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The intensive cultivation practices of annual cereal crops have been causing

unprecedented degradation of natural resources. Perennial crops such as

intermediate wheatgrass (IWG) could provide numerous benefits to address

these issues, but there is still little comprehensive information about the

establishment, fertilization needs, or range of IWG productivity on a regional

basis in the first production year, which can be the highest over the lifespan of

IWG’s grain production. The objective of this study was to evaluate how IWG

establishment and first-year grain and forage yields varied across soil types,

climate conditions, and in response ten fertilization treatments at six locations in

the Midwestern USA. The 10 treatments included N fertilizer application at 5

rates; N application with or without P or K; varied timing of N application, and

varied N fertilizer source. We found that fertilization influenced summer and fall

forage yields but not grain yields. We also found that grain and forage yields

varied greatly between locations, ranging from 556–1343 kg ha-1 for grain yields,

3732–8930 kg ha-1 for summer forage, and 927–3561 kg ha-1 for fall forage

yields. Using a multiple linear regression approach, we found that a combination

of local edaphic soil and climate factors explained 74%, 92%, and 69% of variance

in grain, summer forage, and fall forage yields, respectively. Anomalies in

expected and actual yields across locations led us to identify potential critical
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periods for IWG grain and forage production. We found accumulated

precipitation in the 60 days before anthesis explained the most variance in

grain and summer forage yields while the accumulated precipitation from May

through October explained the most variance in fall forage yields. These findings

are a first step toward identifying the regional expectations for IWG yields and

could inform grower management and decisions regarding grain and

forage harvest.
KEYWORDS

perennial crop, Kernza®, soil characteristics, ecological intensification, nitrogen fertility,
regional variance
1 Introduction

Present-day agricultural systems are degrading the global

natural resource base necessary for sustained agricultural

productivity and ecosystem functionality, at an unprecedented

rate and scale (IPBES, 2019). Approximately 600 million hectares

globally are cleared of vegetation each year to grow wheat, maize,

and rice, which provide more than 50% of human calories (FAO

2022, FAO, 2023). These and other annual crops must be planted

each year often after tillage, which causes ecosystem disservices such

as soil degradation and greenhouse gas emissions (Pimentel et al.,

2012; Lal, 2015). Current annual row crop agriculture can degrade

the soil and increase the need for energy-intensive inputs which, in

turn, generate environmental and economic costs such as increased

farmer dependence on agrochemicals and fuel (Massobrio et al.,

2023; Tsoraeva et al., 2020). Another challenge that farmers of

annual grains have faced for millennia is the need for timely,

favorable weather conditions to germinate and establish a crop.

For example, more than $13 billion were distributed to farmers in

2022 to compensate for lost revenues because of excess or lack of

moisture which delayed planting of corn and soybean (USDA,

2024). Agricultural strategies to avoid the environmental and

economic challenges associated with annual replanting could

improve productivity and food security (Glover et al., 2010).

The development of perennial grain crops provides an

opportunity to overcome disservices inherent to annual

agriculture (Zhang et al., 2023). There is increasing evidence that

perennial crops have the potential to improve agricultural

sustainability because their deep root systems and perennial life

strategy lead to reduced tillage and fossil fuel dependency, herbicide

applications, soil erosion, nutrient leaching, and runoff (Culman

et al., 2013; Crews et al., 2016; Jungers et al., 2019; Reilly et al.,

2022a; Glover et al., 2010; Zimbric et al., 2020). Since perennial

crops might only require replanting every few years (or longer),

such systems can reduce the economic burdens related to seeding

and establishment. After perennials are established, their

extensive root systems can increase soil water infiltration, storage,

and plant uptake throughout the year (de Oliveira et al., 2020;
02
Clément et al., 2022) thereby enhancing resilience to extreme

drought or flood conditions relative to annual crops. Increased

climate resiliency by perennials can ensure some harvestable

product consistently where annuals may be more prone to crop

failure (Smith, 2014; Schipanski et al., 2016).

One of the most advanced perennial grain crops being developed

is derived from Intermediate wheatgrass (IWG) [Thinopyrum

intermedium (Host) Barkworth and D.R. Dewey]. IWG is a cool-

season grass with good winter hardiness, relatively large seeds for a

perennial grass, and high biomass and forage quality. Because of these

qualities it emerged as a promising candidate for perennial grain

breeding and crop development (Wagoner, 1990; Wagoner and

Schauer, 1990; Crain et al., 2024; DeHaan et al., 2014). IWG seeds

can be harvested as grain for direct human consumption, while

vegetative biomass can be used simultaneously as livestock forage,

thus providing multiple market opportunities while offering

enhanced environmental quality (Crews et al., 2018; Natural

Resources Conservation Service (NRCS), 2021; Pinto et al., 2022;

Cureton et al., 2023). Over 40 years of breeding has resulted in

modern IWG lines with improved yield, seed size, and disease

resistance (Wagoner, 1994; Cox et al., 2002; DeHaan et al., 2005,

2014; Zhang et al., 2016; Cattani and Asselin, 2017; DeHaan et al.,

2018; Hayes et al., 2018; Bajgain et al., 2022). In 2009, The Land

Institute trademarked the grain harvested from improved IWG lines

as “Kernza®” (Natural Resources Conservation Service (NRCS),

2009), and in 2019 the first commercial variety “MN-Clearwater”

was released in the United States by the University of Minnesota

(Bajgain et al., 2020). Since that time, IWG research in the

Midwestern United States has been concentrated in Minnesota

(Zhang et al., 2016; Jungers et al., 2019; Bajgain et al., 2020),

Kansas (Culman et al., 2023; DeHaan et al., 2018; de Oliveira et al.,

2018; McKenna et al., 2020; Barribal et al., 2022; Means et al., 2022),

Wisconsin (Zimbric et al., 2020; Pinto et al., 2021, 2024), Ohio

(Pugliese, 2017; Pugliese et al., 2019), and Michigan (Culman et al.,

2013). Results of these and other studies have shown first year IWG

grain yields to range from 500 to 1000 kg ha-1, and forage yields from

3800 to 10800 kg ha-1 (Supplementary Table S1). Both geographic

location and fertility optimization influence grain and biomass yields
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(Jungers et al., 2017) but with rapid IWG expansion in the past

decade, there is a strong need to better understand both IWG’s

fertility needs and the other management and environmental

characteristics which influence IWG establishment, growth, and

grain and biomass yields.

Research to determine best practices to establish IWG as a grain

crop in the Upper Midwest has provided a baseline for this and

future research (DeHaan et al., 2025). For example, sowing IWG in

the fall has been a common practice because it has the advantage of

lowering weed pressure during establishment and allowing seeds to

vernalize and produce a grain harvest in the subsequent first full

growing season (Locatelli et al., 2022). Within this planting period,

researchers have quantified the influence of temperature on seedling

success and subsequent yields when sown on various dates (Jungers

et al., 2022). Temperature and precipitation in the first spring after

planting can also significantly affect survival and first-year yields of

IWG as it does for annual grain crops (Carrera et al., 2024). Within

the general influence of weather on first year establishment, there is

a ‘critical period’ defined for many crops but not yet defined for

IWG, when weather conditions during flowering and grain-filling

strongly influence yield or seed abortion in the first or subsequent

growing seasons (Fischer, 1985; Slafer and Andrade, 1993; Andrade

et al., 1999). Other edaphic factors such as soil aggregate structure,

organic matter contents and temperature are also important for

perennial species growth and productivity (Crews et al., 2018;

Culman et al., 2023). Little is known how these variables affect

establishment success and first-year yields, but because IWG often

has the highest grain yields in the first production year (Zhen et al.,

2024), understanding and predicting first year establishment and

yields is of importance for improving producer success.

How IWG yields are influenced by the interaction between

endogenous nutrient supplies of different soil types and fertilizer

amendments is another important area of investigation. N addition

rates of 90 kg N ha-1 in Minnesota have been found to sustain harvests

near yield potential (Tautges et al., 2023), but a wide range of rates (e.g.

