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Chitosan reduces naturally
occurring plant pathogenic fungi
and increases nematophagous
fungus Purpureocillium in soil
under field conditions
Raquel Lopez-Nuñez1, Jorge Prieto-Rubio1,2,
Inmaculada Bautista3, Antonio L. Lidón-Cerezuela3,
Miguel Valverde-Urrea1, Federico Lopez-Moya1*

and Luis V. Lopez-Llorca1

1Laboratory of Plant Pathology, Department of Marine Sciences and Applied Biology, University of
Alicante, Alicante, Spain, 2Desertification Research Centre (CIDE, CSIC-UV-GV), Moncada,
Valencia, Spain, 3Research Institute of Water and Environmental Engineering (IIAMA), Universitat
Politècnica de València, Valencia, Spain
Chitosan effects on soil properties were analysed both under laboratory

conditions by incubation with constant humidity and temperature and under

field conditions in two persimmon field plots with conventional and ecological

management. Chitosan was applied in solution or as coacervates. Application of

chitosan reduced soil pH, conductivity (CE), and cation exchange capacity (CEC)

in pots when applied at field capacity. Chitosan did not affect field soil respiration,

which is greatly dependent of soil moisture and temperature. Metabarcoding

showed that chitosan significantly modifies the fungal genera composition of

ecologically managed field soil. On the contrary, chitosan caused no significant

differences in bacterial taxa composition of soil under field conditions. Chitosan

coacervates increased naturally occurring nematophagous fungus

Purpureocillium (ca. 50-fold) in soil with respect to chitosan solution-treated

soil and untreated controls. In addition, chitosan reduced the inoculum of plant

pathogenic fungi Alternaria and Fusarium (20% and 50%, respectively) in field soil.

Soil microbial network analysis for ITS2+V1–V2 regions revealed that the

nematophagous fungus Pochonia promoted network clustering into modules.

Furthermore, network analysis for ITS2+V3–V4 regions showed that the

nematode trapping-fungus Orbilia and bacteria belonging to Acidimicrobiales

and Cytophagales significantly contributed to network clustering in field soil. Our

results show that chitosan coacervates increased soil nematophagous

microbiota and that both nematode egg parasites and trapping fungi help to

structure soil microbiota.
KEYWORDS

chitosan, metabarcoding, nematophagous fungi, plant pathogenic fungi, co-
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1 Introduction

The use of chemical pesticides, imposed by demographic

changes, is the most common strategy to improve agricultural

productivity. However, there is a trend towards the use of

ecological additives, such as chitosan, with low environmental

impact, instead of chemical synthesis agrochemicals such as

nematicides (Bautista-Baños et al., 2005; Lopez-Nuñez et al.,

2022). Chitosan is also a source of nitrogen for stimulating plant

growth (Pichyangkura and Chadchawan, 2015). The behaviour of

chitosan in soil is related to its cationic nature. This allows electrical

interactions with the negatively charged surfaces of clay minerals,

modifying its behaviour in soil (Hataf et al., 2018).

Chitosan can modify some soil properties (Reddy et al., 2018).

This biopolymer can act as a cohesive agent for clay particles (Hataf

et al., 2018). Arid soils are often low on natural polysaccharides,

which stabilise soil structure (Orts et al., 2000). Chitosan can bind

metal ions and limit their leachability, even in the presence of K+,

Cl−, and NO3
−, the dominant ions in soil (Kamari et al., 2011).

Furthermore, it can reduce the bioavailability of nickel (Turan,

2019; Heidari et al., 2020) and immobilises chromium when

combined with other adsorbents (Najafi et al., 2021). Chitosan is

a source of nitrogen, promoting plant growth (Pichyangkura and

Chadchawan, 2015). Chitosan is also an elicitor of plant defences

that can trigger physiological and structural responses in the plant,

inducing jasmonic acid (JA) and salicylic acid (SA) production

(Lopez-Moya et al., 2019; Suarez-Fernandez et al., 2020). Chitosan

is active against plant pathogenic nematodes (Khalil and Badawy,

2012), has antiviral and antifungal activity, and induces tolerance to

abiotic and biotic stresses in several horticultural crops (Iriti and

Varoni, 2015; Malerba and Cerana, 2016).

