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Introduction:Understanding hownutrient inputs affect nitrogen (N) transformations

and storage is vital for developing sustainable agroecosystems. Organic N inputs,

such as crop residues (e.g., cover crop biomass and stover) and animal manures, can

accelerate N cycling by increasingmineralization and immobilization rates to provide

crops with more opportunities to intercept N as it moves through bioavailable pools.

We aimed to understand how organic and synthetic soil amendments inhibit or

promote N mineralization, immobilization, and nitrification rates.

Methods: We conducted a meta-analysis of peer-reviewed studies to assess N

transformation rates in agroecosystems. Specifically, we targeted studies employing
15N pool dilution methods to quantify N mineralization, immobilization, and

nitrification rates in response to organic and synthetic soil amendments.

Results and discussion:Our findings indicate that adding synthetic, manure, and

crop derived residues as soil amendments increased mineralization by 60%,

135%, and 214%, respectively, relative to the unamended controls. While manure

and residue produced similar mineralization rates, residue amendments induced

significantly higher immobilization rates than synthetic and manure amendments

– a sevenfold and fourfold increase, respectively. Furthermore, only residue N

amendments enhanced the ammonium (NH4
+) pool size, while synthetic and

manure amendments resulted in no change in NH4
+ pool size. These results

suggest that residue amendments encourage tighter coupling of the carbon (C)

and N cycles compared to manure or synthetic amendments by delivering C rich

substrates (e.g., C:N ratio >20:1) to soil microbes. This tighter coupling with

residue amendments leads to faster mineralization-immobilization processes

and larger NH4
+ pools than those observed with manure or synthetic

amendments. As such, residue amendments encourage soil N recycling

between inorganic and organic forms, which is crucial to supporting crop N

needs throughout the growing season while minimizing N losses.
KEYWORDS

gross nitrogen transformations, gross nitrogen mineralization, gross nitrogen
immobilization, 15N, isotope pool dilution, organic amendment, synthetic
amendment, meta-analysis
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1 Introduction

Nitrogen (N) is a limiting resource for aboveground biomass

production (Vitousek and Howarth, 1991; LeBauer and Treseder,

2008) and is essential for promoting crop yield (Xu et al., 2012;

Lassaletta et al., 2014). Growers use N-rich fertilizers to supply

bioavailable N and optimize yields. However, most crops only use

roughly 50% of the N supplied via external inputs (Allison, 1955;

Robertson and Vitousek, 2009; Yan et al., 2019), resulting in high

environmental N losses (Drinkwater and Snapp, 2007; Robertson

and Vitousek, 2009; Butterbach-bahl et al., 2013; Paustian et al.,

2016). To address this issue, there is growing interest in using

alternative N sources such as crop residues and animal manures

that supplement organic N pools. This strategy aims to reduce

dependence on inorganic N sources that are highly reactive and

vulnerable to losses (Bodirsky et al., 2014).

Organic amendments are a promising means to regulate N

availability and potentially improve long-term soil fertility. Organic

amendments facilitate carbon (C) and N cycling by furnishing

organic C and N to the system, providing an alternative N source

that reengages the microbial community ’s role in N

transformations. Most N in organic inputs must undergo

microbial transformation to become bioavailable (Schimel and

Bennett, 2004) with the balance between N mineralization and

immobilization dependent on the stoichiometric ratio of both the

microbial community and their substrate (Mooshammer et al.,

2014b). Compost, and especially manure, often have low C:N

(e.g., 5-20:1) and may thus provide microbes with excess N that is

subsequently released in the process of N mineralization. In

contrast, crop residues with high C:N (e.g., >30:1) may require

additional N from the soil environment to maintain ideal

stoichiometry resulting in N immobilization. However, crop

residues can range from those with low C:N (e.g., clover) to

others with high C:N (e.g., wheat chaff, corn stover). Therefore,

the range in organic amendment quality, whether manure or crop

residues, can cause high variability in N transformations in the soil

(Trinsoutrot et al., 2000).

N mineralization and immobilization are key transformations

affecting crop N availability and system-level crop N use efficiency

(NUE) in agroecosystems. Thus, a deep understanding of how

different organic and synthetic fertilizer amendments influence

mineralization-immobilization dynamics will help inform the

development of optimal fertilizer strategies. N isotope pool

dilution may provide unique insights into both gross and net

rates of N transformations and how they are impacted by organic

and inorganic fertilizer inputs. Historically, researchers estimated N

cycling rates by tracking changes in NH4
+ or NO3

- pools, which
Abbreviations: Amendment Effect, the natural-log transformed ratio of the

means (i.e., response ratio; RR) quantifying the differences between amended

and unamended soils; AED, Percent change in transformation rates (or NH4
+ pool

size) with respect to zero (i.e., back-transformed RR); AEmin, Amendment effect

on mineralization rates; AEimb, Amendment effect on immobilization rates; AEnit,

Amendment effect on nitrification rates; AENH+
4
, Amendment effect on NH4

+

pool size.
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only offers insight into net fluxes. Net transformation rates and pool

sizes do not fully represent N availability, potentially obscuring

rapid shifts between inorganic and organic forms of N. Rapid N

transformations due to soil organic matter (SOM) turnover deliver

frequent small doses of bioavailable N to the soil (Nguyen et al.,

2016; Soldatova et al., 2024), which can support plant growth, create

a more efficient N cycle, and minimize N loss in natural ecosystems

(Robertson and Groffman, 2024). This continual turnover and

supply of N provides an approach to managing agroecosystems

that reduces reliance on large and inefficient inorganic N pools

(Drinkwater et al., 2017; Drinkwater and Snapp, 2022). Isotope pool

dilution techniques give a more detailed view by measuring rates of

both N production and consumption, reflecting microbial activity’s

impact on N dynamics and providing additional insights into crop

N availability.