67–112 kg N ha-1) have been found to be sufficient in other regions

(Vogel et al., 1993; Fagnant et al., 2024). Grain yields have tended to

decrease with higher N rates because of increased lodging (Jungers

et al., 2017; Tautges et al., 2023) or tiller density resulting in a decrease

in reproductive tillers (Fagnant et al., 2024). Fertilizer effects on IWG

yield (grain or forage) vary strongly by location and stand age (Pugliese

et al., 2019; Pinto et al., 2022; Reilly et al., 2022b; Bowden, 2023), and

although less studied, growers are interested in organic sources of

fertilizer for N or other nutrients. Although IWG often does not

respond to N fertilizer in the first production year, (i.e. Reilly et al.,

2022b; Crews et al., 2022), these studies are based on relatively few N

rates or locations, and the optimal fertilization timing is also still

unclear (Fernandez et al., 2020; Dobbratz et al., 2023; Tautges et al.,

2023). Preliminary studies have also shown that macronutrients can

limit productivity and that P and K concentrations in forage and grain

affect their quality (Muhandiram, 2023; Tautges et al., 2018) but very

few studies have explored the P and K limitation or requirements of

IWG. Together, there is a need to better understand how the
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establishment of Kernza varies across locations, and systematically

how first year IWG grain and biomass yields respond to a range of

fertilization strategies versus local climate conditions across a wider

geographic range than has been previously explored.

In this analysis we addressed these research needs with the

following objectives: 1) to determine the effect of N fertilizer

application rate and timing along with the omission of P or K on

first year IWG grain and biomass yields; and 2) to examine how a

gradient of soil and climate conditions across multiple study locations

in the Midwest influence IWG establishment, productivity and initial

responses to fertilization treatments. These objectives were addressed

using a multi-institutional, multi-site fertility experiment that was

funded by the United States Department of Agriculture Sustainable

Agricultural Systems Coordinated Agricultural Projects USDA SAS-

CAP). Specifically, we focus on N fertilizer rates, timing of N

application, interactions between N, P and K fertilizer applications.

We expected that 1) IWG grain and biomass yields would increase in

response to increasing N fertilization rates up to 135 kg ha-1, and then

grain yield gains would diminish at higher N rates due to lodging or

excess tillering; and 2) yield variation response to fertilization strategy

within a site would be small relative to the variation across study

locations due to climate and soil being primary drivers of plant

establishment and growth. There has seldom been investigation

about the interacting effects of soil, climate, and fertility

management on IWG performance. This information is essential to

develop management best practices across a range of suitable growing

environments for IWG for grain, forage, and dual use.
2 Materials and methods

2.1 Location and characterization of the
study area

The experiment was conducted in six locations: Salina, Kansas

(KS-TLI; The Land Institute); Mead, Nebraska (NE; University of

Nebraska-Lincoln); Rosemount, Minnesota (MN-ROS; University

of Minnesota-Twin Cities); Arlington, Wisconsin (WI-UW;

University of Wisconsin-Madison); Troy Center, Wisconsin (WI-

MFAI; Michael Fields Agricultural Institute), and Wooster, Ohio

(OH; The Ohio State University) (Figure 1; Table 1). The soil orders

presented across these locations are Mollisols and Alfisols (Soil

Survey Staff, 2023; Table 1). The climates are classified as follows

(Kottek et al., 2007): NE and OH have hot and humid continental

summers (Dfa); MN-ROS, WI-UW, and WI-MFAI have mild and

humid continental summers (Dfb); KS-TLI is between a hot

humid subtropical summer (Cfa) and a hot humid continental

summer (Dfa).
2.2 Experimental design

All locations were planted to oats (Avena sativa) in spring 2021

and harvested in July of that year before establishing experimental
frontiersin.org
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treatments. Previous management at each location had been a

continuous annual crop rotation typical of the region of each

location (a corn-soybean rotation WI-UW, WI-MFAI, OH, MN-

ROS, and NE, and a soybean-sorghum rotation at KS-TLI). We

established the same random block design with twelve treatments

(Table 2) replicated once per each of four blocks. We provide a

detailed description of the site characteristics and agronomic

management in Supplementary Tables S1 and S2. Plots were

approximately 15.24 m x 6 m at each location. We collected

baseline soil samples in a subset of the treatments referred to as

the ‘soil health treatments’ with a hydraulic soil probe (5.08 cm

diameter and 0-20, 20-50, and 50–90 cm deep) in the summer of

2021 following oat harvest as described below. There were 12

treatments total, including 10 IWG planted treatments with

various fertilization strategies described below, and two “business

as usual” (BAU) treatments that tested annual crops chosen to

reflect typical crops of the given region. These BAU treatments were

a soybean-corn rotation with both phases (labeled BAU1 and

BAU2) included at most locations and a sorghum-soybean

rotation at KS-TLI only (Table 2, Supplementary Table S2). Data

from BAU treatments is not included in the analysis presented in

this paper, but will be compared with IWG responses in the coming

years. Prior to planting IWG, we applied fertilizer appropriate to

each treatment (Table 2) and prepared the seedbed by tillage

(Supplementary Table S2). Fertilizer rates were optimized so that

at least one treatment could both meet the nutritional needs of IWG

and to create a useful comparison between the IWG and BAU

crops, as well as balance the amount of fertilizer all crops received

over two-year periods (Jungers et al., 2017, Table 2). N application
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rates in this study were selected to encompass the range of

applications currently recommended as well as higher rates to

assess potential N-limitation at current recommended rates with

the newest released variety, MN Clearwater (Jungers et al., 2017;

Bajgain et al., 2020). N rate treatments included 0, 45, 90, 135 and

180 kg N ha-1 applied as urea in the spring. All N addition

treatments also included 56 kg P ha-1 and 168 kg K ha-1, and two

additional fertility treatments tested the 90 kg N ha-1 rate either

without the added P or without the added K. P and K fertilizer rates

were selected to approximate crop removal rates through harvest

based on unpublished Kernza grain and forage data, as well as

published corn and soybean removal data (e.g., Culman et al., 2020;

Table 2). The K rate likely exceeded the BAU removal rates, but is

within range of what would be considered typical farmer practice in

Midwest corn and soybean cropping systems.

In addition to examining N rates, we examined IWG responses to

N source andN timing. The N source treatment assigned 180 kg N ha-1

added as chicken manure, with the same product used across all

experimental sites. N timing treatments were implemented by applying

N (at 90 kg N ha-1) in the fall or as a spring-fall split (45 kg N ha-1 at

each application). Tillage and seedbed preparation occurred as

described in Supplementary Table S2 throughout the late summer of

2021 in all plots. In September 2021 the IWG variety ‘MN-Clearwater’

was planted at a density of approximately 7.8 (MN-ROS, TLI), 12 (NE,

WI-UW), or 16 (MFAI, OH) pure live seeds ha-1, with either 30 (MN-

ROS, KS-TLI) or 38 (OH, NE, WI-MFAI, WI-UW) cm between rows,

depending on available equipment. We fertilized relevant IWG

treatments in April-May 2022 as described in Table 2. Urea fertilizer

was mixed with a urease inhibitor (ANVOL®) before application, at a
FIGURE 1

Visualization of the six study locations in the Midwestern United States, using a Modified satellite image of the Midwestern United States, based on
imagery from Google Earth (Google, 2025).
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TABLE 1 Experimental site locations and characteristics including geographical coordinates, meters above sea level, and soil taxonomy (Soil Survey Staff, 2023).
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Location The Land Institute
Nebraska, Lincoln of Minneso

Abbreviation KS-TLI NE MN-ROS

Coordinates 38°41’55.48”N 97°34’52.66”W 41°09’24.68”N 96°25’30.41”W 44°41’57.6”N 93°04’5

Elevation 388 m 348 m 280 m

Soil family
Fluventic Haplustoll, Coarse-

silty, mixed, mesic
Mollic Hapludalfs, Fine-silty,

mixed, superactive
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Eta 1979-2022 (mm) 789 783

Temp 1979-2022 (C°) 15 12.2

Temp 2021 (C°) 14 11

Temp 2022 (C°) 13 10

Prcp 2021 (mm) 673 583

Prcp 2022 (mm) 708 367

PrcpCrop (mm) 538 274

PrcpAnthesis (mm) 521 195
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Prcp20Anthesis10 (mm) 66 88

