the feature maps

bounded by the window as illustrated in Figure 8. The high-level

features obtained through successive convolution and pooling

operations are feed forwarded further to a fully connected output

layer. In the case of image classification, a ‘SoftMax’ activation

function is used for the output layer to predict the hot-coded actual

output, and a cross-entropy loss function is used for model training.

Batch normalization and Dropout layers are also used in CNN for

regularizing (generalizing) the network. The batch normalization

layer normalizes the input batches of the intermediate layers

(Bjorck et al., 2018) and Dropout layers blocks a specified

fraction of randomly selected neurons from the training (Baldi

and Sadowski, 2013). A regularized network exhibits similar

prediction performances for both the exposed data and

unforeseen data.
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5.2 Dataset preparation for CNN

An image dataset is built from the acquired images of palmer

amaranth and waterhemp to train and configure the CNN model.

The process of acquiring the image data is described in detail in

Section 3. The acquired images are cropped and resized to 200×200

pixels to obtain a leaner model (model with fewer trainable network

parameters). A total of 2,000 images, 1000 images for each weed

species, are acquired originally. However, to prevent the model

from overfitting, 7000 images are added to each weed species

through data augmentation techniques which include the change

in brightness, change in contrast, conversion to black and white,

scaling, and rotation of the original images. Table 5 shows the effect

of each augmentation technique used in this analysis on an image

example. The final training dataset consists of 16,000 images of size

200×200 pixels in two classes (PA and WH) with 8,000 images per

class. The final augmented dataset (D2) for this classification task is

comprised of an image array, X2 ∈  Rn�I�I , and a hot-coded label

array, Y2 ∈  Rn�c where n is the number of image instances, I is the

image dimension, and c is the number of classes which are 18,000,

200, and 2, respectively, for the current task. The dataset used for

the training and testing is denoted as D2,tn and D2,tt , respectively.

The testing dataset, D2,tt , consists of 2,000 image instances which

are added with gaussian noise of intensity 0.04. This is done to

obtain a robust model which does not result in significant

degradation of classification performance for the field images

addled with noises. Figure 9 shows an example image added with

the gaussian noise.
5.3 Training and configuration of CNN
(DL) model

The CNN model is trained and configure using TensorFlow

2.6.2. The model was fitted to the training dataset using ADAM

(Kingma and Ba, 2014) optimization with 100 epochs. Several

configurations for CNN model were explored by increasing the
FIGURE 8

Illustration of pooling operations. (A) A feature map of size 4×4 subject to pooling operations, (B) a pooling window of size 2×2 with stride (step size)
of 2 is moved over the input at each step and the encircled numbers show the step position of the center of pooling windows. The color shades
indicate the regions involved in the pooling operation at a particular step, and (C) pooled outputs of the input feature map after max pooling and
average pooling.
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number of filters and the number of convolutional layers to improve

feature extraction capabilities. Additionally, batch normalization

was tested to stabilize and accelerate the training process by

normalizing the input batches for intermediate layers. To further

enhance the generalization performance of the model, we

investigated dropout values ranging from 0.1 to 0.5. Based on the

classification performance on both the training and testing datasets,

a dropout value of 0.2 was selected as the optimal balance between

underfitting and overfitting. To prevent overfitting and ensure the

best generalization to unseen data, early stopping criteria were

applied. This allowed the model to halt training when test accuracy

began to drop, effectively selecting the model with the best

generalization performance. Dropout layers and early stopping

helped ensure that the final model did not overfit, while achieving

stable classification performance across training and testing

datasets. The architecture of the finally configured CNN model is

shown in Figure 10, with the details of its layers summarized in

Table 6. The model employed ReLU activation in the convolutional

layers and SoftMax in the output layer for classification.
5.4 Classification performance of the CNN

Classification accuracies of 96.2% and 92.8% are obtained for

the training and the testing dataset respectively using the configured

model. The small positive difference between the classification

accuracies of the training (96.2%) and testing (92.8%) datasets

indicates that there is no significant overfitting in the model,

suggesting that the model generalizes well to unseen data. The

slight discrepancy may be attributed to the inclusion of noisy

images in the testing dataset. These noisy images simulate real-

world conditions and naturally make classification more

challenging, which can lead to a marginal drop in performance

compared to the cleaner training data. The classification accuracy

(92.8%) obtained for the CNN model (deep learning model) is

significantly higher than the accuracy (70.3%) of the random forest

model (ML model). Figure 11 shows the confusion matrix of the

model for the test data along with the confusion matrix of the

random forest model (top MLmodel). The confusion matrix reveals
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that the inaccuracy of the model is mainly due to the

misclassification of 145 image instances of PA as WH.