Isotope pool dilution is a standard method used to quantify

gross rates of N cycling based on the movement of a 15N tracer

through the soil (Kirkham and Bartholomew, 1954). At the

beginning of the incubation (t0), a known quantity of the 15N

label is added to the NH4
+ or NO3

- pool. Then after a defined

incubation period at t1, after the production of new NH4
+ or NO3

-

dilutes the 15N pool with 14N, the difference in isotope enrichment

between t0 and t1 informs calculations that estimate gross rates of N

immobilization and mineralization. Before the widespread use of

this method, and still today in many studies, researchers estimated

N mineralization and nitrification rates by determining the change

in overall NH4
+ or NO3

- pool size, providing just an estimate of net

flux. Pool dilution methods capture the combined influence of

microbial consumptive and productive processes, accounting for

gross N production (i.e., mineralization) and consumption (i.e.,

immobilization) (Murphy et al., 2003). Pool dilution methods thus

link microbial communities to organic N dynamics and cycling

rates of key bioavailable N species. In agricultural soils, pool

dilution techniques reveal the impact of management on

microbial activity and N cycling, aiding in understanding crop N

availability. For example, some agroecosystems appear to maintain

yields despite low standing inorganic N pools, likely due to

increased NUE (Fageria and Baligar, 2005; Xu et al., 2012;

Lassaletta et al., 2014). One explanation for this may be faster

processes of mineralization and immobilization. Rapid N cycling

(e.g., Osterholz et al., 2017) can help maintain small inorganic N

pool sizes, boost crop NUE, and maintain adequate crop N uptake

(Grandy et al., 2022).

Twenty years have passed since Booth et al. (2005) published a

meta-analysis that examined controls on N cycling in global

terrestrial ecosystems with studies that utilized pool dilution

methods. The authors identified ecosystem type as a primary

moderator and treated agricultural systems uniformly without

considering local conditions or specific management factors.

Then, Gardner and Drinkwater (2009) used 15N crop recovery

(via tracer experiments) to examine the efficiency of crop nutrient

uptake from organic and inorganic N inputs to the soil. They found

that organic inputs tended to have higher 15N input recovery in

crops than synthetic inputs, highlighting the potential for organic

nutrient inputs to supply plant N more efficiently than inorganic

fertilizer inputs. A more recent meta-analysis (Mahal et al., 2018)
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showed that conservation agricultural practices like adding organic

amendments can substantially increase potential net N

mineralization but does not distinguish among types of N inputs.

Understanding how different nutrient management practices affect

microbial N processing and the balance of N production and

consumption could inform practices that optimize crop yield,

while minimizing environmental N losses.

To quantify broad patterns of N transformation rates in

response to different soil N amendments, we conducted a meta-

analysis that assessed 124-216 paired comparisons (depending on N

transformation reported) from 18 studies that matched our criteria.

We selected studies that exclusively employed 15N pool dilution

methods to measure gross N transformation rates under zero

(control) N amendments and synthetic or organic N amendments

(treatment). We aimed to determine whether organic inputs

enhance gross rates of mineralization and immobilization, as

these N recycling processes can support plant available N during

the growing season and reduce inorganic N losses.
2 Materials and methods

2.1 Data collection

We collected data from peer-reviewed publications from 1984 up

to February 2024. Our meta-analysis used the online databases ISI

Web of Knowledge and Google Scholar to search for relevant studies.

We performed four searches using the asterisk (*) as a wildcard to

broaden the scope of our search terms, with “min” defining broad

usage of the term “mineralization,” employing the following

combinations: (i) [Nitrogen min* AND soil AND pool dilution]

OR [Nitrogen min* AND soil AND isotop*] AND [agri*]; (ii) [Gross

nitrogen min* AND isotop*] AND [Gross nitrogen min* AND pool

dilution]; (iii) [Nitrogen min* AND soil AND pool dilution] OR

[Nitrogen min* AND soil AND isotop*]; (iv) nitrogen mineralization

AND agri* AND soil AND pool dilution. We also screened published

reviews and meta-analyses for publications that the search engines

may have missed. We collected 512 studies that matched our search

terms. We implemented the following criteria to screen the final

database of studies: (i) studies were performed in an agroecosystem;

(ii) gross N mineralization rates were measured by pool dilution

methods and reported for both the reference (control) and

experimental treatment; (iii) studies manipulated N amendments

(organic and/or synthetic); (iv) studies reported values for non-

amended soils; (v) the means, standard deviations or standard

errors, and sample sizes were reported in text, figures, or tables.