Chitosan sensitivity offilamentous fungi and yeasts increases with

carbon and nitrogen limitation (Lopez-Moya et al., 2015). Chitosan

permeabilises the membrane of the fungus Neurospora crassa, in an

energy-dependent manner. Conidia are most sensitive to chitosan

membrane permeabilization followed by germlings and vegetative

hyphae. Therefore, chitosan causes conidial lysis and death within

minutes (Palma-Guerrero et al., 2009). Membrane fluidity is a key

factor in fungal sensitivity to chitosan (Palma-Guerrero et al., 2010a;

Zavala-González et al., 2016). Chitosan-sensitive fungi such as

important plant pathogens (e.g., Fusarium spp. and Alternaria

spp.) have a high content of polyunsaturated fatty acids (Ren et al.,

2021; Chen et al., 2014). Plant diseases caused by species of the genus

Fusarium consist of vascular wilts and consequent rotting of roots,

stems, and the rest of the plant (Torres, 2000). Blight disease is one of

the most dominant diseases causing an average yield loss of 32%–57%

caused by the Alternaria genus (Mamgain et al., 2013). In contrast,

chitosan-resistant fungi such as nematophagous (e.g., Pochonia
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chlamydosporia) or entomopathogens (e.g., Beauveria bassiana)

have a lower presence of polyunsaturated fatty acids in membrane

lipids. These fungi express, upon exposure to chitosan, extracellular

hydrolytic enzymes (chitosanases, chitinases, and proteases) involved

in nematode egg penetration. Furthermore, chitosan increases

conidiation in nematophagous and entomopathogenic fungi

(Palma-Guerrero et al., 2010b, 2010c).

Current work on chitosan biological activity of chitosan has

focussed mostly on axenic systems. No data are available on the

effect of chitosan on soil microbiota under natural conditions.

Therefore, in this work, we studied the effect of chitosan on the

abundance of ecological agriculture soil microbiota using

metabarcoding and evaluated fungal and bacterial co-occurrence

networks. The effects of chitosan solutions or coacervates on soil

physicochemical properties were also studied both in the laboratory

and in the field.
2 Materials and methods

2.1 Chitosan solutions and coacervates

Chitosan powder (Marine Bioproducts GmbH, Germany) was

dissolved in 0.25 M HCl to obtain an initial concentration of 10 mg/

mL, and pH was adjusted to 5.6. The resulting solution was then

dialysed against distilled water for 2 days and autoclaved. Chitosan

solutions were stored at 4°C until used for a maximum of 30 days.

Control solutions were prepared likewise but without adding chitosan.

Chitosan was dissolved in sodium acetate buffer (pH 5) to

obtain a 3% solution. Chitosan coacervates (T8C) were formed by

dropping a 3% chitosan solution into 10% sodium hydroxide using

a plastic syringe (Terumo Europe NV), with a 0.2-mm-diameter

outlet. T8C were left for 5 min in the sodium hydroxide solution.

T8C were then washed in sterile distilled water to reach pH 8. T8C

were dried onto sterile filter paper in a laminar flow hood (Telstar

BV-100) for 24 h. T8C were then stored at room temperature in

sterile containers.
2.2 Application of chitosan to agricultural
field soil

Persimmon fields in Pedralba (Valencia, E, Spain), conventionally

(39° 35′ 55.25′′ N, 0° 43′ 47.31 W) and ecologically (39° 35′ 52.47′′
N, 0° 43′ 41.47 W) farmed, were selected for experiments (Table 1).

Soil properties were determined; soil was air-dried soil and sieved

through a 2-mm sieve. Soil pH was measured in a 1:2.5 (w/v) aqueous

solution using a pH meter (2001, Crison, Barcelona, Spain). Electrical
TABLE 1 Physicochemical characteristics of the soils used in this study.

Type soil Texture BD (g/cm3) pH (H2O) EC 1:5 (dS/m) CaCO3 (%) OM (%)

A Cq E Sandy loam 1.161 7.76 ± 0.03 0.40 ± 0.03 43.18 ± 0.12 13.05 ± 1.29

A Cq C Loam 1.303 8.16 ± 0.08 0.20 ± 0.06 37.04 ± 1.82 3.42 ± 0.05
BD, bulk density; EC 1:5, electrical conductivity extracts 1:5; OM, organic matter; A CQ E, Pedralba persimmon ecological; A CQ C, Pedralba Persimmon Conventional (Lull et al., 2021).
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conductivity was determined in a 1:5 (w/v) aqueous solution using a

conductivity meter (model, Crison). The carbonate content was

determined using a Bernard calcimeter. Soil organic matter (OM)

was determined by wet oxidation using the Walkley–Black titration

method (Walkley and Black, 1934). Soil texture was determined by the

Bouyoucos method (Bouyoucos, 1927). Surface soil (0 cm–10 cm)

from both plots was taken for the incubation experiment with pots in

growth chambers. Also, these plots were used for an experiment of

chitosan application in the field where two treatments were selected:

coacervates, only one application at the beginning of the experiment

and soluble chitosan applied monthly along 9 months with the dose

divided between the number of applications.