Accordingly, both the Precision of PA and the Recall of WH are

100%, while the Precision of WH and the Recall of PA are 87% and

85% respectively. F1-scores of PA and WH are almost equal and of

value 92.5% approximately. Class-wise performance metrics namely

Precision, Recall, and F1-score of the CNN model are compared

with the performance metrics of the random forest model in

Figure 12. As observed in the figures, class-wise performance

metrics of the CNN model also outperform the ML model.
6 Multi-object classification of mixture
of weed foliage using transfer learning

In Section 6, a highly accurate CNN model is designed for the

classification of Palmer amaranth and waterhemp. Though the

model is accurate, it can only identify whether the given image

belongs to either Palmer amaranth or waterhemp and it requires

single object input images. Here, a single object means single foliage

of either of the weed plants. However, the real-time identification of

these two weed species will involve field images that contain a

random mixture of foliage of both weed species. Thus, it is

important to localize each object (foliage of either weed species)

which means identifying individual objects in an image and

categorizing it to either of the classes. This necessitates the need

for an object detection model for accurate localization of the

weed foliage.
6.1 Background: object detection (multi-
object classification)

Object detection is a computer vision technique that locates

individual objects by drawing bounding boxes around the objects

and labeling them according to their classes (Zou et al., 2019). The

process of object detection involves three stages: 1. informative

region selection in which the input images are scanned through a

multiscale sliding window to find all the possible regions of objects
TABLE 5 Data augmentation techniques and their effects on an image.

Original
Brightness
variation

Contrast variation Black & white conversion Scaling

90° rotation 180° rotation 270° rotation
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2. feature selection where visual features of the objects in the image

are extracted for object recognition, and 3. classification in which

each object is labeled according to their classes. Training an

accurate object detection model from the ground up requires a

fully annotated image dataset of large size which comprise different

combinations of individual objects. Building such large datasets is

usually highly expensive and not viable in many cases. However,

object detection models of the desired accuracy can be designed

with smaller datasets using transfer learning (Jose et al., 2022).

Transfer learning (Zhuang et al., 2021), an ML method, adopts the

knowledge acquired in a different but similar task to improve the

learning of the current task. Transfer learning is formally defined

using two important definitions namely ‘domain’ and ‘task’.

Domain, D, is characterized by a feature space, F , and a

marginal distribution, P(X), where X ( ∈ F ) is the feature data

and F spans all the possible feature data. Task, T , is characterized

by a label space, L, and a conditional distribution, P(YjX), where
Y ( ∈ T ) is the label data and L spans all the possible label data.

Formally, transfer learning focuses on learning the task, T T , in the
FIGURE 9

(A) Preprocessed image of weed foliage used in the deep learning classification, and (B) the same image after the addition of Gaussian noise of
intensity 0.04.
FIGURE 10

Architecture of convolutional neural network, a deep learning model, employed in the study for the classification of Palmer amaranth and
waterhemp. The network consists of 5,394 trainable parameters and achieved a classification accuracy of 92.3% on the Gaussian noise-added
testing dataset.
TABLE 6 Details of the convolutional neural network architecture used
for the classification of Palmer amaranth and waterhemp.

