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The growing need for energy-efficient and sustainable crop production has made

advanced control systems, such as Model Predictive Control (MPC), essential in

greenhouse farming. MPC is an optimization-based control strategy that uses

mathematical models and weather forecast data to regulate greenhouse climates

effectively. This technique generates time-varying climate reference trajectories,

which are sent to the local process computer to control the corresponding climate

parameter or equipment. While MPC and artificial intelligence-based techniques are

becoming more common in advanced agricultural setups, their widespread

adoption remains limited. Potential reasons are the lack of transparency and the

understandability of the control algorithms. This study introduces a language-based

support system to improve the usability of advanced control strategies like MPC. The

system segments time-series data using the change point detection method to

identify significant changes. The identified trend information is converted into

detailed textual descriptions using the natural language generation technique.

These descriptions are refined into user-friendly summaries with the assistance of

a pretrained large languagemodel. The results demonstrate that this support system

can improve the accessibility and usability of advanced control strategies like MPC,

making them more practical for greenhouse growers.
KEYWORDS

large language models, model predictive control, natural language generation, prompt
engineering, time-series to text
1 Introduction

The global population, which stood at 7 billion in 2010, is projected to increase to an

estimated 9.8 billion by 2050, leading to a significant 50% rise in food demand (Searchinger

et al., 2014). However, the necessary boosting of food production encounters substantial

obstacles, as the expansion of agricultural land remains constrained by rapid urbanization
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and the adverse effects of climate change. Consequently, the

adoption of sustainable agricultural techniques has become

increasingly crucial. Greenhouse farms are gaining popularity

owing to their ability to maintain optimal climates and produce

high yields in limited spaces. The efficient and sustainable operation

of greenhouse farms relies heavily on automatic climate control to

optimize crop growth.

In greenhouses, classical control methods, such as on/off and

Proportional-Integral-Derivative (PID) control, are employed to

regulate temperature and humidity (Iddio et al., 2020). The on/off

method is straightforward to implement, but its lack of precise

control may result in energy inefficiencies. PID control improves

on/off control by adjusting the system based on the difference

between the current and desired state (i.e., the error), the rate at

which this error changes, and the accumulated error over time. This

results in smoother adjustments.

However, while effective for simpler systems, PID control

struggles to handle the complexity of interactions between variables

in dynamic systems like greenhouses (Iddio et al., 2020). In contrast,

advanced control methodologies like Model Predictive Control

(MPC) have already demonstrated their ability to achieve fine

control and energy-efficient operations economically (Van Beveren

et al., 2015; Padmanabha et al., 2020). The ability of MPC to handle

multivariable systems, respect system constraints, and incorporate

future predictions makes it particularly effective for managing

dynamic and interconnected processes (Rawlings et al., 2017).

Building on these advancements, machine learning techniques

are increasingly gaining traction in agricultural applications. They

offer new possibilities, such as automating the control of greenhouse

climates and irrigation systems (Chen and You, 2022; Kamilaris and

Prenafeta-Boldú, 2018). Reinforcement learning (RL), a subset of

machine learning, is particularly promising for modern agricultural

practices (Morcego et al., 2023), as it excels in managing complex

environments without relying on predefined models (Bus ̧oniu
et al., 2018).

MPC and Artificial Intelligence (AI)-based techniques are

increasingly used in greenhouses, particularly in advanced,

technology-driven agricultural setups. The ability of MPC to

provide precise climate regulation while optimizing energy use

and crop yield has led to its adoption in modern greenhouse

systems (Hemming et al., 2020). Climate control system vendors,

especially in regions with cutting-edge agricultural practices, are

beginning to incorporate MPC and AI into their products

(Parliament et al., 2023).

However, its widespread adoption remains a work in progress.

Factors such as high implementation costs, the complexity of

developing accurate system models, and the need for specialized

expertise pose significant barriers, particularly for smaller or

traditional growers (Van Straten et al., 2010; Parliament et al.,

2023). As advancements in user-friendliness and affordability

continue, advanced control methodologies can potentially

transform greenhouse management on a broader scale, bridging

the gap between innovation and accessibility.

This study mainly focuses on developing an AI-based language

support architecture to increase user-friendliness with advanced
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control techniques. The advanced control techniques commonly

determine the time-varying climate setpoints or reference

trajectories based on the respective algorithms. These setpoints

are sent via a digital interface to the process computer, and then

the individual piece of equipment is operated accordingly

(Hemming et al., 2020). Understanding these reference

trajectories of individual parameters or equipment is challenging

when performed from a remote location or through a user interface

on digital devices like mobile phones and tablets. Additionally, the

greenhouse control reference trajectories involve more variables,

resulting in high-dimensional data that are difficult for humans

to comprehend.

Visualization tools have emerged as a practical solution for

simplifying the interpretation of complex data in dynamic

environments (Devineni, 2024). They provide stakeholders with

actionable insights by presenting an overview of complex trajectory

data. However, their effectiveness is limited when users face high-

dimensional information, particularly for non-specialist users, or

during time-sensitive decision-making (Wang et al., 2022). In these

contexts, relying entirely on visuals can lead to misinterpretation or

incomplete understanding (Angeli, 2004).

To address these limitations, textual descriptions play a critical

role by complementing visual data with precise and detailed

explanations. Text aids in articulating complex concepts,

uncovering underlying dynamics, and contextualizing information

that visuals may overlook (Hearst, 2023). This interplay between

text and visuals enhances comprehension by combining the

intuitive appeal of graphical data with the depth and clarity of

written narratives.

Moreover, text engages cognitive processes distinct from those

involved in interpreting visuals. While visuals attract attention and

provide quick insights, textual explanations promote deeper

cognitive engagement, enabling users to retain and process

complex information more effectively (Angeli, 2004). This makes

text especially valuable in educational and operational settings

where clarity and retention are crucial.

Integrating textual explanations with visual representations

enables greenhouse control systems to effectively communicate

the intricacies of reference trajectories. This balanced approach

not only makes advanced algorithms like MPC more accessible but

also empowers growers to make informed decisions with

confidence. This study proposes providing textual descriptions of

the reference trajectories of a greenhouse generated within an MPC

framework using Natural Language Generation (NLG) as a first step

toward the solution.

NLG, a branch of artificial intelligence and computational

linguistics, focuses on developing computer systems capable of

generating understandable texts in human languages from

nonlinguistic data (Gatt and Krahmer (2018). The technology has

demonstrated remarkable success across diverse domains, including

generating weather forecasts (Goldberg et al., 1994), financial

reports (Plachouras et al., 2016), and clinical summaries (Scott

et al., 2013). In these applications, NLG systems transform complex

numerical and time-series information into clear, contextual

narratives that aid decision-making.
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Two fundamental approaches stand out for NLG text

generation: rule-based and template-based systems. Rule-based

NLG relies on complex linguistic rules and deep language

understanding to generate text, offering high flexibility but

requiring extensive linguistic expertise to implement and

maintain. In contrast, template-based NLG uses predefined text

structures with variable slots, offering more controlled and

predictable output. Template-based systems also allow for easier

validation of outputs and modifications to meet specific domain

requirements, making them particularly suitable for mission-critical

applications where accuracy and clarity are important (Tripathi and

Tamrakar, 2018).