2.2.1 Field experiments
Three 1 × 1 m plots were marked in each field (Figure 1). Each

plot was subdivided into six 33 × 50 cm subplots. Three subplots per

plot were randomly selected for treatments. These included Control

(C) (no Chitosan), 1 mg/mL Chitosan solution (T8L), and Chitosan

coacervates (T8C). Selected T8C subplots were treated with

chitosan coacervates (9 g/subplot) at the start of the experiment.

C and T8L subplots were irrigated monthly (1 L/subplot) for 9

months with either distilled water (C and T8C) or 1 mg/mL

chitosan (T8L). Field soil moisture, temperature, and electrical

conductivity were measured monthly (for nine months) using a

WET-2 sensor (HH2 Moisture Meter, Delta-T Devices, Burwell,

UK). Respiration rate and CO2 concentration were also measured

monthly (for 9 months) using an EGM-4 environmental gas

monitor device (PP System Company, Amesbury, MA, USA). At

the end of the experiment, four core samples were collected from

each treated subplot with a cylindrical auger (5.35 cm in diameter

and 12.77 cm in length). Soil cores were placed in 15 × 20 cm sterile

airtight bags. Soil subsamples (10 g) were sieved through a 2-mm

mesh and then air dried to measure cation exchange capacity, pH,

soil moisture (see below), and mineral nitrogen. Soil mineral

nitrogen (nitrate and ammonium) was extracted in 2 M KCl and

analysed colorimetrically by flow injection (FIAstar 5000, Foss
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Tecator, Höganäs, Sweden) (Rhoades, 1982). Cation exchange

capacity was determined by the sodium acetate sodium chloride

method (Rhoades, 1982).

2.2.2 Laboratory trials
Polystyrene cups (200 mL) with a hole in the base covered with

glass wool were filled with soil collected from each of the Pedralba

plots. Cups were incubated in a growth chamber (SANYO, MLR-

351H) at 24°C and 60% relative humidity under a 16-h light/8-h

dark photoperiod. Cups with soil were irrigated periodically (2–3

days) to maintain soil moisture to field capacity according to the

texture of each soil (see below). There were 10 replicate pots set per

soil (conventional and ecological management) and treatment:

Control (C) (no Chitosan), at 1 mg/mL Chitosan solution (T8L),

and Chitosan coacervates (T8C) 1 g/plot.

For the determination of the moisture of each soil at field

capacity, we placed 12.5 cm of soil in a 15.5-cm-long and 3.5-cm-

wide percolation tube. Water was then added to wet the first 5 cm of

soil. The top of the tube was capped with Parafilm® and aluminium

foil, leaving the tap open for 48 h–72 h. We then discarded the first

centimetre of soil, took a sample of moist soil, and weighed it. We

dried the soil at 105°C to constant weight. We calculated soil field

capacity with the formula described in Llorca-Llorca (1991):

Soil Moisture at Field capacity = (Moist Soil Weight – Dry Soil

Weight)/Dry Soil Weight

After 30 days, the soil from three pots per soil type and

treatment was pooled and homogenised per triplicate (nine pots

sampled). Then, soil humidity, pH, electrical conductivity, and

cation exchange capacity were analysed. This experiment was

carried out in duplicate.
2.3 Physicochemical analysis of soils

Soil samples for both regimes (ecological and conventional)

were taken from each subplot and treatment for physicochemical
FIGURE 1

Persimmon experimental fields. Fields were in Pedralba, Valencian Community (East, Spain). Conventional Field received mineral fertilisation and
usual agronomic practices. Ecological Field received organic fertilisation only, and no agrochemicals were applied. Experimental plots (1 × 1 m)
where treatments were applied, and soil samples collected are marked by yellow boxes. Google Earth (2024). https://www.google.com/earth/.
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determinations at the end of the experiment. Soil moisture,

conductivity/salinity, pH, texture, and cation exchange capacity

were determined for all soil samples collected (Llorca-Llorca,

1991). Three measurements were taken per each physicochemical

parameter for treatment and soil type.
2.4 Soil metabarcoding

On the same day of collection (only for ecological soil), DNA

was extracted from fresh soil (250 mg per soil sample), using

DNeasy PowerSoil Pro Kit (Qiagen, Germantown, MD, USA).