Layer
Layer/

Pool size
Activation

Data
Size

Input – – 200×200×3

Convolutional
Layer 1

8×5×5 ReLU 196×196×8

Max pool Layer 1 5×5 – 39×39×8

Convolutional
Layer 2

16×5×5 ReLU 35×35×16

Max pool Layer 2 5×5 – 17×17×16

Flatten Layer – – 784×1

Dropout (0.2) – – 784×1

Output layer 2×1 SoftMax 2×1

Total number of trainable network parameters: 5, 394
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target domain, DT, by utilizing the knowledge of the task, T S,

executed in the source domain,DS. The subscript S and T stands for

the source and the target respectively. Transfer learning for object

detection is executed with the following three steps, 1. identifying a

well-trained object detection model with a feature space that can

accommodate our feature data (multi-object weed images), 2.

modifying the head of the object detection model by adding a few

trainable layers including the output layer to rework the label space,

and 3. fine tune the trainable layers to carry out the target task

(detection of the weed species).
6.2 Dataset preparation

An annotated image dataset is built to fine-tune the head of the

object detection model. The annotation of the images used in the

dataset involves drawing bounding boxes around objects (weed

foliage) in the images and obtaining the objects’ classes, coordinates,

and dimensions of the bounding boxes. A total of 3,200 images, 1,600

per each weed class, are used for the training dataset and the

annotation for these images is carried out using an open-source tool

called ‘LabelImg’. All these images contain only one object (foliage of

either of a weed classes). Thus, the training dataset, D3,tn, built for the

object detection task consisting of an image array,X3,tn ∈ Rn�I�I , and

an annotation array, Y3,tn ∈  Rn�p. Here, n, the number of instances,

is 3,200, and p, the number of annotation columns, is 5. A kth row of

the annotation array is defined as yk = (l, x, y, b, h), where  l is an

object label, x and y are coordinates of a bounding box, and b and h

are width and height of a bounding box, respectively. To test the

performance of the trained object detection model, a testing dataset,

D3,tn, consisting of 12 multi-object (more than one object in an image)

images of size 4,000 × 4,000 is constructed. The multi-object images

are created by making collages of 10 to 12 weed foliages of palmer

amaranth and waterhemp on a black background. The foliages of the

weed plants are randomly selected from 132 weed images (61 per each
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class) that were not part of the D3,tn. To simulate the field setting, the

weed foliages in a multi-object image are chosen with different ages

and are spread around randomly both at close and distant proximities.

Figure 13 shows two examples of the multi-object images created for

testing the object detection model, and Figure 14 shows the labeled

image outputs of the trained object detection model for the image

examples shown in Figure 13. The bounding boxes in red color

represent palmer amaranth class and the pink color bounding boxes

represent waterhemp class.
6.3 Configuration of an object
detection model

In this study, a state-of-the-art object detection model, YOLOv5,

pre-trained on the COCO dataset is employed for weed detection.

YOLOv5, an acronym for You Only Look Once, is a powerful single-

stage object detector that detects objects present in an image in a single

shot. Single-stage object detectors, though slightly less accurate, are

faster than two-stage object detectors. Single-stage object detectors

make predictions directly from the generated feature maps whereas

two-stage detectors employ a region proposal network for processing

the feature maps and making predictions on the proposed regions.

The YOLOv5 model is composed of three network components, a

backbone, a neck, and a head. The backbone of YOLOv5 uses cross

stage partial (CSP) network for extracting information-rich features

from the image. It also decreases the image resolution and enhances its

feature resolution. The neck is composed of spatial pyramid pooling

(SPP) and path aggregation network (PANet) and is responsible for

constructing feature pyramids. Feature pyramids are important for

scale invariance and generalizing performance of the object detection

model. Finally, the head which consists of three convolutional layers

predicts the location and size of the bounding boxes, object scores, and

object classes. More about YOLOv5 can be read elsewhere (Thuan,

2021). The COCO dataset (Lin et al., 2014) used for pretraining
FIGURE 11

(A) Confusion matrix of the best machine learning model (random forest model) and (B) confusion matrix of the deep learning (DL) model
(convolutional neural network, CNN). Each cell of the confusion matrices shows the total number of instances (top), and the percentage of class
instances (bottom) that belong to the respective cell categories. The misclassification of Palmer amaranth (PA) instances as waterhemp (WH) is
significantly higher than the misclassification of WH as PA, both in the case of the ML model and the DL model.
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FIGURE 12