While recent work by Sharma et al. (2021) introduced the

framework using pretrained Large Language Models (LLMs)

trained on WebNLG and DART datasets, such generic models

may not effectively capture the specialized nature of greenhouse

control systems. The dynamics of greenhouse environments, with

changing climate variables and strong interdependencies, require

more domain-specific solutions. To address these challenges, we

adapted the data-to-text generation approach to better align with

greenhouse climate control requirements, ensuring accurate and

context-sensitive summaries through carefully crafted templates

that incorporate domain expertise and technical precision.

Our methodology first identifies critical points in time-series

data through change point detection. The NLG algorithm then

processes this information to generate detailed reports on the

reference trajectories and their transitions. Finally, we leverage an

LLM with a predefined prompt to summarize these reports into

concise insights. This language-based support system helps growers

understand their planned greenhouse operations for the following

day by translating reference trajectories into clear descriptions of

anticipated conditions.
2 Methods

2.1 Model predictive control

MPC is an optimization-based control strategy that determines

the control inputs by solving an optimization problem over a finite

time horizon. It uses a dynamic mathematical model of the system

to predict future behavior and optimize a performance criterion,

such as an economic objective, while satisfying system constraints

(Rawlings et al., 2017). At each time step, MPC applies only the first

control input of the optimized sequence and repeats the process as

new data becomes available, operating in a receding horizon

fashion. This iterative approach allows MPC to continuously

update its decisions in response to real-time changes and

disturbances. It is particularly robust for dynamic and uncertain

environments like greenhouses, where future conditions can change

unpredictably (Van Straten et al., 2010).

A Venlo-type semi-closed greenhouse growing tomato crop was

considered in this work. The greenhouse climate was characterized

by temperature (T), CO2 concentration (C), and relative humidity

(H) of the air inside the greenhouse. Crop growth was defined as the
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fresh weight of biomass (B), estimated using an observer. Control

inputs like ventilation, CO2 injection, heating, and cooling influence

the greenhouse climate. External factors such as outdoor

temperature, CO2 levels, relative humidity, and solar radiation

also affect the greenhouse climate.

This study used a mathematical model of the greenhouse

adapted to the parameters of a greenhouse facility at Humboldt

University of Berlin. For a detailed mathematical model describing

the greenhouse climate dynamics and crop growth, refer to

Sathyanarayanan et al. (2024). The greenhouse climate directly

affects crop growth and health, making it essential to maintain

within specific limits to ensure optimal conditions, as mentioned in

Sánchez-Guerrero et al. (2005) and Zarnescu et al. (2019). The

constraint-satisfying ability of the MPC control makes it more

desirable for greenhouse climate control.

The greenhouse MPC controller aimed to maximize yield and

minimize production costs while maintaining the climate variables

within a predefined bound. As shown in Figure 1, the MPC

controller solved an optimization problem with the economic

objective using the forecast weather data and energy price. The

reference trajectories for temperature, CO2 concentration, and

relative humidity were generated and sent to the local climate

controller of the greenhouse. Typically, the local climate

controller is provided with static reference values for temperature

or relative humidity, whereas using MPC or any other advanced

control method, time-varying reference trajectories are provided as

depicted in Figure 1. For more details on the mathematical

formulation of the implemented framework, please refer to

Sathyanarayanan et al. (2024). The MPC problems were solved

using real-time weather data collected in 2011 from the greenhouse

facility weather station in Berlin.
2.2 Data ingestion

The proposed AI language support framework is based on

climate reference trajectories generated from the MPC controller

to the greenhouse as shown in Figure 1. The framework was

developed based on insights from Section 2.1, with these

reference trajectories as input to the language support system (cf.

Figure 2). Each climate reference trajectory data point was

generated at 5-minute intervals, covering a complete day from

00:00 to 24:00. This simulated dataset, generated by the MPC,

spanned from March to October 2011, providing a robust

foundation for tracking and responding to daily and seasonal

variations in greenhouse conditions.
2.3 Change point detection

Change point detection involved identifying points in a time

series where statistical properties changed abruptly. This process

was essential for detecting shifts in behavior or structure within

data, which indicated significant events or transitions (Kawahara

and Sugiyama, 2011).
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2.3.1 Supervised change point detection
Supervised change point detection refers to identifying points in

time series data where the underlying statistical properties shifted,

using labeled data to inform the detection process (Aminikhanghahi

and Cook, 2017). Based on the dynamic changes in the reference

trajectories, we employed a supervised change point detection and
Frontiers in Agronomy 04
compared three different approaches to evaluate their effectiveness.

These methods were implemented using the ruptures package, which

provides efficient tools for time series segmentation and change point

detection (Truong et al., 2020).

Pruned Exact Linear Time (PELT) algorithm segments the time

series by optimally partitioning the data into regions with distinct
FIGURE 2

AI-based language support architecture.
FIGURE 1

Model predictive control and AI-based language support system of the greenhouse: The reference trajectories generated by MPC were sent through
a digital interface to the local controller. The AI-based language support system in the digital interface provides quick insights into the trajectories.
frontiersin.org

https://doi.org/10.3389/fagro.2025.1536998
https://www.frontiersin.org/journals/agronomy
https://www.frontiersin.org


Naagarajan et al. 10.3389/fagro.2025.1536998
statistical properties, using a cost function to determine the most

efficient segmentation lines while maintaining computational

efficiency (Killick et al., 2012).

Cumulative Summation (CUMSUM) algorithm detects changes

by tracking the cumulative sum of deviations from a target value,

drawing segmentation lines at points where this sum exceeds a

threshold, indicating significant shifts in the underlying process

(Wei and Xie, 2023).

Exponentially Weighted Moving Average (EWMA) algorithm

identifies change points by comparing weighted averages of recent

data points against historical trends, establishing segmentation lines

where the weighted average deviates significantly from expected

values (Raza et al., 2015). A detailed evaluation and comparative

analysis of these three approaches is presented in Section 3.1.

2.3.2 Unsupervised change point detection
Exploring unsupervised algorithms presents an opportunity to

gain deeper insights, especially when working with complex,

multidimensional data where predefined labels or manual

annotations are impractical or unavailable. The K-means

clustering algorithm is a widely used method for unsupervised

learning that organizes data points into k clusters based on

similarity (Jain, 2010). Its simplicity and efficiency make it

suitable for various applications, including time series analysis

(Warren Liao, 2005).

The K-means algorithm works by partitioning a set of

observations into a predefined number of clusters, with each data

point assigned to the cluster whose centroid is closest. The

algorithm iteratively adjusts the centroids to minimize the

Within-Cluster Sum of Squares (WCSS), defined as

arg min 
S

o
k

i=1
o
  x∈Si

jx − mij2 :

The key components of the K-means algorithm are cluster,

cluster centroid, and minimization objective.