Climate variables are presented in a number of ways: Mean annual precipitation (Mean prcp), actual evapotranspiration (Mean Eta), a
and 2022. Cumulative precipitation fromMay to October 2022 (PrcpCrop), accumulated precipitations from January to anthesis 2022
and 10 days after anthesis 2022 (Prcp20Anthesis10) in mm. Anthesis day varied according to location (Figure 2).
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rate of 1.5 quarts per ton of urea, per product recommendations (Koch

Agronomic Services, LLC). Grain and summer forage harvest took

place in August 2022. Fall fertilizer for relevant IWG treatments took

place in September 2022. Fall forage harvest for IWG took place after

the first frost In October 2022.
2.3 Soil sampling and analysis

Baseline soil samples were collected from a subset of treatments

including 1, 3, 5, 7, 8, and 10 (Table 2). This subset is hereafter referred

to as the ‘soil health plots’. Multiple soil cores were randomly extracted

from each plot to control for field heterogeneity and divided into the

following depth increments: 0-20, 20-50, and 50–90 cm. Samples

within each plot were combined by depth into one composite

sample per plot (~450g), sieved to 8 mm, and stored appropriately

for each subsequent analysis. All soil analysis followed standardized

methods (Supplementary Table S3). Briefly, samples were refrigerated

at 4˚ C until sieved to 2 mm and weighed and subsampled for

gravimetric soil moisture (~10–20 g subsample dried to 105˚ C for

48 hrs). Bulk density was estimated by dividing the dry weight

equivalent of each composite sample core by the volume of the core.

Soil texture analysis was conducted on subsamples air dried (~100 g)

using the hydrometer method (Carter and Gregorich, 2008).

Subsamples were analyzed for soil organic matter (SOM), pH, cation

exchange capacity, ammonium-N, nitrate-N, available P, exchangeable

K, at A&L Great Lakes Laboratory (Ft. Wayne, IN) using standard

procedures (Brown, 1998). Total soil carbon and total N were analyzed

by combustion analysis using (varioPYRO cube, Elementer Inc., New
Frontiers in Agronomy 06
Jersey, US). For aggregate stability analysis, we collected three bulk soil

samples with a 2.54 cm wide (0–20 cm deep) soil probe which were

then combined into one composite ~100g sample per plot. Soil was

then sieved to 8 mm and placed in a 4 mm sieve at the top of a stack

containing 4 mm, 2 mm, 0.250 mm, and 0.053 mm sieves. The

aggregates were first wetted with capillary action by setting the

sieves just at water level, followed by oscillation for 10 min in

a water tank using a mechanical sieving device (Angers et al., 2008;

with a modification that no sand correction was performed).

After drying and weighing the soil remaining in each sieve, we

calculated the mean weight diameter (MWD) of water stable

aggregates (Rakkar et al., 2023). Soil subsamples were analyzed for

nitrate and ammonium using extractions with 1M KCl and

subsequent colorimetric analysis (Doane and Horwath, 2003;

Sinsabaugh et al., 2000).
2.4 Measurement of crop establishment,
growth staging, and grain, summer forage,
and fall forage yields

To assess establishment, we conducted plant counts within

three weeks after IWG planting by counting seedlings within a 50

cm section in two rows of each plot. We assessed IWG growth

stages using Zadoks growth at stem elongation, anthesis, and

harvest (Zadoks et al., 1974). Lodging was assessed following

procedures described by Frahm et al. (2018) at harvest and was

not a concern in 2022. We measured aboveground production

(grain and summer forage yield) by harvesting 1 m sections from
TABLE 2 Description of study treatments in the study including the number, name, description, fertilizer rate (kg ha-1, - = no fertilizer), timing (spring
or fall) and strategy [N fertilization timing, N fertilization rate, N fertilizer source, phosphorus (P) and potassium (K) fertilization].

Treatment number Treatment name Treatment description

Fertilization rate (kg ha-1)

Fertilization strategySpring Fall

N N P K

1 BAU1* Corn or sorghum (+) 180 – 112 168 –

2 BAU2 Soybean – – – – –

3 0N_spring* No N fertilization – – 56 168 N rate

4 45N_spring Urea, TSP, KCl 45 – 56 168 N rate

5 90N_spring* Urea, TSP, KCl 90 – 56 168 N rate, N timing, PK

6 135N_spring Urea, TSP, KCl 135 – 56 168 N rate

7 180N_spring* Urea, TSP, KCl 180 – 56 168 N rate, N source

8 90N_fall* Urea, TSP, KCl – 90 56 168 N timing

9 45-45N_split Urea, TSP, KCl 45 45 56 168 N timing

10 180N_fall_manure* Poultry manure 180 – – – N source

11 90N_spring_noK Urea, TSP 90 – 56 – K

12 90N_spring_noP Urea, KCl 90 – – 168 P
(+) sorghum at KS-TLI only.
Urea was the source of mineral N, chicken manure was the source of organic N, triple superphosphate (TSP, P2O5) as the source of phosphorus, and potassium chloride (KCl) as the source of
potassium. Asterisks after the treatment number indicate treatments chosen for detailed soil health analysis.
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three adjacent rows in two representative areas of each plot (see

quadrats size for each location in ST2). IWG grain yield was

measured by first clipping the seedheads from stems just below

the bottom spikelet. Seedheads from both sampled areas were

placed into the same bag and then all remaining vegetative

biomass above 7.6 cm from both sampled areas was harvested,

combined, and placed in a separate bag. The remaining vegetative

biomass is referred to as summer forage. In all field sample

collection and measurements, the outermost plot rows and 50 cm

border of the plot edges were excluded from sampling to avoid edge

effects. Both seedhead and summer forage biomass were weighed

fresh before being dried for 7 days at 35°C and re-weighed again for

determining moisture content and dry matter yield. Grain was

threshed from seed heads using a laboratory thresher (Wintersteiger

LD 350, Ried im Innkreis, Austria) followed by sieving and

aspirating to fully separate the grain from the chaff. All plots were

mechanically combine-harvested after the manual harvest such that

both grain and remaining straw were cut and removed with only

approximately 7.6 cm of residue remaining on the plots. Fall forage

samples were collected from treatments 3, 5, and 7 and processed

using the same methods described above for the summer forage

harvest. Yields of all crops were expressed in kg ha-1 by multiplying

harvested kg per m-1 by row spacing (m-1), then multiplying by

10000 (m2 ha-1).
2.5 Climate data analysis

We compiled a suite of climate variables from 1979–2022 for

each site so that we could characterize the 2022 data of this study

within the context of historical trends. Actual evapotranspiration

(Eta), precipitation (Prcp), net solar radiation, and temperature

were derived by the European Centre for Medium-Range Weather

Forecasts (ECMWF) and Reanalysis v5 (ERA5) (Hersbach et al.,

2020; Supplementary Tables S4, S5, Supplementary Tables

metadata). ECMWF consists of a dynamically consistent

combination of numerical weather prediction forecasts, satellite,

and in-situ observations of climatic variables. Data for 2021-2022,

as the more recent trends for each location, were downloaded from

National Centers for Environmental Information (National

Oceanic and Atmospheric Administration (NOAA), 2023), the

CFAES Weather System (Ohio State University, 2013), and Davis

weather station at TLI (Supplementary Tables S6, S7).

To assess the correlation of climate factors with IWG grain and

biomass yields, we selected a number of variables that would

balance comprehensiveness and minimization of covariance.