Comparison of classification performance of the top machine learning model (random forest model) and the deep learning model (convolutional
neural network). The deep learning model outperforms the top machine learning model on all fronts of performance evaluations.
FIGURE 13

Multi-object images developed for the training of the object detection model. These images are generated by distributing the individual foliages of
(A) Palmer amaranth and (B) waterhemp over a black background.
FIGURE 14

Multi-object images predicted with class labels and confidence scores by the fine-tuned YOLOv5 model. The red and pink bounding boxes denote
(A) Palmer amaranth and (B) waterhemp, respectively.
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YOLOv5 consists of 330,000 images of 80 different general object

categories (dog, cat, boat, airplane, plants, and so on). The final three

convolution layers of the YOLOv5 are configured to label the object

into two weed classes: PA and WH.
6.4 Object detection (multi-object
classification) model performance

The results of the object detection model obtained for the 12 test

images are summarized in Table 7. Figures 15, 16 show the
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graphical comparison of the classification accuracies of PA, WH,

and both PA and WH for the test images. As observed in Figure 15,

75% of the test images are predicted with object detection accuracies

of 80% and above and the mean object detection accuracy of the

model is 84.8% with a standard error of 3.53% (refer Figure 17). It is

evident from these results that the model achieves consistently good

accuracies for most of the test images. The mean accuracies of the

model for Palmer amaranth and waterhemp are 85.3% and 82.8%,

respectively, and the standard errors are 2.95% and 5.63%,

respectively. This shows that the model identifies palmer

amaranth more accurately and consistently than waterhemp.
TABLE 7 Summary of the object detection results obtained for the test images.

Image No.

Number of instances in an image

Palmer amaranth Water hemp Combined

All Correctly predicted All Correctly predicted All Correctly predicted

1 5 5 5 5 10 10

2 5 5 5 5 10 10

3 5 4 5 2 10 6

4 5 4 5 5 10 9

5 5 4 5 4 10 8

6 5 5 5 4 10 9

7 7 6 5 5 12 11

8 6 4 5 4 11 8

9 5 4 5 5 10 9

10 5 4 5 5 10 9

11 9 8 8 4 17 12

12 6 5 6 5 12 11

Total 68 58 64 53 132 112
FIGURE 15

Summary of the object detection accuracies of the test images for Palmer amaranth (PA) and waterhemp (WH). The accuracies for both PA and WH
are above 80% for most images.
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However, the model has shown satisfactory performance overall in

identifying the weed foliages irrespective of their age and proximity

to each other and thus will be a useful model in a real field setting.
7 Conclusions

The purpose of the current study is to automate the detection of

Palmer amaranth and waterhemp in the early stages of growth

(within two weeks of growth after germination). To this end, three
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different AI approaches namely machine learning, deep learning,

and objection detection were employed for weed detection. The

outcomes and conclusions drawn from the analysis conducted in

the study and from the implementation of these approaches are

summarized below:

1. The dimensionless leaf parameters such as aspect ratio,

circularity, and roundness generally used for differentiating fully

grown Palmer amaranth and waterhemp can only be measured in

the second week after emergence (Day 8 to Day 14) because of the

lack of visible growth in the first week. The distribution of these

dimensionless parameters of Palmer amaranth and waterhemp in

the second week of growth have shown a significant and complex

overlap between them.

2. Four top-performing ML models namely random forest,

SVM, logistic regression, and KNN were employed to classify

Palmer amaranth and waterhemp. Random forest, being the top-

performing ML model, achieved a classification accuracy of 70%.

The F1 scores of Palmer amaranth and waterhemp for the random

forest model were 0.64 and 0.75, respectively. Though the

classification performance of the ML approach is not satisfactory,

the ML models only involved a small amount of data (312 data

instances with 156 data instances per class) for the model training.

However, the extraction of the dimensionless features for a such

small amount of data is time-consuming and requires

manual intervention.