In total, there were 26 studies that fulfilled our criteria. A total of

five studies were removed from the final pool because they did not

specify an unamended control. Finally, three more studies were

removed from the final pool because the field manipulations

received a one-time basal application of fertilizer at the beginning

of the growing season. Therefore, the final pool of studies was

further reduced from 26 studies to 18 studies (Table 1;

Suppplementary Figure 1). All studies measured gross N

mineralization rates, but N immobilization and nitrification rates
Frontiers in Agronomy 03
were not consistently reported across all studies. We considered N

mineralization, immobilization, nitrification rates, and NH4
+ pool

size the target response variables measured in the control and

treatment groups. Throughout this manuscript, we will refer to

mineralization, immobilization, and nitrification rates collectively

as “N transformation rates” when discussing the broader context of

N cycling to highlight their interconnected roles in soil N dynamics.

The reference (control) group consisted of zero soil

amendments and the experimental group consisted of soil

amendments. There were three broad categories of amendment

types that were applied as treatments in reference to the control:

synthetic amendments, organic amendments, and in some cases, a

combination of the two (referred to as a combination effect

throughout this manuscript). Synthetic amendments were defined

as inorganic mineral fertilizers, including urea, commonly applied

to agricultural fields. Although urea’s chemical composition is

technically organic, we classified it as a synthetic amendment due

its industrial production and similarities to some inorganic

fertilizers, such as rapid N availability and high N loss potential

(Kirova-Yordanova, 2017). Organic amendments were defined as

N-containing crop residues, green manures, and animal-based

manures and were pooled together to obtain an overall effect size

for organic amendments. When considering soil amendment type

as a moderating variable, we subdivided it into two categories, plant

derived amendments (e.g., crop residues and green manures) and

animal derived amendments (e.g., pig slurry, cow manure). Plant

and animal derived amendments will be referred to as “crop

residues” and “manure,” respectively, throughout the manuscript.

Often, there were multiple comparisons derived from each study

(e.g., no amendment vs low amendment, no amendment vs high

amendment) and we treated these comparisons as distinct

comparisons within studies. In addition, several studies in our

database conducted incubations with destructive harvests at

multiple time points. We also considered each of these

comparisons as distinctive datapoints but accounted for their non

independence in our analysis (Nakagawa and Santos, 2012)

(see below).

We extracted data presented in figure format with

WebPlotDigitizer opensource software (Rohatgi, 2020). We

converted N inputs (regardless of inorganic or organic species) to

reflect a kg N ha-1 basis. If a study lacked the necessary information

to calculate N contributions of residues (e.g., did not report the N

content of residues or provide sufficient details on residue

characteristics), we used C:N reported in the literature to fill

information gaps and estimate N application rate via residue as

accurately as possible. Specifically, three studies – Cookson et al.

(2005) and Fisk et al. (2015a and 2015b) – did not provide enough

information for precise calculations. In Cookson et al. (2005), the

authors described the residue as “grass hay,” and given the wheat-

based cropping system in this study, we referenced C:N values for

wheat straw from the literature, which range from ~40-130:1

(Thomsen and Sørensen, 2006; Wu et al., 2010; Gan et al., 2011;

Zhang et al., 2018). As a reasonable approximation for “grass hay”

we assigned a C:N of 50:1 to this study to estimate N’s contribution

from residues. For Fisk et al. (2015a, 2015b), residue applications
frontiersin.org
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occurred across multiple years with different crops in each year:

barley straw in 2003, canola straw in 2006, and oat straw in 2010 –

for both studies – and oat straw in 2012 for Fisk et al. (2015b).

Barley straw C:N ranges from ~15-150:1 (Chantigny et al., 2001;

Havstad et al., 2010; Naz et al., 2017; Reichel et al., 2022), canola

straw C:N ranges from ~33-141:1 (Singh et al., 2006; Chico-

Santamarta et al., 2011; Gan et al., 2011), and oat straw C:N

ranges from 46-83:1 (Papavizas et al., 1962; Wu et al., 2010; Zhao

et al., 2018). These wide ranges of C:N reflect variation due to crop
Frontiers in Agronomy 04
variety, maturity at harvest, and climatic factors (e.g., moisture and

temperature). Therefore, to estimate a representative N

contribution from the three crop inputs, we used a 60:1 C:N in

our calculations. This ratio represents a midpoint value within the

ranges reported in the literature and aligns more closely with the

narrower and lower range of oat straw, the most recent crop in

rotation. In addition to amendment types, we also collected data on

sample- and site-level descriptors to understand how

environmental and edaphic characteristics may influence N
TABLE 1 Collection of studies included in the meta-analysis displaying amendment type and amendment species reported by each study.

