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It is important to know the water status of cocoa plants because a water deficit

negatively affects fruit set and fruit maturity reducing their quality. The objective

of this work is determining the existence of a relationship between the

fluctuation of trunk diameter and the water status of adult cocoa trees which

will allow a continuous and low-cost measurement of the water status of the

plants. To meet this objective a trial was carried out at Hacienda La Clemencia

located in the province of Guayas- Ecuador, the foliar and stem water potentials,

maximum daily trunk fluctuations (MCDT), gas exchange, and soil moisture levels

were evaluated. The trial was conducted for 128 days, from July to October 2023.

The physiological variables were measured twice a week, while the

meteorological variables, soil moisture, and MCDT were recorded

continuously. The results showed that there is a correlation between the

physiological variables evaluated and MCDT. In conclusion, there is a

significant relationship between stem potential and MCDT in adult cocoa plants.
KEYWORDS

maximum daily trunk fluctuations, reference crop evapotranspiration, irrigation, soil
moisture, water potential
1 Introduction

Cocoa (Theobroma cacao L.) is a perennial crop of great economic importance for

exporting countries in the Americas, Africa, and Asia (Nair, 2021). In Ecuador, cocoa

plantations occupy more than 12% of the total cultivated land, generating direct jobs for

about 4% of the working population (Neira, 2016).

Despite the importance of cocoa cultivation as a significant source of income for millions of

small farmers, much is yet to be explored regarding the functioning of the cocoa tree. This can
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be explained since experimental work is costly and time-consuming,

and it has a long production cycle, resulting in little knowledge about

the plant’s response to water stress conditions, climate change, nutrient

effects, and phenology. At present, no tools are available to support

decision-making regarding its main agricultural practices, such as

irrigation, fertilization, and pruning (Tosto et al., 2023).

It is estimated that in Latin American countries the irrigation

needs of perennial crops will increase due to climate change,

affecting water availability in the coming decades because of the

increasing crop requirements (Borja et al., 2017).

A study by Ortiz-Bobea et al. (2021), states that since 1961 there

has been a reduction in agricultural productivity by ~26-34% due to

the effect of anthropogenic climate change (ACC) in warmer

regions such as Africa, Latin America, and the Caribbean.

Cocoa farmers in Ecuador unfortunately, are poorly prepared to

adopt techniques to cope with changes in rainfall patterns because

of climate change (Idawati et al., 2024). Consequently, it will be

essential to use technology to improve irrigation efficiency and

adopt agricultural practices that lead to a sustainable model for

cocoa production (Moreno-Miranda et al., 2020).

The adoption of irrigation technologies can reduce the impact

of climate change on crop production. These technologies can

reduce the impact on yields due to the effect of strong climatic

variability, characterized by high temperatures, reduced rainfall and

shorter rainy seasons (Cavazza et al., 2018).

In cocoa plants, water shortage in the soil causes morphological

(reduced root development, foliar, plant vigor), physiological (reduced

photosynthetic activity, stomatal density, chlorophyll, water potential),

biochemical (reduced superoxide dismutase, catalase, ascorbate

peroxidase, increased ethylene), and chemical (reduced macro- and

microelements) problems (Janani et al., 2019; Alban et al., 2015).

In crops such as grapes has been evidence is available that there

is a strong correlation between soil water potential, plant water

potential, and stomatal conductance (Centeno et al., 2010). Water

potential is the most commonly used parameter to indicate the

plant water status and determine irrigation timing in grapes

(Barbagallo et al., 2021). However, it is a difficult measure to take,

as it requires equipment and specialized labor.

The water potential is a point measurement, necessitating a dynamic

nature indicator for developing irrigation programs that account for

climatic and soil conditions. There are experiences in peach and lemon

trees that continuous and automatic data can be obtained by measuring

trunk diameter fluctuations, allowing the immediate detection of water

deficit situations (Goldhamer et al., 1999; Ortuño et al., 2009).