3. A convolutional neural network employed as a deep

learning model resulted in a good classification accuracy of

93.2%. The F1 scores of Palmer amaranth and waterhemp for

the random forest model were 0.92 and 0.93, respectively. The

deep learning approach required a larger amount of data

compared to the ML approach and hence the original data size

of 4000 (2000 image instances per class) is increased to 16,000

(8,000 image instances per class) using data augmentation

techniques. Though the DL approach is data-intense, it

performed significantly better than the best ML model.
FIGURE 16

Combined accuracies (including both Palmer amaranth and waterhemp) of the test images. The model achieves consistently good accuracies for
most of the test images.
FIGURE 17

Mean objection detection accuracy (averaged over all the test
images) of the model for Palmer amaranth (PA), waterhemp (WH),
and both PA and WH (ALL). The mean accuracy of WH is slightly
lesser than PA, however, the difference observed is marginal. The
variability of WH (Standard Error - 5.63) is greater than the variability
of PA (Standard Error - 2.95). The overall object detection accuracy
of the model is 84.8% with a standard error of 3.43%.
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4. The object detection model for the localized identification of

weeds from the images mixed with foliages of Palmer amaranth

and waterhemp was developed with the use of transfer learning.

By fine-tuning the head of YOLOv5 (the top 3 convolutional

layers) trained on the COCO dataset, an average object detection

accuracy of 83.5% is achieved. Only 3,200 single-object images

(images with single foliage of either palmer amaranth or

waterhemp) are used for fine-tuning. The developed object

detection model can identify the weed foliages irrespective of

their age and proximity to each other and thus will be a useful

model in a real field setting.
8 Limitations and future research

The images used in the classification and identification of

Palmer amaranth and waterhemp were captured under a

laboratory setting with controlled lighting conditions and with a

simple background. The effectiveness of these automation

approaches for the images acquired with different incident

angles, inclusions of plant and other extraneous features,

different environmental conditions, and different lighting

conditions need to be studied since the performance of the

machine learning and deep learning models was influenced by

the process of image acquisition. Even though it is evident that the

early distinguishing of Palmer amaranth from waterhemp is

valuable for weed management and consequently for enhancing

crop yields, cost analysis quantifying the financial impacts will be

beneficial to the agricultural community. The study currently

distinguishes Palmer amaranth from waterhemp, but it can be

extended to distinguishing Palmer amaranth from the other

pigweed species namely redroot pigweed (Amaranthus

retroflexus), smooth pigweed (Amaranthus hybridus), and

Powell amaranth (Amaranthus powellii).
Data availability statement

The original contributions presented in the study are included

in the article/supplementary material. Further inquiries can be

directed to the corresponding author.
Frontiers in Agronomy 17
Author contributions

AV: Data curation, Formal analysis, Investigation, Writing –

original draft, Writing – review & editing. DA: Formal analysis,

Methodology, Visualization, Writing – original draft, Writing –

review & editing. RY: Conceptualization, Funding acquisition,

Methodology, Project administration, Supervision, Writing –

original draft, Writing – review & editing. TP: Investigation,

Resources, Supervision, Writing – review & editing.
Funding

The author(s) declare financial support was received for the

research, authorship, and/or publication of this article. This study

was supported by North Dakota Corn Utilization Council. Any

opinions, findings, conclusions, or recommendations provided in

this paper are those of the author(s) and do not necessarily reflect

the views of the funding agency.
Acknowledgments

The corresponding author gratefully acknowledges Prof. Amit

Jhala fromUniversity of Nebraska-Lincoln for providing the Palmer

amaranth and waterhemp seeds used for conducting this study.
Conflict of interest

The authors declare that the research was conducted in the

absence of any commercial or financial relationships that could be

construed as a potential conflict of interest.
Publisher’s note

All claims expressed in this article are solely those of the authors

and do not necessarily represent those of their affiliated organizations,

or those of the publisher, the editors and the reviewers. Any product

that may be evaluated in this article, or claim that may be made by its

manufacturer, is not guaranteed or endorsed by the publisher.
References
Aakif, A., and Khan, M. F. (2015). Automatic classification of plants based on their
leaves. Biosyst. Eng. 139, 66–75. doi: 10.1016/j.biosystemseng.2015.08.003

Baldi, P., and Sadowski, P. J. (2013). Understanding dropout. Adv. Neural Inf.
Process. Syst. 26, 2814–2822.