Reference
Application
Location

Amendment
Type

Amendment
Species

Soil
Handling

Sampling
Depth
(cm)

Incubation
Duration
(hours)

Sampling Days

Schimel (1986) Field Synthetic Unknown Homogenized 0-10 48 1

Watkins and
Barraclough
(1996)

Lab Organic R Homogenized 0-15 72 11

Coyne
et al. (1998)

Field Organic M Intact 0-10 24
10 June, 29 July, 25
Nov., 1993

Recous
et al. (1999)

Field Organic R Intact† 0-20 48
1, 25, 43, 88, 218, 253,
295, 378

Shi and
Norton (2000)

Lab
Synthetic,
Organic

(NH4)2SO4, M Homogenized 0-15 24 7, 40, 70 112

Andersen and
Jensen (2001)

Lab Organic R Homogenized 0-20 24-72 4, 9, 15, 26, 37

Cookson
et al. (2002)

Lab Organic R Homogenized 0-10 72
5, 10, 12, 19, 26, 32, 40, 44,
54, 60, 80, 100, 120,
142, 162

Shi and
Norton (2000)

Field Synthetic (NH4)2SO4 Homogenized 0-15 24 1

Cookson
et al. (2005)

Field
Synthetic,
Organic

R Homogenized 0-10 72 1

Flavel and
Murphy (2006)

Lab Organic
R, M Homogenized

0-15
24, 72 3, 9, 16, 37, 82, 142

Griffin (2007) Lab Organic M Homogenized 0-10 48 7, 56

Murphy
et al. (2007)

Field Organic M Intact 0-15 48, 72
0, 21, 49, 83, 118, 146, 180,
202, 230, 251, 279, 315

Herrmann and
Witter (2008)

Field
Combination,
Organic,
Synthetic

R, R + Ca(NO3)2 Homogenized 0-23 24 One day in 2002 and 2003

Bedard-Haughn
et al. (2013)

Field Synthetic Unknown Intact 0-7 24 1

Hu et al. (2014) Field Organic R Homogenized 0-15 24 1

Fisk
et al. (2015a)

Field Organic R Intact 0-15 24 1

Fisk
et al. (2015b)

Field Organic R Intact 0-10 48, 72, 96 1, 3, 7, 10, 14

Wang
et al. (2023)

Field
Combination,
Organic,
Synthetic

M, U, M+U Homogenized 0-10 24 1
R, residue; M, manure; U, Urea.
† Amendment incorporated by hand into core, then placed in field.
Soil status indicates whether the soil sample was homogenized into a bulk sample or left as an intact core. Sampling days is the number of days since cultivation (field) or initiation of the
amendment incubation (lab).
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transformation rates. These descriptors included total soil C and N,

soil C:N, pH, sampling depth, incubation temperature, pool dilution

incubation duration, and experimental duration.

The small sample size of some of our observations for synthetic

and combined amendments may give more weight to organic

amendments in the overall analysis. However, we reduced the

number of publications examining the effects of synthetic

amendments on N transformation rates due to the absence of a

proper control group with no soil amendment. Consequently, we

excluded these studies from our analysis, leading to a smaller

sample size of paired observations. Furthermore, our extensive

literature synthesis found limited studies investigating the

combined effects of applying synthetic and organic amendments.

Given that growers are likely to utilize a combination of synthetic

and organic inputs to address soil fertility needs, more research is

needed to assess gross N transformation rates under these

input regimes.

Because of the limited number of studies that used pool dilution

techniques and matched our criteria, our analysis included lab and

field studies where the researchers manipulated soil amendments,

which allowed us to broaden our dataset. While lab-based studies

do not fully represent N cycling dynamics in the field, they do

provide insight into potential soil responses to synthetic and

organic inputs and were thus included. Additionally, even though

field studies tend to have higher variances in a meta-analysis than

lab studies, the field studies only contribute to a small portion of the

overall heterogeneity in the variances (Hillebrand and Gurevitch,

2014). Therefore, overall conclusions from a meta-analysis that

includes both lab and field studies are unlikely to be impacted by the

differences in variances (Hillebrand and Gurevitch, 2014).
2.2 Meta-data analysis

We used the natural-log transformed ratio of the means (RR) as

the effect size metric to quantify differences between the unamended

and amended samples in our target studies, which is a common

approach to calculating effect size in meta-analyses of ecological

research (Hedges et al., 1999; Lajeunesse, 2011; Koricheva et al.,

2013)

RR =  ln
�Xt
�Xc

� �

where the natural log of the RR is the proportional change in the

means of treatment group (�Xt) and control or reference, no

amendment group (�Xc), The corresponding variances were

calculated as:

v =  
SDc 

2

nc �Xc
+  

SDt  
2

nt �Xt

where SD is the standard deviation and n are the standard

deviations and sample size of Xt and Xc. This method of calculating

variances down-weights studies with large variances (Hedges et al.,

1999; Lajeunesse, 2011). In the instance where variance was not

reported and could not be calculated based on available information
Frontiers in Agronomy 05
(n = 2), standard deviations were imputed based on the ratio of

standard deviations and means from all studies that reported both

values (Lajeunesse, 2013; Bowles et al., 2016).