Currently, there is a boom in the development of new techniques to

evaluate plant water status directly, continuously and in real time, such

as sap flow (SF) and Maximum daily trunk shrinkage (MDS), which

have been successfully used in different crops (Ortuño et al., 2006b;

Conejero et al., 2007; Mirás-Avalos et al., 2016; Chai et al., 2021; Zhao

et al., 2023). These advancements aim to improve irrigation

management, enhance water use efficiency, and produce higher-

quality food with lower environmental impact (Velasco-Muñoz

et al., 2019).

Given this context, it is necessary to optimize water use by adopting

irrigation technologies that mitigate the impact of ACC on crop
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production. These technologies can reduce the reliance of crop yields

on rainfall distribution, which is often associated with unpredictable

variability (Cavazza et al., 2018; Velasco-Muñoz et al., 2019).

In this regard, advances have been made using parameters derived

from micrometric variations in trunk diameter (very small variations

that occur in stem diameter) what serve as indicators of plant water

status. These methods have been tested in various perennial crops,

including peach (Conejero et al., 2010; Mirás-Avalos et al., 2017), grape

(Zhang et al., 2021), lemon tree (Garcıá-Orellana et al., 2007), olive tree

(Moriana et al., 2011; Girón et al., 2016), almond tree (Puerto et al.,

2013), and plum trees (Paltineanu et al., 2020).

Although this technique has been known for more than twenty

years, there are few studies of this type in tropical conditions.

Studies of this type in tropical conditions are few. The greatest

benefit of this technique is could that it replaces traditional soil

water status measurements, which are time-consuming, costly, and

require specialized labor

Based on the above, the objective of this study is to determine

the relationship between trunk diameter fluctuation and the plant

water status of adult cocoa trees by (1) evaluating the behavior of

physiological variables of adult cocoa trees, (2) correlating

physiological variables with meteorological parameters, and (3)

correlating water potential (leaf and stem) with MCDT.
2 Materials and methods

The trial was conducted at Hacienda “La Clemencia”, located in

Canton Balzar, in the southern part of Guayas Province (1°9’59.24’’

S and 79°44’23.13.13’’ W), at an altitude of 63 meters above sea

level. The region has a dry tropical climate (Köppen climate

classification: Aw). The study utilized 22-year-old cocoa trees

(Theobroma cacao L.) of the CCN-51 genetic material, full

production, well maintained, planted in full sun and at a spacing

of 1.8 x 2.70 m with 3.80 m between rows. CCN 51 was a clone

developed in Ecuador through crosses of ICS-95×IMC-67

(International Cocoa Germplasm Database, 2006).

Within the study plot, two test pits were excavated, where the Ap,

A1, B1, and B2 horizons were found, with textural variability ranging

from silt loam to clayey soil, characterized by angular and subangular

block structures. Roots were observed to a depth of 87 cm, and

undeformed soil samples were taken using 100 cm3 cylindrical rings

using an Uhland auger in each horizon. These samples were then

transported to the laboratory of the Department of Soil and Water

Management (DMSA) at the Pichilingue Tropical Experiment Station

(EETP) for soil density and hydraulic conductivity determination. The

Ap horizon showed average hydraulic conductivity values of 4.8 and

2.9 cm h-¹. Hydraulic conductivity decreased with depth, reaching 1.2

cm h-¹ in the B2 horizon.

Soil pH across different horizons ranged from 5.5 to 6.3, which

did not pose any issues for crop nutrition. Nitrogen (N),

phosphorus (P), sulfur (S), and boron (B) levels decreased with

soil depth. In general, the availability of bases such as calcium (Ca),

magnesium (Mg), and potassium (K) was medium to high across

the horizons. Zinc (Zn), copper (Cu), iron (Fe), and manganese
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(Mn) were also present in medium to high amounts, except for Mn,

which showed low values at greater depths.