DNA samples were sent to Macrogen Inc. (Seoul, Korea), where

they were amplified and using specific fungi (ITS2) and bacteria

(V1–V2, V3–V4) primers (Table 2) and sequenced by the Illumina

MiSeq platform using the v3 reagent kit. DNA reads obtained were

analysed using the OmicsBox 3.0 package to identify the

microorganisms present in soil samples. Metabarcoding data are

available in the NCBI BioProject accession number PRJNA1164777

(https://www.ncbi.nlm.nih.gov/sra/PRJNA1164777).
2.5 Soil microbe co-occurrence networks

Fungal and bacterial communities characterised from ITS2,

V1–V2, and V3–V4 amplicon sequencing were analysed through

co-occurrence networks by using the SParse InversE Covariance

Estimation for Ecological Association Inference (SPIEC.EASI)

pipeline in R package (Kurtz et al., 2015). This network-based

approach allowed to frame both fungal and bacterial communities

into a similar co-occurrence network (Wagg et al., 2019). Before

network inferring, OTUs that occurred >1% and more than five

samples were maintained in the datasets and rescaled to the

proportion of the minimum sequencing depth (32,672 reads for

fungi in the ITS2 dataset, 38,709 for bacteria in the V1–V2 and

38,011 for bacteria in the V3–V4). The inference was carried out by

combining the amplicon pair dataset, ITS2+V1–V2 and ITS2+V3–

V4. We fitted the spiec.easi function with Meinshausen–

Bühlmann’s neighbourhood selection method, and the lambda

minimum ratio at 0.01. From the spiec.easi object, we extracted

the OTU adjacency matrix with the symBeta function to infer the

network graphs and network properties of OTUS from the Gephi

software (Bastian et al., 2009). In particular, we determined the

degree centrality, which counts the number of links per OTU and its

metric weighted by the occurrence frequency per linked OTU pairs

(Gouveia et al., 2021); the modularity class for each OTU embedded
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in the network, i.e., the module which an OTU belong to; and the

clustering coefficient, which measures the extent of an OTU to

cluster with others into a module (Latapy, 2008).
2.6 Statistical analysis

Results from pot tests were analysed with a three-way ANOVA

to determine statistical differences for each variable tested (pH,

electrical conductivity, cation exchange capacity), with the factors

soil, treatment (fixed and orthogonal), and experiment (random

and orthogonal) at the end of the experiment (30 days).

For the field test variables (pH, conductivity, cation exchange

capacity, and mineral nitrogen), a two-way ANOVA of soil and

treatment (fixed and orthogonal) was performed for the last data

collection time of the field experiment (9 months).

Then, a three-way ANOVA was performed to analyse the

differences of each variable (respiration rate, electrical conductivity,

soil moisture, and soil temperature), with the factors soil, treatment,

and time (fixed and orthogonal). The ANOVA requirements were

tested with the DHARMa package (Hartig, 2022).

For the ecological soil metabarcoding analysis, the OmicsBox

3.0 program was used to obtain relative abundances of phylum,

order, genus, and species for the ITS2, V1–V2, and V3–V4 primers,

with the Kraken 2.1.2 function (Wood et al., 2019; Wood and

Salzberg, 2014). Abundances above 1% (relative abundance) were

taken for statistical analyses. The mean relative abundance and

standard error were calculated with Excel.

To study the differences of phylum, genus, order, and species

present in the ecological soil according to treatment, a multivariate

generalised linear model (GLM) with a Gaussian distribution of the

error (“manyglm” function in the “mvabund” package) was performed.

A univariate GLM with a Gaussian family error distribution was then

performed for each variable to analyse the differences between

abundances in genera and species for ITS primers. Treatment was

considered as a predictor variable in the analysis. We conducted

pairwise comparisons with estimated marginal means (“emmeans”

function and package; Lenth et al., 2023) using Sidak’s HSD test for

GLM data.