The selected variables included precipitation (Pp; mm, the sum of

rainfall, snow and hail), actual evapotranspiration (Eta; mm),

temperature (˚C, annual, monthly and daily averages), frequency

occurrence Prcp (25%, 50% and 75%; Irigoin, 2011) and evaporative

fraction (Ef). Ef is defined as the ratio of latent heat flux to

the available energy, i.e. how much of the radiation received can

be used for Eta. Ef is controlled by water in the root zone

(Bastiaanssen et al., 1997).
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In addition, the cumulative actual evapotranspiration fromMay

to October was calculated as an estimate of evapotranspiration over

the crop growing season (EtaCrop). We also calculated cumulative

Prcp over several different time intervals associated with various

critical physiological periods to determine if any were correlated

with yield. The cumulative growing season precipitation

(PrcpCrop) was calculated as the sum Prcp from May to October

2022 (de Oliveira et al., 2018). Cumulative precipitation was also

calculated for the 60 days before anthesis (Prcp60Anthesis,

Figure 2), for the 20 days before + 10 days after anthesis

(Prcp20Anthesis10; the critical period of the wheat based on

Fischer, 1985), for the entire calendar year before anthesis

(PrcpAnthesis) (beginning January 1st and ending on the date of

observed anthesis at each location), and for the entire calendar year

(PrcpAnnual). The mean temperature of crop establishment

through harvest (TempCrop) was calculated as well (September

2021 to August 2022 for grain and summer forage; September 2021

to October 2022 for fall forage).

Additionally, growing degree days (GDD) were calculated

according to Jungers et al. (2018) and Barribal et al. (2022)

(Equation 1), where Tmax and Tmin are the maximum and

minimum temperatures and Tbase (0 ˚C) is the minimum

temperature threshold for IWG plant growth (Jungers et al., 2018;

Barribal et al., 2022). Growing degree day accumulation began after

the average daily temperature exceeded the base temperature for 5

consecutive days (Jungers et al., 2018) after January 1st 2022

(Barriball et al., 2022).

GDD =  ½(Tmax + Tmin)=2�   –  Tbase (1)
2.6 Statistics

To assess how fertility treatment, climate and soil factors could

be related to differences in IWG establishment and growth across

locations, we used several data analysis approaches. We analyzed

data using R Software (version 2023.06.1; R Core Team, 2021) and

tools in the dplyr package to structure data frames appropriately

(Wickham et al., 2021). For all analyses, we first assessed whether

measured soil and IWG variables conformed to model assumptions

of homogeneity of variance and normality, and applied a square

root transformation as needed. We tested for the fixed effect of

location on IWG plant counts and baseline soil parameters with

blocks specified as random variables, since there were no fertility

treatments implemented for these response variables. Linear mixed

effects models were used to test the effects of the fertility treatments

and locations for IWG grain and forage yield. We used both one-

way ANOVA and mixed effects models using the following R

packages: stats (R Core Team, 2021), scales (Wickham and Seidel,

2020), and lme4 (Bates et al., 2015). For mixed effects models, we

specified fixed effects for treatment, location, and the interaction of

treatment and location and assigned block as a random effect.

When fixed effects were deemed significant (a ≤ 0.05), mean

comparisons of levels within each fixed effect were conducted
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using Tukey’s HSD posthoc pairwise comparison with the emmeans

package (Lenth, 2024).

To compare the potential productivity between locations, we

estimated the crop productivity index (CPI) for each location using

the National Commodity Crop Productivity Index (NCCPI) model

developed by the NRCS-USDA. The CPI ranks soils according to

their inherent capacity to produce dryland commodity crops.

Ratings are based on soil properties and climate, and range from

0 to 100, with higher ratings indicating greater yield potential

(Natural Resources Conservation Service (NRCS), 2022;

Supplementary Figure S1).
2.7 Multiple linear regression modeling

Separate multiple linear regression models were developed to

estimate the predictive value of soil baseline (0–90 cm depth

average) and climate (2021–2022 series) data on grain, summer

forage, or fall forage yields. Before constructing and fitting the

models, Pearson correlation analysis (R Core Team, 2021) was
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performed on all possible predictors, and variables with a

correlation of 0.6 or greater were considered significantly

correlated and thus excluded from consideration (Supplementary

Table S8). Predictors were also centered by subtracting the mean.

Based on this preliminary analysis, we used the following predictors

in each model: SOM, CEC, P, K, Mg, Na, S, the MWD of water

stable soil aggregates; sand; Prcp60Anthesis; PrcpAnthesis, and

EtaCrop. For the fall forage model, we used PrcpCrop as the

climate predictor instead of Prcp60Anthesis or PrcpAnthesis. We

then used the dredge function ofMuMln package (Barton, 2013) for

each of the three full models to explore all possible combinations of

predictors and selected the model with the lowest AIC score. After a

first run of the models, outliers were identified by calculating the

standardized residuals for the models, identifying and deleting

observations where the absolute value of the standardized residual

was greater than 1.5. The variance inflation factor (VIF) analysis

was performed to identify multicolinearity between predictors (Fox

andWeisberg, 2019). Predictors with VIF values greater than 5 were

deleted for fitting the models. Lastly, we performed an ANOVA,

and tested the assumptions for linearity, independence,
FIGURE 2

2022 cumulative growing degree days (GDD) (°Cd) (A) and cumulative precipitation (mm) (B) for each location. The x-axis shows day of the year
(DOY) from day 90 to day 240. Dashed lines show the day of anthesis; dotted lines show the harvest day (DOY) where colors indicate different
locations and black is the average day across sites. The light blue shadow shows 60 days before the average anthesis date.
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homoscedasticity, normality and non-collinearity to each estimated

model using the lmtest package (R Core Team, 2021).

Once the full models were finalized, we created bivariate linear

regression models for each remaining predictor to better

understand how each factor alone predicted variability in IWG

grain yields, summer forage yields, and fall forage yields.
3 Results

3.1 Climate

Over the past 40 years (1979-2022), the month with the lowest

average temperature (Feb) and highest average temperature (Aug)

were consistent across locations; while the lowest mean

temperatures (-0.16 C) occurred at MN-ROS and the highest

(25.3 ˚C) at KS-TLI (Table 1).

The 1979–2022 the minimum precipitation (Prcp) occurred in

January or February at all locations. Maximum Prcp occurred in spring

for KS-TLI, NE, and OH, and spring-summer for WI-MFAI, WI-UW

and MN-ROS (Figure 4). The maximum actual evapotranspiration

(Eta) occurred during late spring and summer in all locations.

Precipitation varied seasonally for all locations, as was the case for

Eta at KS-TLI, NE and MN-ROS (Supplementary Figures S2, S3). The

evaporative fraction (Ef) was highest during late spring and summer

months, and NE, MN and WI-UW had the highest values, while

WI-MFAI and OH had the lowest (Supplementary Figure S4).

Temperature trends during our study period of 2021–2022

were similar to the long-term averages from 1979-2022, with the

minimum occurring in February and maximum in August.

MN-ROS was an exception with maximum temperatures in

June (Figure 3). The years 2021 and 2022 had notably less

precipitation than 1979–2022 means at all locations (by 188

and 153 mm in KS-TLI; 301 and 517 mm in NE, 186 and 198 mm

in MN-ROS; 341 and 19 mm in WI-UW; 314 and 71 mm in WI-

MFAI; 274 and 69 mm in OH, lower annual and accumulated

Prcp, respectively; Figures 2, 3). Annual Prcp at NE was

exceptionally low relative to its long-term average and was the

lowest of all locations (367 mm). May and June 2022 were the

only months at KS-TLI and NE that were not drier than average

during our study. In this two-month window, Prcp in KS-TLI

was higher (by 142 (May) and 79 (June) mm) than the 1979–

2022 averages. Higher than average (by 73 mm) Prcp also

occurred in MN-ROS in August 2022 (Figure 3; Table 1,

Supplementary Table S7).
3.2 Soil characteristics

Soil parameters were statistically different across locations and

with depth (Table 3, Supplementary Tables S9, S10). These location

differences were reflected in the crop productivity index

(Supplementary Figure S1). Soil texture analysis showed that all

locations had relatively fine soil, ranging from loam to silty clay

loam or silt loam 0–20 cm. At 50–90 cm, the texture was coarser,
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sandy clay loam in WI-MFAI, and loam for MN-ROS and OH. Soil

organic matter (SOM) percentage varied across depths and

locations with SOM being lower at depth at a given location. The

highest SOM was reported at MN-ROS at 56 g kg-1, at 0–20 cm, and

the lowest values being reported at OH and WI-MFAI at 11.5g kg-1

at the 50–90 cm depth.
3.3 Establishment, growth, and yields
across locations

Establishment success, measured by plant counts after

germination, varied across locations (p < 0.001). KS-TLI had the

lowest plant count at an average of 5 ± 4 plants m-1 and OH had the

highest, at an average of 23 ± 3.0 plants m-1 (Table 4,

Supplementary Table S11).