Clusters S = S1,S2,…,Sk: Each cluster Sicontains data points

closer to its centroid than to any other centroid.

Cluster Centroid µi: The centroid µi is the mean of all data

points in cluster Si, representing the cluster’s center.

Minimization Objective: The expression represents the total

within-cluster variation, which the K-means algorithm seeks to

minimize.

o
k

i=1
o
  x∈Si

jx − mij2, (1)

The term x − mij j2 in equation (1) indicates the squared

Euclidean distance between a data point x and its cluster centroid

µi. The process continues until convergence, effectively grouping

data into clusters that reveal inherent patterns within the dataset.

For the K-means clustering implementation, the Python library

scikit-learn (Pedregosa et al., 2011) was used. The optimal number

of clusters (k) was determined using the silhouette score, which

evaluated cluster quality by measuring how similar a data point is to

its own cluster compared to other clusters. This ensured that the
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clustering results were both meaningful and well-suited to the

greenhouse dataset.

2.3.3 Extreme value theorem
Extreme Value Theorem (EVT) provides a robust statistical

framework for analyzing extreme values within a dataset, often

indicative of significant changes or anomalies in the underlying

process (Coles, 2001). Time-series analysis leveraging EVT allows

for the identification of potential change points without predefined

thresholds or labeled data (Chavez-Demoulin and Davison, 2012).

The theoretical foundation of EVT states that the maximum of a

sample of independent and identically distributed (i.i.d.) random

variables, drawn from the same probability distribution, converged

in distribution to one of three possible distributions: the Gumbel,

Fréchet, or Weibull distribution. These distributions are collectively

known as the Generalized Extreme Value (GEV) distribution

(Hansen, 2020).

In this paper, we adapted and developed a systematic approach to

detect change points in timeseries data using EVT. The methodology

identified local maxima and minima as potential indicators of change

points through a three-stage process: (1) Gaussian smoothing to

reduce noise and minor fluctuations in the data, (2) detection of

extreme points using EVT principles, and (3) clustering of the

identified extreme points to determine significant change points.

Each stage was designed to progressively refine the analysis, ensuring

that the detected change points represented meaningful shifts in the

time series rather than temporary fluctuations.

2.3.3.1 Gaussian smoothing

The Gaussian filter is defined by its kernel, which forms a bell-

shaped curve given by

G(x) =
1

s
ffiffiffiffiffiffi
2p

p exp  −
x2

2s 2

� �
, (2)

where s in Equation (2) is the standard deviation determining

the Gaussian kernel width. The filter application in this study

involved convolving this kernel with time-series data, resulting in

a smoothed version of the series as follows

Xsmoothed = G(x)*X : (3)

The smoothed data Xsmoothed in Equation (3) enabled the

detection of extreme points, ensuring that only significant trends

were captured while minor noisy fluctuations were suppressed.

Gaussian filtering was selected because of its effectiveness in

preserving the essential shape of data while mitigating noise

(Perona and Malik, 1990).

2.3.3.2 Detection of extreme points

The next step involved identifying potential change points by

detecting extreme locations where the time series exhibited a

significant directional change. The analysis used in Equation (4)

X = {x1,x2,…,xn} to represent a time series. An extreme point was

where the trend reversed direction, reaching a local maximum or

minimum. This was mathematically captured as
frontiersin.org
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(xi − xi−1)(xi+1 − xi) < 0, for 1 < i < n : (4)
2.3.3.3 Clustering of the extreme points

In this stage, the extreme points were clustered to distinguish

between significant and minor fluctuations. The K-means algorithm

efficiently partitioned extreme points into k clusters. Then, the

silhouette score method was used to determine the optimal number

of clusters. Finally, the optimal number of clusters, as shown in

Equation (5), denoted as kopt, was obtained by maximizing the

average silhouette score across all points

kopt = argmaxk
1
mo

m

i=1

b(i) − a(i)
max a(i), b(i)

, (5)

where a(i) represents the average distance between point i and

all other points within its cluster (measuring cluster cohesion), and

b(i) represents the average distance between point i and all points in

the nearest neighboring cluster (measuring cluster separation). The

kopt value that maximized the average silhouette score provided the

best balance between cluster cohesion and separation.

2.3.4 Combination of K-means and
EVT algorithm

The unsupervised change point detection approach combining

EVT and K-means clustering was formulated to extract the peak

points with optimal clusters. Like the EVT method, the

combination approach started with the time series X = x1,x2,…,xn.

Then, the Gaussian smoothing step discussed in section 2.3.3 was

applied, resulting in a smoothed dataset XG. From XG, local maxima

and minima were captured using (4).

The hybrid approach identified meaningful clusters by

comparing the outputs of these two preprocessing methods. This

integration was achieved through a modified K-means clustering

objective function shown in the below Equation (6)

J =o
k

i=1
o
  x∈Si

w(x)jx − mij2, (6)

where the weight function in Equation (7) w(x) intelligently

combined information from both methods was given as

w(x) =

1  ifx ∈ XG ∩ XNG

g  ifx ∈ XG or x ∈ XNG

d  otherwise :

8>><
>>:

(7)

Here, g and d were weighting parameters where 1 > g > d > 0,

ensuring that points identified as significant by both smoothing

approaches had the most substantial influence on cluster formation.

This weighting scheme naturally integrated with EVT principles by

emphasizing genuine extreme points while suppressing noise-

induced variations. The K-means clustering algorithm was

modified to incorporate a weight function w(x) that intelligently

combined information from both the Gaussian-smoothed and non-

Gaussian extreme point approaches. This hybrid approach

identified meaningful clusters representing significant change

points in the time series.
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2.4 Trend detection

2.4.1 Trend detection using PELT
Identifying critical trends in the greenhouse time series data

employed distinct approaches for the PELT algorithm and the K-

means clustering method, each tailored to capture specific patterns

in the data. A slope-based segmentation approach was implemented

for the PELT algorithm. This method calculated the slope between

consecutive data points for each environmental feature.

The slope represents the rate of change between these points,

which is critical for identifying trends. Slope calculations were used

to determine the trends between the two segments of the dataset.

The implemented slope calculation function assigned descriptive

labels based on magnitude thresholds, as shown in Table 1. While

these threshold values were optimized for greenhouse reference

trajectory data, they could be adjusted to accommodate different

systems and sensitivity requirements. This categorization system

provided valuable insights into the behavior of the dataset, as

exemplified by the CO2 trend illustrated in Figure 3.