The effect of taxonomy on network metrics was assessed by

fitting linear regression models for each amplicon pair data set,

ITS2+V1–V2 and ITS2+V3–V4. A t-test was performed on the

estimated values to detect taxa that significantly explained the

results of the network metrics.

All statistical analyses were performed with R software (version

4.2.2) (R Core Team, 2023).
TABLE 2 Primers used in this study.

Specificity Region Forward Primer (5’-3’) Reverse Primer (5’-3’) References

Fungi ITS1–ITS2 CTTGGTCATTTAGAGGAAGTAA GCTGCGTTCTTCATCGATGC Manter and Vivanco (2007)

Bacteria 16S V1–V2 GAGTTTGATCMTGGCTCAG GCTGCCTCCCGTAGGAGT Tuner et al. (1999)

Bacteria 16S V3–V4 CCTACGGGNGGCWGCAG GACTACHVGGGTATCTAATCC Herlemann et al. (2011)
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3 Results

3.1 Chitosan reduced potted soil pH
conductivity and cation exchange capacity
but not under field conditions

Chitosan solutions significantly reduced soil pH (ANOVA;

p value=0.001) (Figures 2A, B; Supplementary Table S1) and

electrical conductivity (EC) (ANOVA; p value=0.04) (Figures 2C,

D, Supplementary Table S3) when water content was maintained at

field capacity in the pot experiment. Both chitosan solutions and

coacervates reduced soil cation exchange capacity (CEC) with respect
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to controls in the pot experiment (ANOVA; p value=0.03)

(Figures 2E, F, Supplementary Table S5). However, under field

conditions when applied monthly, chitosan did not alter field soil

pH, EC, and CEC (ANOVA; p value = 0.5, p value= 0.3, p value= 0.1;

Figures 2B, D, F; Supplementary Tables S2, S4, S6). In the field

experiment, soil EC was lower for March–July than for November–

February recordings for both soil managements (Supplementary

Figure S1). In June and July, in the organic soil, conductivity could

not be recorded because of low soil humidity for high temperatures

and low rainfall (Supplementary Figures S2, S3). Chitosan application

to field soil had no significant effect on soil mineral nitrogen content

(Supplementary Figure S4).
FIGURE 2

Effect of chitosan on soil chemical properties: soil pH (A, B), conductivity (C, D) and cation exchange capacity (E, F). Treatments: control [(C), untreated],
chitosan coacervates (T8C), and chitosan solution (T8L). Experiments: growth chambers (A, C, E), field (B, D, F). Lowercase letters indicate significant
differences between treatments for each soil type.
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3.2 Chitosan did not affect field soil
respiration under field conditions

A trend of increased respiration was observed in the chitosan

treatments mainly from March to June for the conventional field

soil (Figure 3A), and from March and May for the ecological field

soil (Figure 3B). Irrespective of treatments, field soil respiration

significantly (ANOVA; p-value > 0.001, Supplementary Table S7)

increased in both management regimes (conventional and

ecological) from March until July. This period corresponds with a

steady significant increase in soil temperature for both conventional

and ecological regimes (Supplementary Figures S2A, B). Soil

moisture increased in the March recording (Supplementary

Figures S2C, D). This corresponded, in turn, with an increase in

precipitation and temperature (Supplementary Figure S3).
3.3 Chitosan modified soil mycobiota by
reducing naturally occurring plant
pathogenic fungi in soil under
field conditions

Chitosan significantly (multivariate GLM, p value 0.001,

Supplementary Table S8) modified fungal genera composition of

ecological field soil (Figures 4A, B, 5A). Conversely, chitosan caused

no significant differences in bacterial taxa composition of the same

soil respect to untreated controls (multivariate GLM, p value >

0.001; Figure 5B). The fungus Fusarium was the fungal genus most

present (33%–23%) in field samples (Figure 5A), followed by

Lachnellula (22%–13%), Wickerhamiella (17%–14%), and

Filobasidium (11%–7%) (Supplementary Table S9). Other genera,

including Alternaria, showed 5% or less relative abundance

(Figure 5A). Chitosan coacervates tended to reduce the relative

abundance of Fusarium and Alternaria, although no significant

differences were found. Presence of the plant pathogenic species

Fusarium falciforme (50% reduction, Supplementary Table S10) in

soil was significantly reduced (univariate GLM, p.value = 0.03,

Supplementary Table S11), by chitosan solution (Figure 4B).
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Chitosan coacervates significantly reduced (univariate GLM, p

value = 0.01, Supplementary Table S11) the relative abundance of

the phytopathogenic species Alternaria atra (20% reduction,

Supplementary Table S10), with respect to untreated controls.
3.4 Chitosan coacervates increased
naturally occurring nematophagous fungus
Purpureocillium in soil under
field conditions