IWG reached the anthesis growth stage at a similar timing at the

MN-ROS, WI-MFAI, and WI-UW sites both when measured by

DOY (day 181, 186 and 186 respectively) and by GDD (1249°Cd,

1391°Cd, 1378°Cd). KS-TLI and NE also reached anthesis at a similar

DOY (164 and 174 respectively) and GDD (1536°Cd and 1422°Cd

respectively). OH had the earliest DOY of anthesis (day 161) and the

least GDD 1153°Cd to anthesis across the locations (Figures 2A, B).

IWG yields varied significantly by location (p < 0.001).

MN-ROS had the lowest mean grain yields at 556 ± 34 kg ha-1

and WI-UW had the highest mean grain yields at 1343 ± 24 kg ha-

1 for IWG (Figure 4, Table 4, Supplementary Table S11). Summer

forage mean yields varied across locations with the lowest being at

WI-MFAI at 2054 ± 124 kg ha-1 and the highest at WI-UW at

8930 ± 159 kg ha-1.
3.4 Modeling the climate and soil
predictors of grain and forage yields

Various combinations of soil nutrient concentrations, percent

sand, aggregate stability, and climate variables including

Prcp60Anthesis, EtaCrop, and PrcpCrop explained 74%, 92% and

69% of the variability in grain (Equation 2), summer forage

(Equation 3) and fall forage (Equation 4) yields, respectively,

across locations (p<0.001) (Tables 5, 6; Supplementary Table

S12). Variables that best explained each harvest product varied,

though all included some measure of precipitation (Table 6). The

final models were as follows:

IWG   grain = 911:3 + (K*( − 0:57))+

(Mg*0:44) + (Na*16:1) + (P*14:6)+

(Prcp60Anthesis*4:8) + (S* − 25:9)) + (Sand* − 5:53)

(2)

IWG   summer   forage = 5221:3+

(Agg   Stability*2:5) + (EtaCrop*12:2) + (Mg*2:0)

+(Na*83:4) + (SOM*623:3) + (P*40:1)+

(Prcp60Anthesis*   51:0) + (S* − 150:0)

(3)
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IWG   fall   forage = 1988:2+

(Agg   Stability*1:4) + (K*11) +   (Mg* − 6:1)

+(Na*68:7) + (SOM*410:9) + (P* − 93:4)+

(PrcpCrop* − 7:8)

(4)

After model construction, we performed individual regressions for

those variables included in the final models (Table 7). Based on this

analysis, we found that Prcp60Anthesis (accumulated precipitation 60

days before anthesis) had the greatest influence on grain and summer

forage yields and alone explained 21% and 45% of the yield variability

in the individual regressions respectively (Table 7). By contrast,

PrcpCrop (accumulated precipitation from May to October) alone

explained 2% of the variability in fall forage (Table 7). Alone, EtaCrop

(accumulated actual evapotranspiration from May to October) alone

also had an important influence on summer forage and explained 20%

of the variability based on individual regressions (Table 7).

Soil variables tended to explain less of the variation in yields in

individual regressions than precipitation with the exception of fall

forage. Mg, Na and P explained 28% in grain, 9% summer forage and

47% fall forage when individual regressions were summed (Table 7). K

explained 7% in grain and 30% fall forage yields models (Table 7). Agg

Stability (soil water stable aggregate stability) explained 15% and 5% in
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summer and fall forage model in individual regressions (Table 7). Sand

explained 32% of grain yields in individual regressions (Table 7). A

difference between the individual regressions and the full multiple

linear regression models was that although the full multiple linear

regressions showed positive relationships with each response variable,

some individual regressions demonstrated negative relationships with

the response variables (Tables 6, 7).
3.5 Yield responses to fertility treatments

Neither fertility treatment alone nor the interaction of treatment by

location influenced grain yields (p > 0.05). Treatment and location both

influenced IWG summer forage yield (p<0.05 and p<0.001 respectively;

Figure 5, Table 4). Among treatments, only the addition of 135 kg ha-1

spring applied mineral N increased summer forage yields compared to

the no N control (p<0.05; Figure 5, Table 4). Fall forage yields were

affected by the interaction of treatment and location (p < 0.01; Figure 6,

Table 4), where treatments with 90 and 180 kg N ha-1 of spring mineral

applied N had mean yields significantly greater than when no N was

applied, only at the NE location or when fall forage was averaged across

locations (p<0.05; Figure 6, Table 4, Supplementary Table S11).
FIGURE 3

Average grain, summer forage, and fall forage yields (kg ha-1) at each experimental location. Error bars represent one standard error from the mean.
Letters within each panel represent significant differences (p < 0.05) between sites, based on Tukey’s HSD posthoc pairwise comparison testing.
Statistics were performed on square root transformed data.
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TABLE 3 Means (SE) of soil parameters analyzed for each depth and location: clay (g kg-1), sand (g kg-1), silt (g kg-1), pH, cation exchange capacity (CEC), phosphorus (P), potassium (K), soil organic matter
(SOM), mineral N (Min N), mean weight diameter (MWD) and bulk density (Bd). The 0–90 cm depth increment represents the parameter value averaged across the entire depth profile.

SOM
(g kg-1)

Min N
(mg kg-1)

MWD
(mm)

Bd
(g cm-3)

3.33 (0.08) 4.43 (0.47) 1.442 (0.03) 1.23 (0.006)

2.55 (0.16) NA NA 1.13 (0.004)

2.06 (0.15) NA NA 1.16 (0.008)

2.65 (0.10) NA NA 1.17 (0.006)

5.60 (0.15) 8.37 (1.98) 1.586 (0.03) 1.30 (0.03)

4.13 (0.27) NA NA 1.29 (0.02)

1.89 (0.12) NA NA 1.32 (0.05)

3.87 (0.21) NA NA 1.31 (0.021)

3.98 (0.12) 7.14 (1.65) 1.058 (0.04) 1.40 (0.01)

3.56 (0.11) NA NA 1.35 (0.01)

2.88 (0.06) NA NA 1.81 (0.2)

3.47 (0.08) NA NA 1.52 (0.03)

2.25 (0.06) 9.17 (2.90) 1.231 (0.02) 1.14 (0.03)

1.33 (0.03) NA NA 1.39 (0.04)

1.16 (0.03) NA NA 1.47 (0.04)

1.58 (0.06) NA NA 1.34 (0.03)

2.39 (0.08) 17.10 (5.32) 1.477 (0.02) NA

1.54 (0.04) NA NA NA

1.15 (0.12) NA NA NA

1.70 (0.08) NA NA NA

4.07 (0.09) 4.26 (1.0) 1.440 (0.02) 1.24 (0.02)

2.68 (0.06) NA NA 1.21 (0.02)

2.09 (0.05) NA NA 1.29 (0.02)

2.94 (0.11) NA NA 1.25 (0.01)

* *** *** ***
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Location
depth
(cm)

Clay
(g kg-1)

Sand
(g kg-1)

Silt
(g kg-1)

pH
CEC

(cmolc kg-1)
P

(mg kg-1)
K

(mg kg-1)

KS-TLI

0 – 20 29.2 (0.7) 15.8 (1.3) 54.9 (1.3) 8.0 (0.01) 37 (0.5) 21 (0.7) 322 (9.0)

20 – 50 35.7 (2.4) 14.4 (1.4) 49.9 (1.9) 8.1 (0.02) 56 (2.3) 7 (0.3) 186 (11.1)

50 – 90 39.3 (3.0) 12.9 (1.8) 47.8 (2.6) 8.2 (0.02) 76 (2.7) 5 (0.13) 172 (10.0)

0 – 90 34.7 (1.4) 14.4 (0.9) 50.9 (1.2) 8.1 (0.01) 56 (2.2) 11 (0.92) 227 (9.9)

MN-ROS

0 – 20 21.5 (0.5) 21.5 (1.0) 57.0 (0.7) 6.0 (0.11) 25 (0.7) 48 (2.5) 126 (4.0)