We used the metafor package (Viechtbauer, 2010) to compute

RRs and the corresponding confidence intervals. To account for non-

independence of multiple observations within a study, we assigned

publication ID as a random effect in our random-effects and mixed-

effects meta-regression models. All meta-analyses were performed

with the rma function, and the models were fit by using restricted

maximum likelihood estimation. To obtain an overall effect size for

each N transformation and NH4
+ pool size, we constructed random

effects model with publication ID as the random effect.

To examine the influence of different amendment types on N

transformation rates, we conducted a meta-regression by including

amendment type as a moderator and publication ID as the random

effect. Specifically, we tested different moderators including

amendment type (synthetic, organic, or combination) and

amendment species (amendment species: residue, manure, residue

+ manure, synthetic fertilizer, organic + synthetic fertilizer), to

explore the influence of broad amendment categories (organic vs

synthetic fertilizer) and their subcategories on N transformation

rates. This approach allowed us to assess not only whether synthetic

or organic amendments had a larger effect but also the extent that

specific amendment species influenced N transformation rates and

NH4
+ pool size. We conducted an omnibus test for each moderator

to test for between-group heterogeneity for moderator levels and

moderators were considered to influence N transformation rates if

the Qm value was significant (p< 0.05) (Viechtbauer, 2010;

Koricheva et al., 2013). For simplicity of interpretation, we

transformed lnRRs and 95% CIs to reflect percent change from zero:

%   change =   (eRR − 1)� 100

Transformed values of RR > 0 indicated a positive effect of soil

amendments on N transformation rates in comparison to zero

amendments, while values of transformed RR<0 indicated a

negative effect of soil amendments on N transformation rates in

comparison to zero amendments. We assessed publication bias by

visually inspecting the funnel plot for asymmetry and applying the

trim-and-fill method to detect and adjust for any potentially

missing studies (Koricheva et al., 2013). We evaluated the overall

heterogeneity of the model by performing the meta-analysis

without any moderators (Viechtbauer, 2010).

We computed Pearson rank correlation coefficients to describe

the relationships between N transformation rates, NH4
+ pool size,

amendment application rate, and site level characteristics using the

rstatix package (Kassambara, 2019). Correlations were computed

using the non-back transformed RR values. To minimize the impact

of skewness and outliers and improve linearity between the

variables, we applied log-transformations on amendment

application rate, soil C, and soil N. To visualize the relationships

between amendment application rate, mineral izat ion,

immobilization, and NH4
+ pool size by amendment category (i.e.,

organic, synthetic, combination), we plotted regressions fitted with

linear models and kernel density plots of the distributions using the

GGally package (Schloerke et al., 2024).
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All figures were generated using the packages ggplot2

(Wickham, 2016) and Ggally (Schloerke et al., 2024). All

statistical analyses were performed in the statistical computing

software R (version 4.3.3, R Core Team, 2020). Flow diagram of

study selection (Supplementary Figure 1) was created using the

PRISMA Flow Diagram tool (Haddaway et al., 2022).
3 Results

Eighteen studies measuring gross N mineralization rates with
15N isotope pool dilution methods showed that soil amendments

increased N mineralization, immobilization, and nitrification rates

in agricultural soils. Overall, amendments enhanced N

mineralization rates by 172% (p< 0.001), N immobilization rates

by 147% (p< 0.001), and nitrification rates by over 200% (p< 0.001;

Figure 1) relative to zero amendments. N transformation rates were

generally low in the control group and high in the experimental

group across all studies (Table 2).

The addition of soil amendments, regardless of amendment

type, facilitated an overall increase in mineralization rates

(Supplementary Table 2). Organic amendments increased N

mineralization rates by 187% (p< 0.0001; CI lower = 151, CI

upper = 229), and synthetic amendments increased N

mineralization rates by 60% (p = 0.05; CI lower = 1, CI upper =

154). Combining organic and synthetic amendments increased N

mineralization rates by 137% (p< 0.001; CI lower = 50, CI upper =

275). Organic amendments also increased N immobilization rates

by 164% (p< 0.0001; CI lower = 127, CI upper =208) and

nitrification rates by 220% (p< 0.0001; CI lower = 171, CI upper

=227). Synthetic amendments did not affect N immobilization rates
Frontiers in Agronomy 06
but did increase nitrification rates by 204% (p = 0.005; CI lower =

-13, CI upper = 106). Combined amendments increased

immobilization rates by 129% (p = 0.01; CI lower = 22, CI upper

= 330) but did not influence nitrification rates.

No differences in N mineralization rates were observed between

the residue and manure amendments (Figure 2A). However, residue

resulted in a 240% increase in immobilization rates (p< 0.0001;

Figure 2B), while manure amendments resulted in a 57% increase in

immobilization rates (p< 0.001; Figure 2B). Residue amendments

also had a larger impact on nitrification rates than manure, with a

306% (p< 0.0001; Figure 2C) and 37% (p = 0.05; Figure 2C) change,

respectively. Within the combination treatments, both residue +

manure and organic + synthetic amendment categories resulted in

significant increases in mineralization rates but were not different

from each other (Figure 2A). While the organic + synthetic

combination treatment increased immobilization rates (p =

0.001), it was not statistically different from the residue + manure

treatment (Figure 2B).