The soil’s electrical conductivity did not show any problems;

however, the organic matter content was generally low, typical of

tropical soils. The Cation Exchange Capacity (CEC) ranged from

low, with 9.59 meq/100 g of soil in the B2 horizon, to high, with

15.49 meq/100 g of soil in the Ap horizon. Bulk density values in the

upper horizons ranged between 0.76 to 1.18 t m-3, while deeper

horizons showed higher values, ranging from 1.20 to 1.31 t m-3.

Weed control involved two applications of agrochemicals and

three manual controls. Fungicide applications, insect pest control,

and fertilization were carried out as per the usual practices of

local producers.
2.1 Evaluation period

The trial began on June 22, 2023 (day of the year, DOY, 173),

with the measurement of physiological variables. Trees of uniform

appearance were selected for evaluation, and the trial concluded on

November 2, 2023 (DOY 306).
2.2 Measures

2.2.1 Environmental parameters
Meteorological data including precipitation, temperature,

relative humidity, atmospheric pressure, and wind speed at 2 m

height were recorded every 15 minutes using an automatic station

installed at Hacienda “La Clemencia”. Data were retrieved through

the Weather Link platform.
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For the estimation of the daily evapotranspiration of the

reference crop, the FAO56 Penman Monteith equation (Allen,

1998) was used, using the DailyET software (Hess, 1999)

2.2.2 Water relations and gas exchange
Leaf water potential at solar noon (Yleaf) was measured twice a

week on five trees. Additionally, two sunlight-exposed mature

leaves per plant were assessed using a pressure chamber.

Stem water potential (Ystem) at solar noon was measured twice a

week on two mature leaves per plant, near the trunk. These leaves

were covered with aluminum foil at least 2 h before pressure

chamber measurements.

Stomatic conductance (gs) and net photosynthesis (Pn) were

measured twice a week at noon, from DOY 173 to 306. A similar

number and type of leaves used for Yleaf measurements were

evaluated using an IRGA LCPro portable photosynthesis meter.

2.2.3 Trunk micrometer variations
Throughout the trial, trunk micrometric variations were

measured in five trees using a dendrometer specifically designed

for cocoa trees with easily accessible and low-cost materials, with a

prior calibration (Chimarro and Freire, 2023). The device

incorporates a KY-024 module with a linear magnetic Hall effect

sensor (SS49E), a double differential comparator (LM393), and a

potentiometer, providing both analog and digital outputs.

The dendrometer includes a support structure fabricated using

additive manufacturing technology in ABS material, featuring a

point axis system that transmits trunk expansion or contraction to

the module for quantification (see Figures 1A–C). This structure is

secured to cocoa trees using a support structure clamp, depicted

in Figure 1D.
FIGURE 1

Dendrometer structure. (A) Hall effect sensor KY-024, (B) Point axis system: 1 - photopolymer resin shaft, 2 - neodymium magnet, 3 - steel
shaft, (C) Dendrometer supporting structure and (D) Dendrometer installed on the cocoa tree.
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2.2.4 Soil moisture measurement
For soil moisture measurements, an FC-28 sensor was

employed, comprising a probe with two resistive electrodes (YL-

69) and a YL-38 module with an LM393 comparator. The sensor

detects moisture through soil conductivity variation, where a

conditioning card monitors voltage levels between the electrodes.

To minimize probe deterioration, the sensor is powered

intermittently, performing measurements at one-hour intervals.

Soil moisture was monitored at three depths (10, 30, and 50 cm)

along the cocoa tree roots and located at 25 cm from the

tree trunk.

2.2.5 Data acquisition/transmission
The data acquisition and transmission system used an ESP32

microprocessor, to which the moisture sensors and dendrometers

were connected (see Figure 2). This system was responsible for

receiving data from these sensors and transmitting it to an IoT

server in the cloud via an internet network.

Statistical analysis

A quasi-experimental study was conducted, selecting five trees,

which were selected as a random sample within the plots and

analyzed as completely random.
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3 Results

During the experimental period, Reference Crop Evapotranspiration

(ETo) levels reached a cumulative value of 453 mm, progressively

increasing and reaching values above 4.5 mm d-1 in September, typical

behaviour of an area with a tropical climate. (see Figure 3A).