20 – 50 20.3 (0.7) 22.1 (1.2) 57.6 (1.2) 6.1 (0.08) 21 (1.0) 16 (1.4) 76 (2.7)

50 – 90 18.5 (0.6) 32.6 (3.0) 48.9 (2.7) 6.7 (0.13) 16 (0.6) 11 (0.8) 74 (2.6)

0 – 90 20.1 (0.4) 25.3 (1.3) 54.5 (1.1) 6.3 (0.07) 21 (0.6) 25 (2.16) 92 (3.4)

NE

0 – 20 26.8 (0.7) 13.4 (0.9) 59.9 (1.0) 5.8 (0.05) 17 (0.2) 64 (4.6) 403 (24.0)

20 – 50 28.7 (0.6) 12.3 (0.8) 59.0 (0.7) 5.8 (0.5) 16 (0.2) 32 (3.8) 246 (27.0)

50 – 90 33.9 (0.5) 9.6 (1.0) 56.5 (0.9) 6.3 (0.6) 18 (0.3) 25 (1.4) 307 (36.0)

0 – 90 29.8 (0.5) 11.7 (0.5) 58.5 (0.5) 5.9 (0.04) 17 (0.2) 40 (2.82) 319 (18.5)

OH

0 – 20 15.4 (0.7) 21.4 (1.0) 63.2 (1.0) 6.3 (0.09) 9 (0.1) 23 (2.1) 102 (4.7)

20 – 50 20.5 (0.4) 24.3 (1.2) 55.2 (1.0) 6.3 (0.1) 10 (0.3) 8 (0.5) 69 (2.2)

50 – 90 20.2 (0.4) 37.8 (1.0) 42.0 (0.9) 5.3 (0.05) 14 (0.4) 4 (0.4) 69 (1.3)

0 – 90 18.7 (0.4) 27.9 (1.0) 53.4 (1.2) 5.9 (0.07) 11 (0.3) 12 (1.2) 80 (2.5)

WI-MFAI

0 – 20 18.9 (0.8) 34.7 (2.0) 46.4 (2.4) 6.1 (0.09) 14 (0.3) 27 (2) 98 (5.9)

20 – 50 24.1 (0.8) 34.9 (2.7) 41.0 (2.6) 6.7 (0.09) 15 (0.5) 16 (1.1) 81 (3.9)

50 – 90 21.4 (1.3) 54.4 (4.4) 24.2 (3.4) 6.8 (0.13) 13 (0.8) 26 (2.4) 82 (4.6)

0 – 90 21.8 (0.6) 40.6 (2.0) 37.6 (1.9) 6.5 (0.07) 14 (0.3) 23 (1.18) 88 (2.8)

WI-UW

0 – 20 21.1 (0.2) 14.2 (0.7) 64.7 (0.7) 6.2 (0.04) 17 (0.3) 20 (0.7) 91 (3.0)

20 – 50 24.4 (0.4) 11.5 (0.6) 64.1 (0.5) 6.5 (0.04) 14 (0.2) 10 (0.4) 67 (1.0)

50 – 90 27.1 (0.3) 11.4 (0.7) 61.6 (0.6) 6.0 (0.04) 18 (0.2) 31 (0.9) 96 (2.0)

0 – 90 24.2 (0.3) 12.3 (0.4) 63.5 (0.4) 6.2 (0.03) 16 (0.23) 20 (1.08) 85 (2.0)

Significance
by location *** *** *** *** *** *

NA, data not available.
***Significant at the.001 probability level.
*
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4 Discussion

Research and commercial production of IWG has been focused

within a few states and regions but is now rapidly expanding to new
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regions. This is the most comprehensive study to date to examine the

climate, soil, establishment, and fertilizer management effects on both

grain and forage yields of the IWGMN-Clearwater variety in regions

with increasing grower presence. At these multiple locations, we used

a multiple regression analysis to determine which local factors most

explain first year yields in order to generalize or guide future research

to regions even beyond those studied here. Our specific objective was

to understand how the first year of IWG establishment and yields

(grain, summer and fall forage) were related to fertilization strategies

and environmental conditions across six locations in the Midwestern

United States. While other factors such as weed pressure and seeding

date have been explored as factors influencing IWG establishment in

the first year, the intersection of climate and fertility has been less

explored. We expected that grain and forage yields would be mainly

determined by soil and climate characteristics and would be further

modified by fertilization treatments. These expectations were only

partially confirmed.
TABLE 4 Results of mixed model analysis of variance (ANOVA) F-statistic
and statistical significance values of IWG grain, summer and fall forage.

ANOVA
results

F - statistic

Plant
counts†

Grain
yield

Summer
forage
yield

Fall
forage
yield†

treatment (T) – 0.5646 NS 2.372 * 15.78 ***

location (L) 300.8 *** 54.66 *** 234.4 *** 40.25 ***

T*L – 0.8036 NS 0.7810 NS 2.838 **
*Significant at the.05 probability level; **Significant at the.01 probability level; ***Significant at
the.001 probability level. NS, not significant.† square root transformed.
FIGURE 4

Mean monthly 2021–22 precipitation (Prcp, gray bars), 1979–2022 Prcp (black dashed lines), 2021–22 actual evapotranspiration (Eta; dark blue lines),
1979–2022 Eta (pink dashed lines), and 2021–22 temperature (green dotted lines) for each location. The left-hand y-axis shows mm of Prcp or Eta,
and the right-hand y-axis shows the temperature (°C). The x-axis shows the month of the year for each location.
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4.1 IWG establishment

Establishment of IWG varied significantly across locations with

OH having more than double, and KS-TLI with less than half the

number of plants per length of planted row than the other locations

(MN-ROS, WI-UW, WI-MFAI, and NE (Table 4). The low

establishment observed at KS-TLI could have been associated

with low precipitation at that location during the months around

seeding (Figure 3). Despite variability across locations, plant counts

did not predict grain or biomass yields. IWG spreads via tillers and

rhizomes that can take up space between plants within sown rows.

This ability to vegetatively propagate is an establishment strategy in

the first year of growth (Woeltjen et al., 2024; Shoenberger, 2022).

Because of this, initial plant counts in the range we observed (5.3–23

plants per m1) are expected to be able to produce a robust stand in

the first year given other growth conditions and agronomic

variables such as weed pressure. Research is needed to determine

threshold plant populations for IWG after establishment and the

first winter period to inform growers on when stands should be

terminated as a result of poor establishment. Such information is

available for overwintering crops like winter wheat and canola, for

example (Paulsen, 1987; Assefa et al., 2018).
4.2 Variability of IWG grain and forage
yields across locations

First year IWG grain yields (ranging from 586–1343 kg ha-1)

were similar to and sometimes higher than year 1 yields reported in

other studies (ranging from 494–1074 kg ha-1; see Supplementary

Table S1 for a summary of publications reporting grain yields). WI-

UW and KS-TLI yields were ~30% and ~20 – 30% higher than those

described in the literature for Wisconsin and Kansas respectively

(Bowden, 2023; Culman et al., 2023; Pinto et al., 2022).

At the same time, MN-ROS yields were ~20 – 25% lower than

those reported in other literature from Minnesota, WI-MFAI yields

were 35% lower than other reports from Wisconsin, and OH yields
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TABLE 6 Multiple linear regression detailed results for those soil
parameters and climate data included in final models for IWG grain,
summer forage, and fall forage yields.