Bensch, C. N., Horak, M. J., and Peterson, D. (2003). Interference of redroot pigweed
(Amaranthus retroflexus), Palmer amaranth (A. palmeri), and common waterhemp (A.
rudis) in soybean. Weed Sci. 51, 37–43. doi: 10.1614/0043-1745(2003)051[0037:
IORPAR]2.0.CO;2

Berger, S. T., Ferrell, J. A., Rowland, D. L., and Webster, T. M. (2015). Palmer
amaranth (Amaranthus palmeri) competition for water in cotton.Weed Sci. 63, 928–935.
doi: 10.1614/WS-D-15-00062.1
Bjorck, N., Gomes, C. P., Selman, B., and Weinberger, K. Q. (2018). Understanding
batch normalization. Adv. Neural Inf. Process. Syst. 31, 7694–7705.

Bradley, K., Nordby, D., and Hartzler, B. (2022). Biology and management of
waterhemp. The Glyphosate, Weeds and Crops Series GWC-13.

Butts, T. R., Vieira, B. C., Latorre, D. O., Werle, R., and Kruger, G. R. (2018).
Competitiveness of herbicide-resistant waterhemp (Amaranthus tuberculatus) with
soybean. Weed Sci. 66, 729–737. doi: 10.1017/wsc.2018.45

Chahal, P. S., Aulakh, J. S., Jugulam, M., and Jhala, A. J. (2015). “Herbicide-resistant
Palmer amaranth (Amaranthus palmeri S. Wats.) in the United States—mechanisms of
resistance, impact, and management,” in Herbicides, Agronomic Crops and Weed
Biology (InTech, Rijeka, Croatia), 1–29.
frontiersin.org

https://doi.org/10.1016/j.biosystemseng.2015.08.003
https://doi.org/10.1614/0043-1745(2003)051[0037:IORPAR]2.0.CO;2
https://doi.org/10.1614/0043-1745(2003)051[0037:IORPAR]2.0.CO;2
https://doi.org/10.1614/WS-D-15-00062.1
https://doi.org/10.1017/wsc.2018.45
https://doi.org/10.3389/fagro.2024.1425425
https://www.frontiersin.org/journals/agronomy
https://www.frontiersin.org


Venkataraju et al. 10.3389/fagro.2024.1425425
Dargan, S., Kumar, M., Ayyagari, M. R., and Kumar, G. (2020). A survey of deep
learning and its applications: a new paradigm to machine learning. Arch. Comput.
Methods Eng. 27, 1071–1092. doi: 10.1007/s11831-019-09344-w

Elnemr, H. A. (2017). “Feature selection for texture-based plant leaves classification,”
in 2017 Intl Conf on Advanced Control Circuits Systems (ACCS) Systems & 2017 Intl
Conf on New Paradigms in Electronics & Information Technology (PEIT), Alexandria,
Egypt. (New York: IEEE), 91–97. doi: 10.1109/ACCS-PEIT.2017.8303025

Gladence, L. M., Karthi, M., and Anu, V. M. (2015). A statistical comparison of
logistic regression and different Bayes classification methods for machine learning.
ARPN J. Eng. Appl. Sci. 10, 5947–5953.

Heap, I. (2020). The international herbicide-resistant weed database. Available at:
http://www.weedscience.org/Home.aspx

Ikley, J., and Jenks, B. (2019). Identification, Biology and Control of Palmer Amaranth
and Waterhemp in North Dakota (Fargo: NDSU Extension, North Dakota State
University).

Jiang, H., and Köhler, C. (2012). Evolution, function, and regulation of genomic
imprinting in plant seed development. J. Exp. Bot. 63, 4713–4722. doi: 10.1093/jxb/
ers145

Jose, J. A., Sharma, A., Sebastian, M., and Densil, R. V. F. (2022). “Classification of
Weeds and crops using transfer learning,” in 2022 International Conference on
Advances in Computing, Communication and Applied Informatics (ACCAI) (New
York: IEEE), 1–7.