2.4.2 Trend detection using K-means clustering
The K-means clustering method enhanced trend detection by

analyzing patterns between consecutive extreme points. This

complementary approach calculated absolute differences and

percentage changes to provide a more nuanced understanding of

data behavior. The method used the same categories as the PELT

algorithm (shown in Table 1), ensuring consistency in trend

interpretation across both methods. Trend detection bridged the

gap between raw time series data and interpretable insights.
2.5 Natural language generation

The role of NLG in data interpretation is significant, as it can

transform structured greenhouse monitoring data into

comprehensible textual explanations through a systematic

process. NLG encompasses several approaches, including rule-

based, statistical, and machine learning-based techniques with

distinct characteristics and applications. For our implementation,

we specifically employed a template-based NLG approach, which

falls under rule-based techniques. This approach was chosen
TABLE 1 Slope categories and their corresponding thresholds.

Category Slope Range

Exponential Increase > 0.5

Sharp Increase 0.1 to 0.5

Increase 0.03 to 0.1

Mild Change −0.03 to 0.03

Decrease −0.1 to −0.03

Sharp Decrease −0.5 to −0.1

Exponential Decrease < −0.5
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because it maintains precise numerical reporting and consistent

terminology in greenhouse monitoring reports. While modern NLG

systems often employ advanced techniques like LLM’s, we opted for

a rule-based template system due to its deterministic nature and

guaranteed consistency in representing reference climate

trajectories. This choice ensured accurate representation of sensor

measurements and maintained standardized formatting, which is

essential for greenhouse monitoring reports.

2.5.1 Document planning
NLG document planning was a critical intermediary for

converting time-series data into a human readable format. Our

template-based approach implemented a three-stage NLG pipeline:

comprising content determination for selecting relevant

environmental parameters, document planning for organizing

information structure, and surface realization for generating the

final text with appropriate formatting. We employed predefined text

templates with variable slots, offering controlled and predictable

output while maintaining flexibility through parameter

substitution. This structured approach ensured consistent

reporting of environmental variables while preserving numerical

precision and temporal clarity in the generated explanations.

The illustration of the document planning process below shown

in Figure 4 demonstrates this template structure and shows the link

between raw data interpretation and final text generation. Here,

mapped feature name corresponded to one of the state variables like

temperature or humidity under trend detection, with startvalue:.2f

and unit being the respective value and unit of the variable in the

dataset. The formatting specifiers.2f and.02d were employed to

standardize numerical representation; the.2f specifier consistently

formatted floating-point values to two decimal places (e.g., 25.60),

while the.02d specifier ensured a two-digit integer display with

leading zeros when necessary (e.g., 05), thereby maintaining

numerical precision and text-based representational consistency.
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2.6 Prompt engineering

Prompt engineering systematically designs and optimizes input

prompts to guide LLMs in generating accurate, relevant, and coherent

outputs. This process is crucial for fully unlocking the capabilities of

LLMs, making them applicable across diverse fields. Techniques in

prompt engineering range from foundational approaches like role-

prompting (Shanahan et al., 2023) to more sophisticated methods

such as “chain of thought” prompting (Wei et al., 2022).

The GPT-4 language model, accessed through the OpenAI API,

was leveraged to address this challenge. Instead of fine-tuning the pre-

trainedmodel, the research directly interfaced with the OpenAI API to

generate climate condition reports by sending carefully crafted input

prompts (OpenAI, 2023). For text generation, we used the OpenAI

API with a temperature of 0.2. In the context of language models, the

temperature parameter controls the randomness of token predictions:

a lower value (closer to 0) makes the output more deterministic and

focused, while a higher value (approaching 1) introduces more

diversity and creativity. A temperature of 0.2 was selected to

minimize stochastic variations and maintain consistent, precise

output generation. The prompt engineering process guided the

GPT-4 model to produce accurate and context-specific summaries.

Prompts were carefully constructed to provide comprehensive

context about the greenhouse domain, time-series data, and desired

output format as detailed in Section 3.3. This promptbased approach

enabled the GPT-4 model to generate detailed textual summaries

describing reference trajectories and predicted greenhouse climate

conditions in alignment with the grower’s requirements.
2.7 Evaluation and validation

This section outlines the techniques and evaluation metrics for

change point detection and trend analysis in greenhouse time series
FIGURE 3

-PELT Algorithm based segmentation and trend detection of the CO2 reference trajectory.
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data. The performance of these methods was evaluated through a

combination of manual labeling, supervised algorithms, and an

unsupervised hybrid approach, with metrics such as the F1 score

and R2 values. The data analysis was conducted in Python, leveraging

specialized libraries such as pandas and numpy for data

manipulation. Visualizations were generated using matplotlib, and

summarizations were performed using the GPT-4 API.

First, for each greenhouse climate variable, potential change

points were manually labeled through visual inspection of the data.

This manual labeling served as the ground truth for evaluating the

performance of the change point detection algorithms.

The performance of each method was evaluated using the F1
score, which provides a balanced measure of precision and recall

(Chinchor, 1992). The F1 score was calculated for each state

variable, and the average F1 score (F1,avg) was computed across all

three variables:

F1,avg =
1
No

N

i=1
F1,i,

where N represents the total number of state variables (in this

case, N = 3), i is the index representing the individual state variable,

and F1,i is the F1 score for the i
th state variable. The supervised change

point detection methods also evaluated the detected change points

using piecewise linear regression between segments. For each set of

detected change points, a piecewise linear regression model was fitted

to the data, and the corresponding R2 values were calculated across

the various state variables. The R2 formula is given by:

R2 = 1 − on
i=1(yi − ŷ i)2

oi = 1n(yi − �y)2
,

where yi represents the actual observed values of the dependent

variable at each data point i, and ŷ i represents the predicted values

of the dependent variable at each data point i, estimated by the

piecewise linear regression model.

The performance metrics, including the F1 score and the R2

values, were analyzed to assess the effectiveness of the change point

detection and trend analysis methods in accurately identifying

significant transitions and patterns within the greenhouse time

series data. Table 2 shows the result of this evaluation. The specific

threshold values used for the slope categories in the trend detection

(see Table 1) were optimized for the greenhouse environmental data

in this study. These threshold values may need to be adjusted to

accommodate different systems and sensitivity requirements.

To validate the summarization quality, a random sample of 50

pairs of detailed explanations and their corresponding summaries

was evaluated using the state-of-the-art BERTScore metric (Zhang
Frontiers in Agronomy 08
et al., 2019). BERTScore utilizes BERT (Bidirectional Encoder

Representations from Transformers), a deep learning model pre-

trained on massive text corpora, to compute semantic similarity

scores by analyzing the contextual relationships between candidate

and reference sentences (Celikyilmaz et al., 2020). This approach

was convenient for evaluating abstractive summaries, as it could

capture meaning beyond simple lexical overlap. Following this

comprehensive evaluation and validation approach, the proposed

methods could be thoroughly assessed for their ability to extract

meaningful insights from greenhouse time series data. The results of

this summarization are presented in Section 3.4.
3 Results

3.1 Evaluation of supervised change
detection method

This study utilized accurate change point detection as a critical

tool for identifying trends in the reference trajectories for tomato

greenhouse cultivation. The PELT algorithm analyzed temporal

variations by identifying significant transitions in variables such as

temperature, CO2 concentration, and relative humidity. This

facilitated precise adjustments to ensure the maintenance of

optimal growing conditions for tomato crops.