Chitosan coacervates significantly (univariant GLM, p value =

0.006, Supplementary Table S12) increased (ca. 50-fold) naturally

occurring nematophagous fungus Purpureocillium in field soil

(Figure 5A). Significant differences were found for the variable

fungal species relative abundance (multivariate GLM, p value =

0.044; Supplementary Figure S5, Supplementary Table S13) between

control and chitosan coacervate treatments. Chitosan coacervates

significantly increase (ca. 3,500%) the presence of the invertebrate

pathogen Purpureocillium takamizusanense in soil (univariate

GLM, p = 0.006, Figure 5B; Supplementary Table S11).
3.5 Nematophagous fungi and structure of
soil microbiota

The use of ITS2+V1–V2 and ITS2+V3–V4 regions revealed

variations in the co-occurrence network outcomes (Figure 6;

Supplementary Tables S14, S15). However, we showed that

the weighted degree centrality (WDC) parameter could not

allow to detect contrasting influence of microbial groups

within the network of each amplified region in the ITS2+V3–V4

subset, only marginally detected in bacteria that belonged to

Acidimicrobiales (Figure 6A).

The clustering coefficient (CC) parameter for ITS2+V1–V2

regions showed that the nematode egg-parasitic fungi Pochonia

(CC = 0.22) promoting network clustering into modules (n = 15

modules) (Figure 6B; Supplementary Table S16). By evaluating the
FIGURE 3

Effect of chitosan on field soil respiration. Soil was under conventional (A), or ecological (B) regimes. Treatments: field (C, untreated), chitosan
coacervates (T8C), and chitosan solution (T8L). Lowercase letters show significant differences between the different times. Level of significant
differences p-value<0.05.
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co-occurrence results, we detected Pochonia chlamydosporia with a

positive interaction to xylan-degrading (Humisphaera), N-fixing

(Leptolyngbya), and sulphate-reducing bacteria (Rubrobacter)

(Supplementary Table S18). Furthermore, we detected antagonistic

interactions with soil bacteria such as Aquihabitans spp., a Gram-

negative bacteria, Leptolyngbya spp., a worldwide distributed

cyanobacteria, and Proteatibacter spp., a widely distributed soil

bacteria (Supplementary Table S18). The ITS2+V3–V4 regions

showed that the nematode-trapping fungi Orbilia (CC = 0.20) and

the Order Acidimicrobiales (CC = 0.17 ± 0.02) and Cytophagales

(CC = 0.04 ± 0.01) significantly contributed to network clustering

into modules (n = 29) (Figure 5B; Supplementary Table S17). Orbilia

oligospora showed synergistic co-occurrence with a wide group of soil

bacteria (Nakamurella spp., Nocardioides spp., or Vulgatibacter spp.).
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By the other side, O. oligospora showed a competitive behaviour with

important soil borne fungal pathogens like Talaromyces spp. and

Aspergillus spp. species (Supplementary Table S19).

Acidimicrobium ferrooxidans, an extremophile bacteria able to

grow under extremely low-pH conditions (pH <2), showed positive

interactions with soil-living bacteria such asMassilia spp., Nitrospira

spp., or Stella spp. However, this bacterium had an antagonistic effect

on Jiangella spp., Hymenobacter spp., and Limnoglobus spp. bacteria

present in crop soils. Inside of the Cytophagales, the species

Cytophaga hutchinsonii showed positive interactions with many

soil-born bacteria (Calothrix spp., Chitinophaga spp., or Lysobacter

spp.). Furthermore, C. hutchinsonii revealed negative associations

with important soil fungal pathogens like Fusarium oxysporum and

Verticillium dahliae.
FIGURE 4

Relative abundance (%). Asterisks mark significant differences (p value < 0.005), of the treatments with respect to the control for each genus (A) and
species (B).
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4 Discussion