Kingma, D. P., and Ba, J. (2014). Adam: A method for stochastic optimization. arXiv
preprint arXiv:1412.6980. doi: 10.48550/arXiv.1412.6980

Kohrt, J. R., and Sprague, C. L. (2017). Herbicide management strategies in field corn
for a three-way herbicide-resistant Palmer amaranth (Amaranthus palmeri)
population. Weed Technol. 31, 364–372. doi: 10.1017/wet.2017.18

Lin, T.-Y., Maire, M., Belongie, S., Hays, J., Perona, P., Ramanan, D., et al. (2014).
“Microsoft coco: Common objects in context,” in Computer Vision–ECCV 2014: 13th
European Conference, Zurich, Switzerland, Proceedings, Part V 13 (Springer
International Publishing), 740–755.

Mahesh, B. (2020). Machine learning algorithms-a review. Int. J. Sci. Res. (IJSR). 9,
381–386. doi: 10.21275/ART20203995

Mahoney, D. J., Jordan, D. L., Hare, A. T., Leon, R. G., Roma-Burgos, N., Vann, M.
C., et al. (2021). Palmer amaranth (Amaranthus palmeri) growth and seed production
when in competition with peanut and other crops in North Carolina. Agronomy 11,
1734. doi: 10.3390/agronomy11091734

Massinga, R. A., Currie, R. S., Horak, M. J., and Boyer, J. (2001). Interference of
Palmer amaranth in corn. Weed Sci. 49, 202–208. doi: 10.1614/0043-1745(2001)049
[0202:IOPAIC]2.0.CO;2
Frontiers in Agronomy 18
Molin, W. T., and Nandula, V. K. (2017). Morphological Characterization of
Amaranthus palmeri x A. spinosus Hybrids. Am. J. Plant Sci. 8, 1499–1510.
doi: 10.4236/ajps.2017.86103

Montgomery, J. S., Sadeque, A., Giacomini, D. A., Brown, P. J., and Tranel, P. J.
(2019). Sex-specific markers for waterhemp (Amaranthus tuberculatus) and Palmer
amaranth (Amaranthus palmeri). Weed Sci. 67, 412–418. doi: 10.1017/wsc.2019.27

Naser, M., and Alavi, A. H. (2021). Error metrics and performance fitness indicators
for artificial intelligence and machine learning in engineering and sciences. Archit.
Struct. Constr. 3, 499–517. doi: 10.1007/s44150-021-00015-8

Perkins, C. M., Gage, K. L., Norsworthy, J. K., Young, B. G., Bradley, K. W., Bish, M.
D., et al. (2021). Efficacy of residual herbicides influenced by cover-crop residue for
control of Amaranthus palmeri and A. tuberculatus in soybean.Weed Technol. 35, 77–81.
doi: 10.1017/wet.2020.77

Pisner, D. A., and Schnyer, D. M. (2020). “Support vector machine.” in Machine
learning (Cambridge, Massachusetts: Academic Press), 101–121. doi: 10.1016/B978-0-
12-815739-8.00006-7

Probst, P., Wright, M. N., and Boulesteix, A. L. (2019). Hyperparameters and tuning
strategies for random forest.Wiley Interdiscip. Reviews: Data Min. knowledge Discovery
9, e1301. doi: 10.1002/widm.1301

Roberts, J., and Florentine, S. (2022). A review of the biology, distribution patterns
and management of the invasive species Amaranthus palmeri S. Watson (Palmer
amaranth): Current and future management challenges. Weed Res. 62, 113–122.
doi: 10.1111/wre.12520

Salve, P., Sardesai, M., Manza, R., and Yannawar, P. (2016). “Identification of the plants
based on leaf shape descriptors,” in Proceedings of the Second International Conference on
Computer and Communication Technologies: IC3T 2015, vol. 1. (India: Springer), 85–101.

Steckel, L. E., and Sprague, C. L. (2004). Common waterhemp (Amaranthus rudis)
interference in corn. Weed Sci. 52, 359–364. doi: 10.1614/WS-03-066R1

Taunk, K., De, S., Verma, S., and Swetapadma, A. (2019). “A brief review of nearest
neighbor algorithm for learning and classification,” in 2019 International Conference on
Intelligent Computing and Control Systems (ICCS) (India: IEEE), 1255–1260.