The average maximum temperature was 29°C, and the average

relative humidity was 70%. Throughout the trial, the total precipitation

was 120 mm. Starting from DOY 226 (August 14), the soil moisture

remained below field capacity, a trend that continued until day 290

(October 12), where a series of precipitations occurred that raised the

soil moisture above field capacity, allowing for the evaluation of the

crop under different moisture conditions, but without reaching water

stress (see Figure 3B).

In Figure 4A, the levels of Yleaf of the cocoa plant showed

variations in its behaviour throughout the evaluated period, with the

lowest values observed on days 206 (September 25) and 286 (October

13), measuring -0.67 and -0.51 MPa, respectively. The most positive

value occurred on day 192 (July 11), reaching -0.16 MPa, likely

influenced by preceding rainfall events as shown in Figure 4B.

Similarly, Ystem in cocoa plants showed a comparable trend to

Yleaf, with the lowest values recorded on days 206 and 286 (October
FIGURE 2

Data acquisition and transmission system.
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13), measuring -0.30 and -0.32 MPa, respectively. The most positive

value of of -0.12 MPa was observed on day 192.

Throughout the trial period, despite decreasing soil moisture

values (Figure 3B) and the absence of precipitation events, cocoa

trees did not consistently exhibit a decline in water potential.

This resilience could be attributed to osmotic adjustments

described by Jiménez-Pérez et al. (2019) in Guasare-type cocoa,

where trees maintained turgor even under unfavorable midday

conditions when the demand for water evaporation is highest.

Figure 5A illustrates respiration rate (E) levels during the trial,

peaking on days 269 (September 26) and 271 (September 28) at 2.57

and 2.62 mmol m-² s-¹, respectively. These peaks coincided with

minor precipitation events (see Figure 3B).

The lowest E values of 1.12 mmol m-² s-¹ occurred on days 192

(July 11) and 208 (July 27), with an average of 1.68 mmol m-² s-¹

throughout the period, which was lower than reported by Agudelo-

Castañeda et al. (2018), who described values between 1.91 and 2.15

mmol m-2 s-1 when evaluating the physiological yield of nine cocoa

clones under shade in Rionegro, Colombia.
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Stomatal conductance (gs), shown in Figure 5B, reached its

highest values on days 248 (September 5) and 278 (October 5) at

150 and 147 mmol m-2 s-1 respectively. The lowest gs values of 71

mmol CO2 m-2 s-1 occurred on days 201 (July 20) and 206

(July 25).

The average gs during the evaluation period was 106.55 mmol

m-2 s-1, comparable to findings by Tezara et al. (2016), who

evaluated Forastero and Criollo cocoa trees over 50 years of age

on Margarita Island, Venezuela, finding values of 157 and 182

mmol m-2 s-1 respectively.

CO2 assimilation (A) peaked on days 299 (October 26) and 248

(September 5), at 8.74 and 8.70 mmol m-2 s-1 respectively (see

Figure 5C), aligning with previous rainfall events. The lowest A

values of 4.08 and 4.06 mmol m-2 s-1 were observed on days 194

(July 13) and 297 (October 24).

The average photosynthetic rate was 6.24 mmol m-2 s-1, similar to

those obtained by Janani et al. (2019). In this study, using different

cocoa genotypes under greenhouse conditions, the response to changes

in soil moisture by substantially reducing the photosynthetic rate was
FIGURE 3

Values of the reference crop evapotranspiration (ETo) (A), soil moisture (solid line) and rainfall (vertical bars) (B) during the experimental period.
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demonstrated. Values of 6.48 and 4.09 mmol m-2 s-1 were reported with

two levels of moisture 100 and 50% field capacity respectively.