Following the procedure established for the PELT algorithm, 20

dates were randomly selected from the dataset for evaluation. The

PELT algorithm’s performance is influenced by two key parameters: the

penalty value, which controls the trade-off between model complexity

and fit by regulating the number of change points detected, and the

jump value, which determines the minimum number of observations

between detected change points (Aminikhanghahi and Cook, 2017).

Through experimentation, a penalty value of 10 and a jump value of 6

were chosen because they yielded the best fit for the dataset.

Figures 5–7 show the climate reference trajectories obtained from

solving the MPC problem for a single day. Figure 5 depicts the time

series and segmentation line for temperature (T). The time series

exhibited significant fluctuations, ranging from around 15°C to 24°C.

Several distinct trends or change points in the data were identified

through the segmentation lines. Figure 6 shows the time series and

segmentation line for CO2. The time series data varied, ranging from

around 920 ppm to over 970 ppm. The segmentation line highlights

multiple key change points where the variable shifted up or down

notably. Figure 7 presents the time series and segmentation line for

relative humidity. This variable showed less variability, staying mostly

between 60-90%. The segmentation line identified a few distinct

changes in the humidity-related variable around the end of the day.

Table 3 compares the three supervised learning CPD algorithms

using R2 values. Also, the output of the CPD algorithms were

compared with the manually labeled change points for further

validation. These potential change points were determined

through visual inspection of the data, and the F1 score was

computed for each state variable, as presented in Table 2.

Based on the analysis of both Table 3 and Table 2, the PELT

algorithm demonstrated good performance in detecting change

points within the dataset. Its efficiency lies in its computational
TABLE 2 Comparison of supervised algorithm F1 and F1,avg score.

Algorithm F1 Score F1,avg

T C H

PELT 0.0909 0.3636 0.2857 0.2464

CUMSUM 0.1667 0.0 0.2 0.0889

EWMA 0.0 0.1053 0.2 0.0351
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approach, which employs an exact linear time segmentation

method, making it highly effective for large datasets. This iterative

process carefully considers all potential change points and selects

optimal ones at each step (Killick et al., 2012).

The capability to identify potential change points is particularly

significant for tomato cultivation, as tomatoes are sensitive to sudden

environmental changes. The temperature range observed (15°C to 24°

C) aligns with optimal conditions for tomato growth, where

maintaining temperatures between 18-24°C during the day is crucial

for proper fruit development (Rangaswamy et al., 2021; Mamatha

et al., 2014). The CO2 concentrations detected (920-970 ppm) fall

within the beneficial range for tomato photosynthesis, as tomatoes

show enhanced growth and yield at elevated CO2 levels between 800-

1000 ppm (Rangaswamy et al., 2021; Moratiel et al., 2023). The

algorithm’s relative humidity range (60-90%) captures the ideal

humidity levels (65-75%) for tomato pollination and fruit set while

helping prevent common tomato diseases like leaf mold that thrive in

consistently high humidity conditions (Mamatha et al., 2014).

Figure 3 is similar to Figure 6, with the slope line, shown in red,

tracking the general upward and downward movements of the time

series. Figure 3 maps the overall trend indicator, capturing broader

increases and decreases in the time series data, as outlined in

Table 1. The features extracted using the PELT algorithm were
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subsequently processed through the document planning framework

introduced in Section 2.5.1.
3.2 Evaluation of unsupervised change
detection method

The unsupervised CPD techniques K-means clustering, EVT,

and a hybrid approach were evaluated and compared using the

same dataset as the supervised method. Firstly, K-means clustering

applied to CO2 data demonstrated the ability to detect local

variations and global patterns. Figure 8 shows the clustering of

CO2 levels without any smoothing applied, which highlights dense

segmentation due to the algorithm’s sensitivity to temporal

variations. However, such sensitivity can amplify fast varying

fluctuations considered as noise and lead to over-segmentation.

To address this challenge, Gaussian smoothing was introduced

as part of the EVT-based approach. Unlike simple moving averages,

which can obscure critical peaks and valleys in the data, Gaussian

filters provide smoother transitions and better preserve meaningful

patterns (Sharifi et al., 2022). This property was instrumental in

mitigating the over-segmentation observed in the initial K-means

clustering. Additionally, Gaussian smoothing offered computational
FIGURE 5

Temperature reference trajectory segmentation based on PELT algorithm.
FIGURE 4

Template for generating daily summary reports of greenhouse environmental variables.
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efficiency, making it well-suited for real-time analysis in dynamic

greenhouse environments where rapid decision-making is crucial

for optimal crop management.

Figure 9 demonstrates how Gaussian smoothing reduced the

impact of external disturbances and allowed for more meaningful

clustering patterns to emerge. Figure 10 represents clustering results

without Gaussian smoothing, highlighting the noise amplification

due to the absence of smoothing techniques.

The implementation of Gaussian smoothing led to a significant

reduction in detected clusters. Quantitative analysis revealed that

the filtered data using Gaussian smoothing decreased from 63 to 21
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clusters in CO2 data, with temperature and relative humidity data

exhibiting similar reductions in cluster numbers.

Finally, a combination approach of EVT with K-means

clustering through an effective hybrid smoothing approach was

developed to optimize the change point detection process,

leveraging both Gaussian and non-Gaussian smoothing

techniques (Figure 11). This hybrid approach maintained

essential data characteristics while reducing noise, referred to

here as fluctuations.

The implementation process involved several key steps. First, K-

means clustering was performed on the consolidated set of extreme
FIGURE 7

Relative humidity reference trajectory segmentation based on PELT Algorithm.
FIGURE 6

CO2 reference trajectory segmentation based on PELT algorithm.
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points to identify multiple clusters representing different patterns and

behaviors within the CO2 time series data. To refine these clustering

results and eliminate redundant patterns, an additional optimization

step was implemented: the pairwise Euclidean distance between all

clusters was calculated, and clusters within 10% of the distance to

their nearest neighbor were removed. This refinement process was

crucial for obtaining a more concise and informative set of cluster

representations while maintaining the integrity of distinct patterns.

The integration of the strengths of both smoothing methods

resulted in an optimal balance being achieved in the identification

of meaningful change points. This hybrid approach has been

demonstrated to be particularly valuable for the management of

tomato crops, where the detection sensitivity to different types of

environmental changes is required. The filtered approach effectively

captured major transitions crucial for overall tomato growth phases,

such as day-night temperature shifts, while the unfiltered

component preserved the detection of rapid fluctuations during

peak photosynthetic periods and short-term humidity changes that

could affect flower development and fruit set. This comprehensive

detection capability was essential as tomatoes require precise

environmental control during critical growth stages, where even

brief environmental fluctuations can impact crop yield and quality.
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The proposed hybrid approach enhanced the robustness of the

clustering process and demonstrated potential adaptability to other

greenhouse crops. The capacity to modify smoothing parameters

and cluster thresholds renders it suitable for crops with divergent

environmental sensitivities, such as lettuce or cucumbers, which

exhibit distinct temperature and humidity requirements. This

versatility in detection sensitivity could prove to be of particular

value for greenhouse operations engaged in the cultivation of

multiple crop varieties.