Multiple Linear RegressionVariables included in the
full model

t-value

Grain

(Intercept) 48.95***

K -1.77

Mg 2.49*

Na 2.43*

P 5.61***

Prcp60Anthesis 9.87***

S -4.11***

Sand -2.52*

Summer forage

(Intercept) 62.87***

Agg Stability 4.08**

EtaCrop 4.15***

Mg 2.41*

Na 3.07***

SOM 4.04***

P 3.18**

Prcp60Anthesis 19.6***

S -5.22***

Fall forage

(Intercept) 16.58***

Agg Stability 1.82

K 6.33***

Mg -5.5***

Na 1.77

SOM 2.75**

P -4.82***

PrcpCrop -2.72**
Variables included are listed as follows: potassium (K, mg kg-1), magnesium (Mg, mg kg-1),
sodium (Na, mg kg-1), phosphorus (P, mg kg-1), accumulated precipitation 60 days before
anthesis 2022 (Prcp60Anthesis), Sulfur (S, mg kg-1), Sand (%), Stability of water stable soil
aggregates (Agg Stability), cumulative actual evapotranspiration from May-October
(EtaCrop), organic matter (SOM, g kg-1), and accumulated precipitation from May-
October (PrcpCrop). P-values and associated t-values indicate the significance and relative
contribution of the included variables.
Significance levels
. Significant at the 0.1 probability level.
* Significant at the .05 probability level.
** Significant at the .01 probability level.
*** Significant at the .001 probability level.
TABLE 5 Multiple Linear Regression model output statistics for IWG
grain, summer and fall forage yields for soil parameters and climate data
that were significant in final models

Multiple Linear RegressionFull Model Statistics

R2 F-value

Grain 0.74 38.060***

Summer forage 0.92 119.6***

Fall forage 0.69 20.6***
Asterisks indicate significance levels as follows:
. Significant at the 0.1 probability level.
* Significant at the .05 probability level.
** Significant at the .01 probability level.
*** Significant at the .001 probability level.
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were similar to previous findings from Ohio (Bowden, 2023;

Culman et al., 2023; Pinto et al., 2022; Bajgain et al., 2020;

Fernandez et al., 2020). The highest IWG grain yields are

typically observed during the first production year. Although

some studies have reported comparable or higher yields in

second-year stands (Culman et al., 2013; Bowden, 2023), a decline

over time is more commonly observed when IWG is well

established in the first year (Culman et al., 2023; Pinto et al.,

2024; Bajgain et al., 2020; Mårtensson et al., 2022; Tautges et al.,
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2018; Zhen et al., 2024). Also, as discussed below, precipitation in

the 60 day period before anthesis and local soil characteristics could

be related to variance in grain yields across locations. Based on these

results, expectations of yields should be established on a regional

basis with the knowledge there is likely significant local variation in

IWG performance depending on precipitation and establishment in

the first growing year.

IWG summer forage yields also differed across locations.

Similar to the trend with grain yields, WI-UW summer forage

(8930 kg ha-1) was ~30- 50% higher than that previously reported

for Wisconsin (Pinto et al., 2024; Culman et al., 2023) (see

Supplementary Table S1 for a summary of publications reporting

summer forage yields), and summer forage values at MN-ROS were

~20 – 75% lower than those previously reported for Minnesota

(Bowden, 2023; Culman et al., 2023). KS-TLI summer forage yields

were roughly the same as those previously reported in Kansas for

the MN-Clearwater variety (Bowden, 2023) but ~20% higher than

those previously reported for C4 TLI variety (Culman et al., 2023).

This makes sense in that higher productivity is a major breeding

goal (Bajgain et al., 2020). Although fall forage yields were lower

than summer forage yields (Table S11), they were not as variable as

summer forage yield by location, with the exception of NE, which

had ~50 – 75% higher yield than the other sites. Together, the

variance we and others have observed in grain and summer forage

yields indicates a need to better understand what could give rise to

this large range in growth from one year or location to the next. Fall

forage has not been as extensively studied across our study

locations, but our range of fall forage biomass, when averaged

across locations, were similar to that reported previously (Pinto

et al., 2024; Culman et al., 2023), with the average at NE

approximately two-three times higher. Below, we discuss how

climate and soil variables were also related to this variance in

biomass yields across locations.
4.3 Modeled influence of climate and soil
variables

One objective of our study was to determine the extent to which

local climate and soil conditions explained variance of first year

grain and forage yields. The context within which we performed this

analysis with a first growing year of 2022 was that at our

experimental locations, the temperature and precipitation in 2021

and 2022 were respectively colder and drier than the 1979–2022

means for all locations except OH, which had temperature similar

to the historic average (Table 1). The drier conditions observed over

this region are in line with the climate change patterns observed

since 1900 across the Midwest (Yu et al., 2018). Although

precipitation levels in the eastern Midwest were below average,

they were still higher than the western Midwest region in 2022 as is

typical (Marvel et al., 2023). Actual evapotranspiration (Eta) also

varied across locations (Table 1, Figure 3). The relationship between

Eta and precipitation determines the level of agricultural drought

(Wilhite and Glantz, 1985). KS-TLI and NE are often at risk of

drought because they have higher probability of seasonal crop
TABLE 7 Individual linear regression for IWG grain, summer and fall
forage yields for soil parameters and climate data that were significant in
final multiple linear regression models.

Statistic Estimate R2

Grain

K 0.81 (0.30) 0.07**

Mg 0.37 (0.21) 0.03

Na 38.79 (8.88) 0.16***

P 9.31 (3.01) 0.09**

Prcp60Anthesis 2.96 (0.58) 0.21***

S -32.90 (8.43) 0.13***

Sand -16.65 (2.45) 0.32***

Summer forage

Agg Stability -4.56 (1.16) 0.15***

EtaCrop 18.52 (3.96) 0.20***

Mg 0.052 (1.69) 0.00001

Na 212.26 (75.00) 0.08**

SOM 856.0 (280.9) 0.1**

P 25.16 (26.37) 0.01

Prcp60Anthesis 33.03 (3.89) 0.45***

S -248.91 (85.96) 0.09**

Fall forage

Agg Stability -1.47 (0.79) 0.05

K 7.60 (1.39) 0.30***

Mg -6.31 (0.94) 0.39***

Na -136.88 (53.80) 0.08*

SOM 121.4 (211.1) 0.01

P -3.99 (15.95) 0.0008

PrcpCrop 30.08 (2.34) 0.02
Variables included are as follows: potassium (K, mg kg-1), magnesium (Mg, mg kg-1), sodium
(Na, mg kg-1), phosphorus (P, mg kg-1), accumulated precipitation 60 days before anthesis
2022 (Prcp60Anthesis), Sulfur (S, mg kg-1), Sand (%), Stability of water stable soil aggregates
(Agg Stability), cumulative actual evapotranspiration from May-October (EtaCrop), organic
matter (SOM, g kg-1), and accumulated precipitation from May-October (PrcpCrop).
Significance
.Significant at the 0.1 probability level.
*Significant at the.05 probability level.
**Significant at the.01 probability level.
***Significant at the.001 probability level.
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moisture deficit (Wilhelmi and Wilhite, 2002; Logan et al., 2010),

more so than the other locations in our study (Yu et al., 2018)

(Supplementary Table S5, Supplementary Figure S3).

Of the climate variables identified after model selection,

cumulative precipitation 60 days before anthesis (Prpc60Anthesis)

was the strongest predictor of grain and summer forage yields

(Table 6). According to our multiple linear regression models, for

every 1 mm increase in Prcp60Anthesis, we would expect 4.7 ± 0.5

and 50.9 ± 2.6 kg ha-1 grain and forage increase respectively when

other environmental conditions are held constant (Equations 2, 3).

In previous studies, temperature was more strongly related to

grain and summer forage yields than precipitation (Culman et al.,

2023), with precipitation explaining 16% and 6% of variability in

grain and summer forage yields respectively. In this study,

narrowing the window of precipitation to relate to yield may have

strengthened this relationship as the 60 days before anthesis

explained 21% to 45% of the variability of grain and summer

forage yields (Table 7). The importance of this period of

precipitation before anthesis is demonstrated by some of the

observed trends. For example, while the MN-ROS location had a

similar amount of annual cumulative precipitation as several other

locations in 2021 and 2022, it had the lowest yields in the study

perhaps because it also had 47% lower precipitation in this window

compared to the average across locations. This may also explain

why the WI-MFAI had significantly lower yields than the WI-UW

location despite similar historical climate; the WI-MFAI

precipitation before anthesis was 35% below average across

locations while WI-UW was 12% above. Locations with 189–195

mm precipitation in the 60 days before anthesis had typical or

higher than expected yields for the region, whereas locations with

lower (MN-ROS, WI-MFAI) and higher (OH) precipitation in this

period had significantly lower yields than expected for the region

(Supplementary Table S1). We also observed anomalies in these

trends. For example, despite having the lowest annual precipitation

in 2021 and 2022 and high Eta (Table 1), grain yields from the NE

location were among the highest in this study.