Chitosan applied maintaining soil water content at field capacity in

pots for amonth significantly reduced soil pH, CE, and CEC. The slight

reduction of pH in the soil induced by chitosan could be simply due to

the weak acidity of chitosan solutions. This effect was not found under

field conditions. This was perhaps by the lower volumes of chitosan
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solutions applied monthly. The high calcium carbonate content of both

soils could neutralise the chitosan solutions. The reduction of soil CE

by chitosan in pots could be associated with the mopping capacity of

chitosan (polycation) of ions present in the soil solution (Kamari et al.,

2011). Chitosan solutions and coacervates reduced soil cation exchange

capacity (CEC) with respect to controls for potted soils. For example,

when applied to sodium montmorillonite, chitosan intercalates in the
FIGURE 5

Effect of chitosan on field soil microbiota. (A) Fungal genera (ITS primers) and (B) bacterial genera (V1–V2 primers). Treatments: field (C, untreated),
chitosan coacervates (T8C), and chitosan solution (T8L). Different letters indicate significant differences (p-value < 0.05).
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layers of the clay (Darder et al., 2003), both reducing the negative

charges for cation exchange and immobilising chitosan in soils. In our

pot study, applying this chitosan may have displaced exchangeable

cations from the clay complex, thus reducing CEC. However, this was

not found when chitosan was applied monthly in the field. The regime

of chitosan irrigation (field capacity vs. monthly applications) could

account for a lower chitosan presence in field soil than in the pots.

This may have made the chitosan displacement of cations of the

clay complex in field soil less efficient than in pots. Taken together,

our results suggest that chitosan can be applied to agricultural

fields without affecting CEC, a key parameter for soil fertility

(Anderson et al., 2023).
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Undissolved chitosan added to soil (5% w/w) caused N increase

(ammonium and nitrogen), with respect to untreated controls in

previous microcosm experiments (Sawaguchi et al., 2015). In our

study, chitosan application to field soil had no significant effect on

soil mineral nitrogen content due mainly to the high mobility of

mineral in soils. Our treatments also involved less chitosan applied

to soil than in the microcosm. This, and the time lapse (9 months)

for N soil content testing, may explain our results. In soil incubation

experiments with chitosan, soil respiration was found to increase

with chitosan concentration (Nkoh et al., 2024). In our field study,

chitosan treatments resulted in increases in soil respiration,

especially during spring–midsummer. This effect, although not
FIGURE 6

Microbial co-occurrence networks by amplified region pairs, ITS (fungi) and V1–V2 (A) / V3–V4 (B) (bacteria) in soils. Networks were inferred from
SPIEC.EASI R package. Graphs and network metric-weighted degree centrality (WDC), i.e., the interaction frequency between OTU pairs, and
clustering coefficient (CC), i.e., the extent of an OTU to cluster with others into modules, were determined in Gephi software. WDC and CC values
are also shown in bar graphs by microbial group, bacteria, and fungi at order and genus taxonomic levels, respectively. The effects of microbial taxa
identity on the network metrics were evaluated by linear models and t-tested, and those significantly explaining WDC and CC are marked by the
significance level: **p < 0.01, *p < 0.05.
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significant, could be related to eventual organic N input when

chitosan was added to our microplots.

Our metabarcoding study shows that chitosan significantly

modifies fungal genera composition of ecological field soil.

Chitosan coacervates increase naturally occurring nematophagous

fungus Purpureocillium in soil with respect to chitosan solution

treated soil and untreated controls. Chitosan increases by ca.

6,000% conidiation of Purpureocillium (Palma-Guerrero et al.,

2010c) cultures with respect to control media with no chitosan.

The similar increase (ca. 50-fold) in the relative abundance of

Purpureocillium spp. found in this work could be due to chitosan

induction for conidiation of the fungi naturally occurring in soil.

The highly sporulating capacity of this chitosan-tolerant fungal

genus could explain our results (Gortari and Hour, 2016). Indeed,

Purpureocillium lilacinum was previously applied combined with

chitosan promoting managing effects on root knot nematodes

(Giannakou et al., 2020; Zhan et al., 2021). In our study, we find

the species Purpureocillium takamizusanense, which has been also

isolated as an entomopathogenic fungus (Nguyen et al., 2022).

Future studies should evaluate the effect of chitosan on the

performance of this fungus in the field for insect/nematode pest

biomanagement. These studies should include augmentative natural

biocontrol and enhanced biocontrol with inundative or sustained

additions of inoculum of the fungus. Furthermore, chitosan

particles should be used in these studies, since chitosan solutions

did not enhance naturally occurring Purpureocillium on soil.