To evaluate the effectiveness of the different approaches, the

supervised method PELT algorithm was compared with the

combinational EVT and K-means clustering unsupervised method

using F1 score. As shown in Table 4, the unsupervised combination

approach performed better in capturing the peak trends across all

the reference climate trajectories.
3.3 Long narrative document generation

The features from the change point detection method were then

mapped to our document planning framework and structured into

coherent narratives. For CO2 data, the template included sections

highlighting daily CO2 ranges and significant CO2 spikes or drops

shown in Figure 12 and Box 1. Similarly, humidity and temperature

level templates captured fluctuations using mappedfeaturename,

and the second approach entailed adding annotated slope values to

the document.

Systematic analysis of each feature and data segmentation

provided a comprehensive overview of greenhouse conditions,

facilitating better understanding and decision-making. Due to
FIGURE 8

K-means clustering of CO2 reference trajectory.
TABLE 3 Evaluation of supervised learning algorithms using R2 values.

Parameter PELT CUMSUM EWMA

T 0.7491 0.8839 0.8826

C 0.7117 0.0120 0.2010

H 0.3995 0.2178 0.1461
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space constraints, the detailed report focused on a single variable,

CO2. However, the comprehensive report accommodated all

features needed for summarizing results. The long narrative

document was compared using the features and annotation values

obtained from supervised and unsupervised methods.

A comparative analysis of the June 13, 2011 data revealed

distinct differences between PELT and K-means detection

capabilities. The PELT algorithm identified a CO2 peak at 971

ppm occurring from 12:30 to 15:00, while the K-means approach

detected a peak at 974 ppm between 14:35 and 15:55. This variation

in peak detection demonstrates the subtle differences in sensitivity

between the two methodological approaches.
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3.4 GPT-4 summarization

The function summarized the greenhouse conditions at each

time of day, as shown in Boxes 2, 3. This summary highlights

significant trends and variations in temperature, humidity, CO2

concentration, and estimated biomass levels.

The evaluation yielded promising results, with an average

BERTScore of 0.82 across 50 randomly selected samples. The

reported score reflects a high degree of semantic similarity

between the detailed explanations and their corresponding

summaries, indicating that the GPT-4 model effectively captures

and condenses the essential information from the original text
FIGURE 10

K-means clustering of CO2 reference trajectory without Gaussian smoothing from EVT.
FIGURE 9

K-means clustering of CO2 reference trajectory with Gaussian smoothing from EVT.
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(OpenAI, 2023). The decimal points in the score were rounded off

to enhance clarity and consistency in reporting.
4 Discussion

4.1 Change point and trend detection

The dynamic and interdependent nature of the greenhouse

environment requires precise monitoring and analysis of variables

to ensure optimal conditions for tomato crop growth. The reference

trajectories generated using real-time weather data in the

optimization problem revealed momentary spikes or fluctuations

that cannot be dismissed as data noise, particularly given tomatoes’

sensitivity to environmental changes. These variations are critical,

as they directly correspond to specific control actions and external

weather conditions that affect crop development.

The comprehensive data ingestion process employed in this

study enhanced the framework’s capability to conduct detailed

analysis and generate language-based reports across multiple

months, ensuring consistent and reliable input for the AI-

supported climate monitoring system. CPD and trend analysis

were crucial in identifying shifts in greenhouse climate

trajectories, enabling timely interventions. Our research evaluated

the performance of the CPD methods hybrid approach and the

PELT algorithm in detecting significant changes across

temperature, CO2, and relative humidity reference trajectories.

In the PELT algorithm, we considered the segmentation based

on the F1 score, utilizing a penalty value of 10 and a jump value of 6.

These parameters were selected through careful visualization of the

data. As demonstrated in Figures 5, 6, and 7, this combination of

parameters provides the most appropriate segmentation across

temperature, CO2, and relative humidity reference trajectories.
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Our approach avoids overfitting by applying consistent

parameters across these three climate variables.

In addition to the PELT algorithm, which demonstrated

limitations in peak detection precision, we also explored

unsupervised change point detection methods, K-means

clustering, and EVT. The selection of EVT for our methodology

was driven by its unique advantages in handling greenhouse

planned reference trajectories. Unlike traditional CPD methods,

EVT provides a theoretical framework for analyzing extreme values,

which is particularly critical in greenhouse environments where

sudden changes often represent meaningful events rather

than disturbances.

Here, PELT overlooks these crucial short-term variations due to

its focus on broader trends, while standard unsupervised clustering

methods alone may be oversensitive to environmental noise. EVT’s

mathematical framework distinguishes between meaningful

environmental extremes (such as rapid ventilation changes or

sudden CO2 fluctuations) and random variations. This distinction

is particularly valuable for tomato greenhouse monitoring, where

missing extreme events could compromise critical growth stages

and overall crop management decisions. This capability of EVT

becomes powerful when combined with K-means clustering in our

hybrid approach.

While both individual methods showed distinct strengths, the

hybrid approach combining K-means and EVT demonstrated

better performance in comprehensive peak detection. This hybrid

method successfully identified all peaks and lows, making it

particularly appealing for robust environmental monitoring.

However, the effectiveness of this approach varies depending on

the data preprocessing techniques employed.

Our analysis of filtered (Figure 9) versus unfiltered data

(Figure 10) approaches revealed important trade-offs in

environmental monitoring. While Gaussian filtering improved
FIGURE 11

K-means clustering of CO2 reference trajectory with Gaussian and Non-gaussian smoothing.
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computational efficiency through cluster reduction, it came with

notable limitations. The filtered data frequently missed crucial

short-term environmental fluctuations, particularly during rapid

transitions in greenhouse conditions. Critical events such as

momentary CO2 spikes due to ventilation, which are essential for

greenhouse management, were often smoothed out in the

filtered data.

Conversely, the unfiltered data analysis preserved these rapid

transitions and short-term fluctuations, capturing the full range of

environmental dynamics within the greenhouse. However, this

approach resulted in more detected clusters, potentially including

fluctuations and making pattern interpretation more challenging.

We developed a combined strategy to leverage the advantages of

filtered and unfiltered approaches while mitigating their limitations.

The hybrid method integrated the baseline detection capabilities of

filtered data with the sensitivity to rapid changes provided by

unfiltered data.

Building on this combined technique, we performed K-means

clustering on the consolidated set of extreme points, as shown in

Figure 11. This approach allowed us to identify multiple clusters

representing different patterns and behaviors within the CO2 time

series data. The final clustering results provide a detailed and

nuanced view of the CO2 time series data. By referencing Table 4

and examining the detailed visualization, we can conclusively argue

that the K-means clustering approach offers more reliable and

granular change point detection across temperature, CO2, and

relative humidity reference trajectories compared to PELT

algorithm. This improved detection capability has significant

practical implications for crop management.