Narrowing the window of precipitation analyzed with grain

yield resulted in greater correlation with grain yields and may be a

meaningful starting point for identifying a ‘critical period’ for IWG.

Common annual crops have established critical periods around

anthesis when any water, temperature, or light stress influences the

number and size of grain (Slafer and Andrade, 1993; Andrade et al.,

1999). For example, the critical period for wheat is 20 days before

and 10 days after anthesis (Fischer, 1985), while for corn, it is 15

days before and after anthesis (Andrade et al., 1999). Our results

point to the potential need to investigate a much longer

precipitation window (189–195 mm in the 60 days before

anthesis) than for annual crops to infer potential weather impacts

to grain and summer forage yields.

The analyses in this study on climate impacts are limited by

having a single data point for precipitation and temperature within

each location despite wide variation in yield both within and among

locations. This could have resulted in the nonsignificant or negative

relationships between some climate factors and grain and fall forage

yield that seem contradictory to our ecological understanding of
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plant growth during moisture limitation (Table 7). Thus, these

results are not conclusive about the relationship between

precipitation and IWG yield or the critical period for IWG.

They do however provide preliminary data from which future

determination of the critical period for IWG could be

determined. Our results also demonstrate that many factors

together influence yield across and within a given climate and

that multi-site modeling efforts, with multidisciplinary datasets, are

needed to synthesize and elucidate these patterns.

Soil characteristics explained as much or more variance in

IWG grain and forage yield data than climate variables in multiple

regression models (Tables 5, 6). Soil texture was the most

influential variable in explaining grain yields, where each

increase in percent sand resulted in a decline of 16.7 ± 2.5 kg

grain ha-1. Soil texture strongly influences soil water holding

capacity, water retention, and provision of nutrients important

to plant growth, and the ability of the soil to retain or form soil

organic matter (Crews and Rumsey, 2018; Crews et al., 2018;

Sprunger et al., 2018). Aggregate stability had a surprisingly

negative but consistent relationship with forage yield. NE had

lowest aggregate stability but nearly the highest yields, where MN-

ROS was the opposite with the highest aggregate stability and

lower yields. This could be an inadvertent correlation with

baseline soil characteristics. We expect soil aggregate stability to

increase with increasing IWG stand age (Rakkar et al., 2023;

Chamberlain et al., 2022; Wuest et al., 2006), just as we expect

improvements in SOM and infiltration (Culman et al., 2013).

Potassium (K), sodium (Na) and magnesium (Mg) also

consistently explained variance in our yield data (Tables 5, 6).

Very few studies have investigated the IWG requirements of

macro or micro-nutrients other than nitrogen but there is

evidence that IWG total biomass, grain yield, or yield

components can be explained by soil elemental composition (up

to 35% of variance for grain yield, 39% for total biomass, 79% for

the number of grain producing stems; Muhandiram, 2023). This

suggests that although we did not find that other macro or

micronutrients explained variance in grain or biomass yields in

this study, they could be important for IWG fertility at

certain locations.
4.4 IWG grain and summer forage yield
responses to fertility treatments

Among all fertilization treatments, the only significant

responses we observed were with summer forage when averaged

across locations, and fall forage yields when averaged across

locations or at NE, with no response from grain yields (Table 4).

The lack of grain yield response to fertilizer is common in first year

IWG production (Jungers et al., 2018; Reilly et al., 2022b; Pinto

et al., 2022), but because these studies all used older varieties of

IWG with lower yield potential than MN Clearwater, we had

anticipated that we might see stronger year 1 responses. At the

same time, a meta-analysis on IWG grain and biomass yields in

response to N fertilizer rates showed that grain yields were not
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affected by increasing N rates in the first year, but a positive effect of

N rates on grain yields increased as stands aged (Bianchin

Rebesquini, 2023). IWG’s large and deep root system that can

access nutrients deep in the soil profile (Ryan et al., 2018) could be

related to the lack of fertilizer response. Endogenous N

mineralization from SOM induced by tillage before planting may

help explain the lack of N limitation in year one. Between 0.9 and

~10 mg N kg−1 soil has been adequate for fulfilling IWG (Dobbratz

et al., 2023) and, more generally, perennial grass demand (Vogel

et al., 2002). Locations in this study (except KS-TLI) fell within the

low end of that range (Table 3). Thus, it appears that for MN

Clearwater, the range of sufficient soil N to meet IWG grain needs

in the first year of growth remains the same. Also, since the number

of grain producing spikes is highly correlated to grain yields, it

could be that domestication traits and environmental factors that

control tiller production are as important as fertility management

for determining grain yields (Fagnant et al., 2024). With annual

removal of N in grain and forage biomass, we expect there will be a

grain yield response to treatment in future years as has been

observed in other studies (Bianchin Rebesquini, 2023; Pugliese

et al., 2019; Pinto et al., 2022; Bowden, 2023).

Although endogenous soil N may be adequate for IWG grain

production, we found evidence that IWG may have a higher first

year N demand for both summer and fall forage production. We

observed summer forage yield responses to N fertilizer when

averaged across locations, and fall forage yield responses when

averaged across locations and at the NE location (Table S11).

Specifically, we found that 135 kg ha-1 of spring applied N

produced ~ 19% more summer biomass than the unfertilized

control. We also found that both 90 and 180 kg ha-1 of spring
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applied N produced ~55% more fall forage biomass than the

unfertilized control at the NE location, and ~60% more fall forage

biomass when averaged across locations (Table S11). Although N

absorption early in the season until the point of spike and grain

development may be critical for grain yields, N can continue to be

taken up or reallocated in fall for vegetative forage biomass

production. There have been inconsistent results in terms of

summer forage yield response to fertilizer (Bowden, 2023; Pinto

et al., 2022; Reilly et al., 2022b). In the case of fall forage biomass,

few studies have reported yield responses to variable N rates

(Bowden, 2023; Pinto et al., 2024). In summary, the fertilization

strategy of IWG could depend on specific management goals of

grain, forage, or dual use Kernza production given that grain versus

biomass production may require different N rates or timings in the

first year.
5 Conclusions

This is the first study to inform a potential critical period for

IWG and comprehensively assess soil, climate, and management

conditions on both grain and forage production across the U.S.

Midwest. We found that in the first harvest year IWG only responds

to N fertilization vegetatively (summer and fall forage) and not with

grain production. Our study also demonstrates that environmental

factors such as precipitation, actual evapotranspiration, and soil

characteristics influence IWG grain yields more than fertility

management in the first harvest year. Specifically, the cumulative

precipitation 60 days before anthesis may be critical for determining

grain and summer forage yields, where the cumulative precipitation
FIGURE 5

Summer forage yields by treatment, averaged across study locations. Error bars represent one standard error from the mean. Letters represent
significant differences (p < 0.05) between sites, based on Tukey’s HSD posthoc pairwise comparison testing.
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from May through October may be more important for fall forage

yield production. Soil characteristics such as sand content,

aggregate stability, magnesium, sodium, and potassium help

predict first-year IWG yields as well.

The role of precipitation may have been overemphasized in our

models compared to edaphic soil characteristics due to the historic

drought conditions at several locations during the study period.
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Despite this, our results could help explain how IWG performs

across a range of environmental conditions, even beyond the 6

study sites presented here, which will contribute to a more nuanced

decision-making tool for farmers and inform suitable regions for

IWG as a viable grain crop. Models such as those tested here can

only provide correlative, not causal, relationships, but will still aid in

developing accurate predictions for IWG establishment, first year
FIGURE 6

Fall forage yields averaged by treatment and location. Error bars represent one standard error from the mean. Statistics were performed on square
root transformed data. Letters within each panel represent significant differences (p < 0.05) between sites, based on Tukey’s HSD posthoc pairwise
comparison testing.
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performance, and refining the critical period for IWG as well. For

example, once a more specific critical period is established for IWG

in the first year, it can inform producers about whether to invest in a

grain harvest in year one or simply harvest IWG for forage, saving

resources, if precipitation during the critical period is below a given

threshold. In summary, the relationships described here will be

informative to future best practices and outreach to producers

establishing new IWG stands.
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