Mostly, NH4
+ pool size did not change with soil amendment

treatment type. However, NH4
+ increased by 83% under residue

amendments relative to zero amendments (p< 0.0001; Figure 3).

Additionally, the AENH+
4
(i.e., amendment effect on NH4

+ pool size)

correlated weakly with the overall amendment application rate;

specifically, organic amendments were weakly and negatively

correlated with AENH+
4
, while synthetic and combination

amendments had no relationship with the AENH+
4
(Figure 4D).

Organic amendments, on average, stimulated mineralization at a

rate of nearly three times that of synthetic amendments (Table 2).

However, neither organic nor synthetic amendment application

rate significantly correlated with AEmin (i.e., amendment effect on

mineralization rates) or AEimb i.e., amendment effect on

immobilization rates) (Figures 4A, B). These findings imply that

even though organic amendments often contributed more to the

NH4
+ pool than synthetic amendments, the overall quantity of N

applied via amendment does not drive differences in N

transformation rates.

However, Pearson correlations revealed strong relationships

between the AENH+
4
and AEmin (Figure 4E) and AENH+

4
and AEimb

(Figure 4F). Additionally, there was a strong relationship between

AEmin and AE imb (Figure 4C). Unamended soil properties from

each study, including soil C and N, C:N, and soil pH, showed

minimal correlat ion with N transformation rate RRs

(Supplementary Table 2). While AEmin correlated with AEimb and

AENH+
4
, its correlation with soil pH and C was weak and negative,

and we found no significant correlation with soil N or the C:N. A

Eimb demonstrated weak, negative correlations with soil pH and the

C:N but not with soil C or N. Finally, AEnit (i.e., amendment effect

on nitrification rates) showed a moderate, negative correlation with

soil pH and C:N, and weak correlations with soil C and N.
4 Discussion

Understanding the influence of soil amendments on N cycling

dynamics within agroecosystems is vital for developing effective

nutrient management strategies. These strategies rely on optimizing
FIGURE 1

Overall amendment effects (% change) on N transformation rates in
the soil. A separate meta-analysis was run for each N transformation
rates. Amendment effects were calculated as the back-transformed
response ratios (RR). Bars represent 95% confidence intervals. Effects
are considered significant if the CIs do not overlap with zero.
Numbers in parentheses indicate the number of
paired comparisons.
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internal N cycling and require balancing external inorganic and

organic N inputs to the system. Our meta-analysis examined the

change in N transformation rates via pool dilution methods in

response to different organic and synthetic soil amendments (i.e.,

AED) and highlights the role that organic amendments, such as cow

manure and crop residues, play in enhancing N cycling rates.

Specifically, residue-based amendments increased mineralization

(AEmin) rates more than synthetic amendments and increased

immobilization (AEimb) rates more than both synthetic and

manure amendments (Figure 2). In contrast, neither manure nor

synthetic amendments induced a significant AEimb.

We found that manure and inorganic fertilizer contribute to an

overall increase in mineralization rates of organic N to inorganic

forms, increasing plant available N. However, high mineralization

rates and large inorganic N pools also lead to environmental N

losses (Galloway et al., 2008; Erisman et al., 2013). Our meta-

analysis indicates that crop residue amendments produced higher N

mineralization and immobilization rates than manure and synthetic

N sources. Mineralization (i.e., microbial N production) releases

NH4
+ making it available for plant uptake or susceptible to

volatilization (i.e., NH3 release) or nitrification, which is prone to

leaching NO3
- (Erisman et al., 2013). Immobilization (i.e., microbial

N consumption) reduces plant-accessible N but lowers the risk of N

losses from the system. Thus, boosting immobilization and

mineralization provides a potential means to increase soil N

storage and plant N uptake (Schimel and Bennett, 2004; Daly

et al., 2021). Ultimately, strategically combining crop residues,

manure, and inorganic fertilizers may help optimize the

opportunities for crop N uptake without excess soil N vulnerable

to offsite losses (Vanlauwe and Giller, 2006; Drinkwater and Snapp,

2022; Grandy et al. 2024).

N amendments – synthetic, organic, or a combination –

increased mineralization rates by roughly 60-215%, while

residue was the only N amendment to substantially increase

immobilization and nitrification rates. Our results contradict the

findings of (Booth et al., 2005), who found that the overall effect of

fertilizer treatments (inorganic and organic) did not affect

mineralization rates, immobilization rates, or nitrification rates.

However, the authors did not distinguish between organic and

inorganic amendments in the determination of the overall effect

size, therefore it is not possible to ascertain whether organic
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amendments indeed increased N transformation rates in their

analysis. Furthermore, the authors reported that individual studies

using organic fertilizer sources resulted in significant increases in

mineralization rates. Our study parsed apart the amendment effect

(i.e., synthetic vs. organic amendment) on N transformations and,

consistent with existing research (e.g., Kumar and Goh, 2003;

Diacono and Montemurro, 2010; Chen et al., 2014a), found that

organic matter incorporation into agricultural soils can stimulate

mineralization rates, as reflected in our findings of a strong

organic amendment effect.