The effectiveness of our hybrid change point detection approach

has particular significance for tomato cultivation. The method’s

ability to detect rapid transitions is essential for tomato crops, which

are notably sensitive to environmental fluctuations during critical

growth stages. For instance, the precise detection of CO2 spikes and

temperature variations directly impacts flower development and

fruit set in tomatoes, where even short-term deviations can affect

yield. The unfiltered data analysis proved especially valuable for

capturing quick ventilation-related CO2 changes, which is crucial

during pollination periods when optimal air movement enhances

pollen distribution.

This methodology can be readily extended to other greenhouse

crops with different environmental sensitivities. For leafy greens like

lettuce, the system could be adjusted to focus more on humidity

variations, as these crops are particularly susceptible to tip burn

under rapidly changing humidity conditions. For cucumbers, which

have different temperature optima than tomatoes, the change point

detection parameters could be modified to align with their specific
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temperature requirements. The flexibility of the hybrid approach

adopted here allows for the customization of detection sensitivities

based on crop-specific thresholds and critical periods, such as

flowering or fruit development stages.
4.2 Long narrative and summarized
text generation

By combining unsupervised trend detection and cluster

separability optimization, we extracted comprehensive insights

from the data as shown in the long narrative text in Section 3.3.

Using supervised and unsupervised trend detection data, the

generated long narrative report can inform our understanding of

the underlying CO2 trajectory and captured details.

The effectiveness of our template-based approach in

incorporating domain expertise and technical precision is evident

in several aspects of our results: The detailed reports in Section 3.3

illustrate how our document planning framework successfully

translated complex environmental data into domain specific

narratives. The template structure ensured consistent reporting of

CO2 measurements (e.g., 867 ppm) while maintaining accurate

temporal resolution in the generated reports. Both the PELT

algorithm and unsupervised hybrid approach narratives show

consistent formatting in representing environmental measurements

and time intervals, making the information readily interpretable for

greenhouse operators.

Secondly, the templates incorporated domain-specific

terminology and meaningful categorization of environmental

changes. For instance, the narrative distinguished between

different types of CO2 variations (“sharp decrease,” “exponential

increase,” “sharp increase”) based on specific threshold values

derived from research expertise. This categorization proves

particularly valuable for tomato crop management, where

different rates of environmental change can significantly impact

crop development.

The template structure utilized effectively captured temporal

precision, as evidenced by the consistent reporting of exact time

intervals (e.g., “From 03:10 to 10:35”) and corresponding value

changes. This temporal detail is essential for greenhouse operators

to track and respond to environmental variations throughout the

day. The templates’ capacity to preserve this level of detail while

maintaining readability indicates their efficacy in balancing

technical precision with practical utility.

Generative pretrained transformers, like GPT-4, tend to

produce overly generalized outputs with basic instructions

needing more adequate context (Luo et al., 2019). This

phenomenon stems from training on vast and diverse textual

datasets, leading to compilations of concepts from multiple

sources and generic responses. Such behavior can be attributed to

the “re-reading” technique, where models emulate human reading

strategies by considering diverse interpretations of input (Xu et al.,

2024; Yang et al., 2019).

This paper applied prompt engineering to address these

challenges to generate concise, actionable summaries for
TABLE 4 F1 scores based on K-means clustering and PELT algorithm.

Algorithm Temperature
(T)

CO2 Concen-
tration (C)

Humidity
(H)

K-means 0.587 0.546 0.526

PELT 0.0909 0.3636 0.2857
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greenhouse growers. The LLM extracted and emphasized key

information directly relevant to decision-making needs by

crafting clear and detailed prompts. This approach maintained

semantic coherence while significantly reducing text length,

demonstrating the potential for generating informative summaries

of planned greenhouse climate.

The tailored approach reduced uncertainty and aligned text

outputs, highlighting key trends in the climate reference trajectories

from the MPC controller. The transfer of precise trend values from

detection methods to narrative text enhanced the reliability of the

summaries. These insights enable greenhouse operators to monitor

and make informed decisions quickly.

While experimental results were encouraging, automated

metrics like BERTScore have limitations in capturing the nuanced

quality of generated summaries (Steinberger and Jezek, 2009).

The current approach empowers growers to quickly grasp

essential insights from reference trajectories, enhancing their

understanding of advanced greenhouse climate control.
4.3 System limitations and future directions

The proposed language support framework has demonstrated

encouraging results in translating

MPC-generated trajectories into accessible text. However, it is

imperative to address several significant limitations. A primary

limitation resides in the system’s capacity to manage an

augmentation of environmental variables. While the current
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implementation effectively processes core variables such as

temperature, CO2, and humidity, the addition of more parameters

(e.g. light intensity, soil moisture, nutrient levels, or ventilation

rates) could exponentially increase the complexity of change point

detection and narrative generation. This scalability challenge

becomes particularly evident when describing the intricate

interactions between multiple environmental parameters in real-

time operations.

The framework’s automated metrics, primarily BERTScore,

exhibit inherent limitations in evaluating the quality of generated

summaries. While BERTScore provides a computational semantic

similarity measure, it may not fully capture the nuanced

requirements of greenhouse operations. For instance, the metric

might assign high scores to technically accurate but practically less

useful summaries or, conversely, undervalue summaries that

experienced growers would find highly relevant. This limitation is

further compounded when evaluating summaries that address

intricate environmental interactions or abrupt climate transitions.

Furthermore, the current system faces challenges in prioritizing

and contextualizing environmental changes when multiple variables

exhibit significant variations simultaneously. In real-time greenhouse

operations, concurrent fluctuations in multiple parameters may occur,

making it difficult for the system to determine which changes are most

critical for operational decision-making. This limitation can lead to

information overload in the generated narratives, particularly during

periods of high environmental dynamism.

These limitations highlight the need for future developments in

several key areas:
BOX 1 NLG long narrative document for CO2 reference trajectory feature using unsupervised hybrid approach.