We also found that the abundance of Alternaria atra and

Fusarium falciforme decreased in soil treated with a chitosan

solution with respect to control soil. Chitosan accumulates in the

cell wall of non-chitinolytic fungi, thus preventing their growth

(Muzzarelli et al., 1986). However, the plasma membrane is the

main target of chitosan (Lopez-Moya et al., 2019). Chitosan-

sensitive fungi, e.g., Fusarium, have fluid membranes with respect

to chitosan-resistant fungi such as Purpureocillium. These two

fungal species cause diseases in several crops worldwide (Bonthala

et al., 2021; Trolinger et al., 2017). Therefore, soil treatment with

chitosan could be a sustainable alternative for managing these

fungal plant pathogens. Furthermore, our co-occurrence network

analyses show that Purpureocillium spp. negatively related to

Alternaria atra and A. rosae (Supplementary Table S18).

Purpureocillium spp. are fungi well known to produce

antimicrobial secondary metabolites (Chen and Hu, 2021). Future

studies should investigate the mechanisms involved in the

antagonism of Purpureocillium spp. to Alternaria spp. in soil.

Metagenomics on soil exposed to chitin-rich exoskeletons has

been a source of gene sequences encoding chitin–chitosan-

degrading enzymes (Li et al., 2015; Stöveken et al., 2015). Most of

these sequences were of bacterial origin. Our metabarcoding

analysis shows that chitosan application during 9 months to field

soil did not change bacterial taxa profiles. Perhaps time of exposure

to chitin/chitosan could account for these differences.

We have carried out a microbial diversity and ecological network

analysis (Barberán et al., 2012). Our results show that the two main

ecological groups of nematode-destroying fungi (Barron, 1997),

nematode trapping (Orbilia spp.) and egg parasites (Pochonia spp.),

promote soil microbe network clustering into modules.
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Nematophagous fungi interact with nematodes, the most abundant

animal taxon in soil (Dervash et al., 2018). Since most soil nematodes

are bacterivorous (De Mesel et al., 2004), it was expected that

nematophagous fungi were also related to soil bacteria. Indeed, our

co-occurrence network analyses show that the nematode egg parasite

fungus Pochonia positively related to xylan-degrading (Humisphaera),

N-fixing (Leptolyngbya), and sulphate-reducing bacteria

(Rubrobacter). These soil prokaryotes could help with nutrient

acquisition by the fungus. Nocardioides, a hydrocarbon degrader,

antibiofilm and antibiotic producer filamentous bacterium, is

negatively correlated with Pochonia and positively with Orbilia. This

and other bacteria (Paraflavitalea, Chitinophagaceae), also positively

related with Orbilia, can degrade chitin in soil. Root nodule bacteria

(Microvirga and Botea) are positively correlated with the nematode

trapping fungus. Pochonia can show endophytic lifestyle in crop plants

and can be beneficial for plant defence against soil-borne pathogens

(Manzanilla-Lopez et al., 2013). Nematode egg fungal parasites are

multitrophic organisms than can be enhanced by chitosan (Escudero

et al., 2016; 2017). In this work, we find that chitosan application in

soil enhances P. lilacinum recruitment and the promotion of P.

chlamydosporia as key fungi to structure microbial communities in

soil. Bacteria belonging to Acidimicrobiales and Cytophagales also

significantly contributed to network clustering in field soil. These

groups are documented to act on iron redox-related processes (Garber

et al., 2021) and carbohydrate polymer (chitin, pectin, cellulose)

turnover (Mohapatra et al., 2022) in soil, respectively. They play a

key role in recruiting soil-borne bacteria essential to maintaining soil

health. In addition, we show that C. hutchinsonii is an antagonistic

microorganism against two important plant pathogenic fungi such as

V. dahliae and F. oxysporum (Kausar et al., 2021).

In conclusion, this work has shown that chitosan in the form of

coacervates increases the abundance of Purpureocillium in soil (ca.

50-fold). Nematophagous fungi, both egg parasites (Pochonia) and

predatory (Orbilia), promoted soil microbiota network clustering.

Future studies could combine the use of these fungi with

chitosan to treat diseases in various agricultural crops. Our work

opens new and promising possibilities to develop integrated

strategies based on the use of chitosan formulations to improve

soil health and for managing important plant diseases caused by

plant parasitic nematodes.
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