A recent meta-analysis conducted by Mahal et al. (2018) found

that, on average, cropping systems that received N amendments –

regardless of form – had higher potentially mineralizable N (PMN)

relative to the non-amended controls. Specifically, the authors

found that compost and manure amendments increased PMN by

52% and 78%, respectively, while inorganic amendments did not

induce changes in PMN. We found a slight increase in

mineralization rates with added synthetic amendments but a

much larger one with crop residues and manure. Our findings

and those from Mahal et al. (2018) suggest that the contribution of

synthetic fertilizer N enhances the inorganic N pool but has

relatively less or no impact on N mineralization.

Synthetic amendments significantly increased both N

mineralization and nitrification rates but had no detectable effect

on immobilization rates. This finding suggests that, from a

microbial perspective, there is an excess of available N with

respect to C. Applying synthetic fertilizers often enhances crop

productivity, resulting in increased crop residue inputs to soil and

higher microbial biomass than crops receiving low or no fertilizer

(Geisseler and Scow, 2014). This potentially high rate of residue

inputs coupled with an active microbial community in a strongly N-

enriched environment will induce microbial N spillover

(Mooshammer et al., 2014a). Even if N fertilization has no effect

or inhibits decomposition rates (Grandy et al., 2013), microbes may

still release inorganic N during decomposition (Breza et al., 2023).

Soil amendment stoichiometry is a major driver of microbial

decomposition processes and N cycling and governs how organic

inputs influence soil nutrient dynamics (Keiblinger et al., 2010; Chen

et al., 2014b). Substrates with low C:N (e.g., manure and green

manure) fuel the microbial community by providing easily

accessible forms of C balanced with available N, thereby increasing
TABLE 2 Overall and moderator level means and standard errors for N transformation rates, NH4
+ pool size, and amendment application rate for

control and experimental treatments across all studies.

Control Experimental

Overall Synthetic Organic Combination Overall Synthetic Organic Combination

Mineralization 1.3 ± 0.1 1.8 ± 0.5 1.3 ± 0.1 0.9 ± 0.2 3.5 ± 0.3 2.5 ± 0.7 3.7 ± 0.3 1.8 ± 0.4

Immobilization 1.6 ± 0.2 1.7 ± 0.4 1.7 ± 0.2 0.4 ± 0.1 3.6 ± 0.2 2.4 ± 0.6 3.9 ± 0.3 0.9 ± 0.3

Nitrification 1.2 ± 0.1 2.3 ± 1.2 1.1 ± 0.1 1.4 ± 0.9 4 ± 0.4 5.7 ± 2.4 4 ± 0.4 2.9 ± 2

NH4
+ Pool Size 6.4 ± 1.1 5.2 ± 2.6 6.8 ± 1.2 2.2 ± 1.2 10 ± 1.1 5.2 ± 2.2 10.6 ± 1.3 6.7 ± 2.1

Application Rate – 0 0 0 – 81 ± 13 230 ± 20 230 ± 33
Transformation Rates: mg N kg-1 soil day-1.
NH4

+ Pool Size: g NH4
+-N kg-1 soil.

Application Rate: kg N ha-1.
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mineralization rates and short-term N release into the soil (Flavel and

Murphy, 2006; Myrold and Bottomley, 2015). In contrast, high C:N

inputs like crop residues contribute to the SOM pool both in the short

and long term, providing C resources over extended periods and

sustaining bioavailable N through mineralization-immobilization

(Nguyen et al., 2016). Incorporating high quality crop residues with

low to medium C:N (e.g., 20-30:1) may enhance SOM content in the

short term (Ding et al., 2006; Tiemann et al., 2015), creating a fresh

pool of substrates that can immediately stimulate microbial activity

(Wang et al., 2015). For example, a study from our database

(Herrmann and Witter, 2008) tested the immobilization potential of

various N inputs to quantify the contribution of amendments to net

NH4
+ availability. The authors found a linear relationship between

immobilization rates and microbial respiration rates irrespective of

amendment C:N, suggesting the background SOM pool of their soils

contained enough C to facilitate NH4
+ immobilization. Over the long

term, residue inputs contribute toward building the stable SOM pool

that may ultimately drive immobilization rates (Yan et al., 2019).

However, substrate quality is a key component in dictating N

transformation rates, and distinguishing between whether the N

input itself, the long-term accumulation of inputs, or an interaction

of the two is a stronger driving force remains uncertain.

The existing organic N pool is an essential source of NH4
+, and

implementing management strategies that build this pool (e.g., crop

residue inputs) can contribute to increased N transformation rates

and soil NH4
+ concentrations (Farzadfar et al., 2021). While

growers typically rely on inorganic N application rates to supply

most or all plant-available N, the turnover of in situ organic matter

can also be a significant N source (Näsholm et al., 2000; Snapp and
FIGURE 2

Meta-analysis results of the change in (A) mineralization (p < 0.001),
(B) immobilization (p < 0.001), and (C) nitrification (p < 0.001) rates
in response to different soil amendment types. Numbers in
parentheses indicate the number of paired comparisons. Individual
moderator parameters are significantly different from one another if
the 95% CI do not overlap. Overall effects of each moderator
parameter are considered significant if 95% CI do not overlap with
zero. Amendment effects were calculated as the back-transformed
response ratios (RR). Bars represent 95% confidence intervals.
FIGURE 3