At the beginning of the day, the CO2 is 867.58 ppm.
From 00:00 to 03:10, the CO2 experiences a sharp decrease from 867.58 ppm to 863.57 ppm.
From 03:10 to 10:35, the CO2 experiences an exponential increase from 863.57 ppm to 968.04 ppm.
From 10:35 to 10:55, the CO2 experiences a sharp decrease from 968.04 ppm to 964.56 ppm.
From 10:55 to 11:35, the CO2 experiences a sharp increase from 964.56 ppm to 970.36 ppm.
From 11:35 to 12:10, the CO2 experiences a sharp decrease from 970.36 ppm to 964.40 ppm.
From 12:10 to 14:05, the CO2 experiences a sharp increase from 964.40 ppm to 970.41 ppm.
From 14:05 to 14:35, the CO2 experiences a sharp decrease from 970.41 ppm to 965.72 ppm.
From 14:35 to 15:55, the CO2 experiences a sharp increase from 965.72 ppm to 974.35 ppm.
From 15:55 to 16:30, the CO2 experiences a sharp decrease from 974.35 ppm to 968.12 ppm.
From 16:30 to 17:00, the CO2 experiences a sharp increase from 968.12 ppm to 972.05 ppm.
From 17:00 to 18:05, the CO2 experiences a sharp decrease from 972.05 ppm to 969.27 ppm.
From 18:05 to 19:05, the CO2 experiences a sharp increase from 969.27 ppm to 972.81 ppm.
From 19:05 to 23:55, the CO2 experiences an exponential decrease from 972.81 ppm to 868.19 ppm.
By the end of the day at 23:55, the CO2 will be 868.19 ppm, reflecting the last planned value.
FIGURE 12

NLG long narrative document for CO2 reference trajectory feature using PELT algorithm.
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Fron
1. The enhanced variable handling capabilities have been

demonstrated to scale efficiently with an increasing

number of environmental parameters while maintaining

narrative clarity

2. The development of more sophisticated evaluation metrics that

better align with the practical needs of greenhouse operations

3. The implementation of intelligent prioritization algorithms

for multi-variable change point detection

4. The incorporation of domain-specific knowledge to

improve the contextual relevance of generated summaries
5 Conclusion

In greenhouse farming, advanced control methods like MPC have

demonstrated promising results in research settings. However,

greenhouse operators have limited adoption of these methods due to

their complexity and the communication barriers between researchers

and practitioners (Saiz-Rubio and Rovira-Más, 2020). To address this

gap, this study presented a language support framework that

transforms the complex numerical data from planned MPC

trajectories into readable text. The framework’s core is a robust data

analysis process employing hybrid clustering to examine key climate

variables such as temperature, humidity, and CO2 concentration. The

unsupervised method effectively detected significant changes in the

reference trajectories, capturing the nuances of data fluctuations

without manual parameter tuning. Notably, the hybrid clustering

approach demonstrated precision, completeness, and F1 score,

indicating a reliable system that can accurately discern normal and
tiers in Agronomy 16
abnormal momentary spikes and fluctuations. The subsequent

document planning process then synthesizes this analyzed data into

coherent narratives, further refined through GPT-4 generated

summaries guided by predefined prompts.

While validated using tomato greenhouse data, where

environmental fluctuations significantly impact crop development

and yield, this language support system is not only confined to

greenhouse farming but can be applied to any CEA farm, such as

indoor farms, vertical farms, aquaponics, and insect farms, where

climate control is essential. The framework’s adaptable nature

allows for customization of detection parameters based on specific

crop requirements and environmental sensitivities. Additionally,

this framework can be utilized to analyze historical trajectories for

quicker understanding and actionable insights.

Future research will focus on refining and expanding the

applicability of the proposed language support framework across

various CEA farms. The framework, initially developed for plants in

greenhouses, can be extended to other facilities, such as vertical farms,

and adapted for different plant species. One key direction is integrating

real-time climate data analysis with predictive control systems tailored

to specific crops. This enables precise regulation of temperature,

humidity, and CO2 levels to enhance yield and quality. Another focus

will be developing economic impact assessment tools to quantify the

cost-effectiveness of advanced control strategies. These tools will provide

greenhouse operators with actionable insights for decision-making.

Future research will prioritize comprehensive human

evaluation methodologies to overcome the inherent limitations of

automated metrics like BERTScore. We can validate the generated

insights beyond computational measurements by engaging domain

experts to assess summary quality, relevance, and practical utility.
BOX 3 Summary results in GPT-4 using K-means clustering.

On May 24, 2011, the greenhouse conditions show significant fluctuations throughout the day. The temperature starts at 14°C and experiences various sharp and
exponential increases and decreases, peaking at 19°C around midday before dropping back to 14°C by evening. CO2 levels begin at 786 ppm, see an initial sharp increase,
and later fluctuate with several sharp increases and decreases, peaking at 965 ppm before declining to 859 ppm by nighttime. Relative humidity starts at 89%, with minor
fluctuations, mostly maintaining around 89% to 89% throughout the day, making a final increase to 89% by night. Biomass shows a steady increase from 14 kg/m² to 14 kg/
m², primarily rising between 04:20 and 19:40. These changes highlight the dynamic environmental conditions within the greenhouse, affecting plant growth and
resource utilization.
On June 13, 2011, greenhouse conditions show significant fluctuations throughout the day. The temperature begins at 14°C and generally increases with sharp oscillations,
peaking at 22°C before gradually declining to 16°C by late evening. CO2 levels start at 867 ppm, with peaks reaching 974 ppm and experiencing sharp increases and
decreases throughout the day, ultimately decreasing to 868 ppm by the end of the day. Relative humidity shows minor fluctuations early on but saw a sharp drop from 89%
to 60% between 18:30 and 20:20, then a recovery to 89% by late evening. Biomass will be initially stable at 20 kg/m², with a marked increase to 21 kg/m² by 20:05, indicating
active growth during the day. These variations suggest dynamic climate control conditions impacting greenhouse plant growth.
BOX 2 Summary results in GPT-4 using PELT algorithm.

On April 21, 2011, the greenhouse conditions varies throughout the day. The temperature rises from 14°C to 19°C between the start of the day and 18:30, after which it
decreases to 16°C by 20:30 and further drop to 14°C by 23:55. CO2 levels experience an overall increase from 858 ppm to 966 ppm until 16:00, followed by a decrease to 859
ppm by the end of the day. Relative humidity decreases from 89% to 61% by 18:30, then sharply increases to 96% by 23:55. The biomass growth for the day is observed to be
from 5 kg/m² to 6 kg/m².
On June 13, 2011, greenhouse conditions varies throughout the day. The temperature starts at 16°C, fluctuates mildly in the early hours, and then increases steadily until
13:00, reaching a peak of 21°C. It then decreases to 18°C by 21:30 and concludes the day at 16°C. CO2 levels begin at 867 ppm, experience sharp increases until 15:00,
peaking at 971 ppm, then decrease sharply to 876 ppm by 20:30, ending the day at 868 ppm. Relative Humidity starts at 89%, exponentially decreases to 61% by 19:30,
mildly increases to 70% by 22:00, and then exponentially increases to end the day at 96%. Biomass growth will be observed from 20 kg/m² to 21 kg/m² under
these conditions.
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This human-centered approach ensures the summaries meet the

greenhouse operator’s nuanced information needs.

Additionally, the research will investigate intuitive visualization

methods, such as interactive dashboards, to complement textual

explanations with dynamic, real-time representations of reference

climate trajectories and system performance. These advancements

will be coupled with automated feedback mechanisms that optimize

trajectory settings based on operational outcomes. By bridging the

gap between research advancements and practical implementation,

the research aims to enhance greenhouse automation, improve

resource efficiency, and simplify practitioners’ adoption of

advanced control strategies.
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