Figure 6 displays MCDT values, which peaked early in the

evaluation period and declined from day 290 (October 18) onward

in response to minor rainfall events (see Figure 3A). This rapid

response of MCDT to moisture variations aligns with previous

studies, highlighting its utility as a cost-effective indicator of plant

water status (Ortuño et al., 2006a; Garcıá-Orellana et al., 2007; Ortuño

et al., 2009; Galindo et al., 2013; Sadka et al., 2023;Wheeler et al., 2023).

In Figure 7, Yleaf and Ystem demonstrated correlations with

ETo, maximum temperature, and vapor pressure deficit (VPD)

during the evaluation period. Both Yleaf and Ystem decreased as

these parameters increased. For cocoa trees, Yleaf exhibited a

stronger correlation with vapor pressure deficit (DPV), while

Ystem correlated more closely with ETo.
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According to Medina and Laliberte (2017), severe stress in

cocoa trees is indicated by Yleaf values reaching -1.76 MPa, which

were not observed during this period (Figure 3A). This suggests that

soil type and atypical precipitation patterns may have mitigated

water stress conditions.

Osorio Zambrano et al. (2021) reported Yleaf values of -0.18 MPa

under non-water limiting conditions and -2.48 MPa under stress,

indicating that trees in this study did not experience significant water

stress (Figure 3B), possibly influencing the observed weak correlations.

In Figure 8, Yleaf exhibited the strongest correlation with MCDT,

followed by theYstem. In contrast, photosynthetic rate (A) and stomatal

conductance did not demonstrate strong correlations during the

evaluation period. As gs and CO2 flux increased, the rate of water

loss through transpiration rose, potentially exceeding the rate at which

water could be extracted from the soil.
FIGURE 4

Values of midday leaf water potential (Yleaf) (A) and stem water potential (Ystem) (B) of adult cocoa trees during the experimental period. The vertical
bar indicates the error of the mean. Each point represents the mean of ten values.
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However, when soil moisture was sufficient and no limitations

were encountered, stomata remained open, allowing for high stomatal

activity without an increase in stem diameter. This dynamic was

influenced by soil moisture availability and root water uptake capacity.

On the other hand, the relationship with stem contraction was

more direct; as water potential became more positive, indicating
Frontiers in Agronomy 07
lower water extraction rates, conducting vessels were less likely to

collapse. This facilitated easier water supply to leaves, influencing

the curve’s variability based on soil water conditions and root water

uptake capacity. It is important to consider that water potential

integrates plant vascular system water demand and supply rates

(McDowell et al., 2022).
FIGURE 5

Values of transpiration rate (E). (A), stomatal conductance (gs) (B) and photosynthetic rate (A, C) of adult cocoa trees during the experimental period.
The vertical bar indicates the error of the mean. Each point represents the mean of ten values.
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FIGURE 6

Values of maximum daily stem fluctuations (MCDT) of adult cocoa trees during the experimental period. The vertical bar indicates the error of the
mean. Each point represents the mean of ten values.
FIGURE 7

Relationship between reference crop evapotranspiration (ETo) (A, B), maximum temperature (C, D), and vapor pressure deficit (DPV) (E, F) with leaf
water potential (Yleaf) and stem water potential (Ystem) in adult cocoa trees during the experimental period. Each point represents the mean of ten
values. *Statistically significant at P < 0.05. **Very significant P < 0.01, ***Highly significant P < 0.1.
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4 Conclusions

In conclusion, there is a significant relationship between stem

potential and MCDT in adult cocoa plants, highlighting MCDT as a

robust indicator of the plant water status. This relationship underscores

the utility of MCDT in assessing water status in cocoa cultivation.

Furthermore, MCDT exhibits stronger correlations with climatic

parameters such as DPV and ETo than with maximum temperature,

suggesting its potential use for accurately estimating ETo in adult cocoa

trees and become a reliable indicator to be used for scheduling, with the

intention of automating irrigation, avoiding water deficits that affect the

productivity of the cocoa crop. The results obtained are promising,

especially because the test was conducted in the field and in a tropical

zone, with the use of dendrometers developed, designed and built by

members of the work team, making the technology more affordable,

increasing the feasibility of its application.
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