Change in NH4
+ pool concentration in response to different soil

amendments. Numbers in parentheses indicate the number of
paired comparisons. Individual moderator parameters are
significantly different from one another if the 95% CI do not overlap.
Overall effects of each moderator parameter are considered
significant if 95% CI do not overlap with zero. Amendment effects
were calculated as the back-transformed response ratios (RR). Bars
represent 95% confidence intervals.
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Fortuna, 2003; Geisseler et al., 2009). We found that synthetic N

inputs and manure amendments did not alter NH4
+ pool size

relative to the unamended control. Yet, we found that residue

inputs increased the NH4
+ pool size by roughly 75% compared to

no inputs. Moreover, there was a weak negative relationship

between N application rate and NH4
+ pool size, but only for

organic amendments. These results suggest that amendment type
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facilitates changes in NH4
+ pool size rather than the quantity of N

applied, per se, via external N inputs. As such, more N amendments

do not necessarily mean an increase in the NH4
+ pool. Local

edaphic factors like clay content (Vogel et al., 2015), soil

temperature and moisture levels (Guntiñas et al., 2012; Robertson

and Groffman, 2024), and pH (Averill and Waring, 2018) can all

influence N transformations rates and NH4
+ storage in the soil.
FIGURE 4

Correlation matrix showing the correlations (lower triangle) and the distribution of the data (diagonal) for each amendment type. Pearson
correlations between amendment application rate, mineralization rate, immobilization rate, and NH4

+ pool size are displayed in the lower triangle of
the matrix. The correlation coefficients for each correlation combination are displayed in the upper triangle of the matrix. “Corr” (the overall
correlation coefficient irrespective of amendment type) is displayed on top (gray color) and the individual correlations for each amendment type are
displayed underneath. The 1-to-1 diagonal shows the distribution of the spread of the data for each variable, separated into “Organic” (black),
“Synthetic” (blue), or “Combination” (green) amendment types. Asterisks represent correlation significance: ***<0.0001, **<0.01, *<0.05. Letters
correspond to correlation pairings, and match correlations to their respective correlation coefficients: (A) mineralization and amendment rate, (B)
immobilization and amendment rate, (C) mineralization and immobilization, (D) NH4

+ pool size and amendment rate, (E) mineralization and NH4
+

pool size, and (F) immobilization and NH4
+ pool size.
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However, within the context of our analysis, the increase in

mineralization rates indicates greater NH4
+ production, but high

immobilization rates under residue amendments suggest that

microbial metabolic requirements may restrict the persistence of

the NH4
+ pool. Therefore, with residue amendments, C and N

cycling may remain more tightly coupled (Gardner and Drinkwater,

2009; King and Hofmockel, 2017; Stella et al., 2019) where microbes

assimilate NH4
+ based on greater C availability (Mooshammer

et al., 2014a).

While this meta-analysis detected compelling patterns in N

transformation rates in response to different N amendments, there

are limitations and considerations, primarily due to the number of

studies included in the analysis. Although we initially identified about

40 viable studies, our selection criteria reduced the final number to 18

studies (see PRISMA flow diagram, Supplementary Figure 1). As

such, the number of studies that manipulated synthetic or organic

amendments was imbalanced, with six of the studies manipulating

synthetic amendments and 12 manipulating organic amendments.

Additionally, of the six studies on synthetic N, only two used the same

fertilizer type, while the others did not report the chemical

composition. The under-reporting of synthetic amendments limits

our ability to fully understand their impact. Altogether, we conducted

the amendment comparisons at a very high level (e.g., organic vs.

synthetic), with organic amendments separated into plant residues or

animal-derived manures and synthetic amendments as a single

category, reflecting the minimal available data. These aspects of our

study suggest some caution in generalizing the findings, particularly

for synthetic amendments. Nonetheless, there is value in

understanding how broad patterns of soil respond to inputs, even if

specific responses vary depending on the context.
5 Conclusions

This meta-analysis demonstrated that organic-based soil

amendments, especially crop residues, enhanced N mineralization,

immobilization, and nitrification rates and increase the NH4
+ pool

size. While manure and synthetic N fertilizers also increased N

mineralization rates, neither amendment altered immobilization or

nitrification rates. This suggests that these amendments result in high

N bioavailability, prompting microbial release of excess N, which can

support crop production but also might increase potential N offsite

movement. Applying N amendments that allow for slower N release

and balance mineralization-immobilization dynamics over longer

periods of time may help support production goals and reduce

excess N and microbial spillover, thereby improving N retention

within the agroecosystem. The effect of combining organic and

synthetic amendments on N transformation rates remains

ambiguous. However, future research could expand on these findings

by examining gross N mineralization rates under different agricultural

contexts and investigating how interactions between synthetic and

organic nutrients influence these transformations. These insights have

the potential to deepen our understanding of N cycling dynamics and

help refine input strategies, contributing to climate smart solutions that

maintain agricultural productivity and increase sustainability.
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