Thuan, D. (2021). Evolution of Yolo algorithm and Yolov5: The State-of-the-Art object
detention algorithm. Thesis.

Trucco, F., Tatum, T., Robertson, K. R., Rayburn, A. L., and Tranel, P. J. (2006).
Characterization of waterhemp (Amaranthus tuberculatus)× smooth pigweed (A.
hybridus) F1 hybrids. Weed Technol. 20, 14–22. doi: 10.1614/WT-05-018R.1

Zhuang, F., Qi, Z., Duan, K., Xi, D., Zhu, Y., Zhu, H., et al. (2021). A comprehensive
survey on transfer learning. Proc. IEEE 109, 43–76. doi: 10.1109/JPROC.2020.3004555

Zou, Z., Shi, Z., Guo, Y., and Ye, J. (2019). Object detection in 20 years: A survey.
arXiv preprint arXiv:1905.05055. doi: 10.48550/arXiv.1905.05055
frontiersin.org

https://doi.org/10.1007/s11831-019-09344-w
https://doi.org/10.1109/ACCS-PEIT.2017.8303025
http://www.weedscience.org/Home.aspx
https://doi.org/10.1093/jxb/ers145
https://doi.org/10.1093/jxb/ers145
https://doi.org/10.48550/arXiv.1412.6980
https://doi.org/10.1017/wet.2017.18
https://doi.org/10.21275/ART20203995
https://doi.org/10.3390/agronomy11091734
https://doi.org/10.1614/0043-1745(2001)049[0202:IOPAIC]2.0.CO;2
https://doi.org/10.1614/0043-1745(2001)049[0202:IOPAIC]2.0.CO;2
https://doi.org/10.4236/ajps.2017.86103
https://doi.org/10.1017/wsc.2019.27
https://doi.org/10.1007/s44150-021-00015-8
https://doi.org/10.1017/wet.2020.77
https://doi.org/10.1016/B978-0-12-815739-8.00006-7
https://doi.org/10.1016/B978-0-12-815739-8.00006-7
https://doi.org/10.1002/widm.1301
https://doi.org/10.1111/wre.12520
https://doi.org/10.1614/WS-03-066R1
https://doi.org/10.1614/WT-05-018R.1
https://doi.org/10.1109/JPROC.2020.3004555
https://doi.org/10.48550/arXiv.1905.05055
https://doi.org/10.3389/fagro.2024.1425425
https://www.frontiersin.org/journals/agronomy
https://www.frontiersin.org

	Automated approaches for the early stage distinguishing of Palmer amaranth from waterhemp
	1 Introduction
	2 Overall study approach
	3 Research methods
	3.1 Methods for data collection and preprocessing
	3.2 Methods for assessing the accuracy of the classification models

	4 Results and discussion
	4.1 Classification of Palmer amaranth and waterhemp using machine learning approach
	4.2 Data generation for machine learning approach
	4.3 Dataset preparation for machine learning approach
	4.4 Preliminary data analysis on the extracted data
	4.5 Configuration of machine learning classification models
	4.5.1 Support vector machine
	4.5.2 Random forest classifier
	4.5.3 K-nearest neighbors approach
	4.5.4 Logistic regression

	4.6 Classification performance of the trained ML models

	5 Classification of Palmer amaranth and waterhemp using a deep learning approach
	5.1 Background: Working of a CNN
	5.2 Dataset preparation for CNN
	5.3 Training and configuration of CNN (DL) model
	5.4 Classification performance of the CNN

	6 Multi-object classification of mixture of weed foliage using transfer learning
	6.1 Background: object detection (multi-object classification)
	6.2 Dataset preparation
	6.3 Configuration of an object detection model
	6.4 Object detection (multi-object classification) model performance

	7 Conclusions
	8 Limitations and future research
	Data availability statement
	Author contributions
	Funding
	Acknowledgments
	Conflict of interest
	Publisher’s note
	References


