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Nutrients uptake by plants from the soil depends on the fertilizers applied, the

physical and chemical properties of the soil, and various environmental and

biological factors. Each nutrients have a positive or negative interaction with

other nutrients in terms of their availability in the soil and their uptake in plants.

The purpose of this study is to investigate the effects of successive increases in

nitrogen (N) fertilizers on macronutrient uptake, system productivity (SP), and

wheat equivalent yield (WEY) by wheat. This study was carried out in a split plot

design with three distinct N input (N0, N75, and N150) in the main plot and ten

wheat cultivars in the sub-plot over two consecutive years (2020-21 and 2021-

22) in New Delhi, India. The highest SP of 9.85 t/ha-1, P & K uptake in grain (PUG)

of 21.6 & 23.8 kg/ha-1, straw (PUS) of 13 & 106.4 kg/ha-1, and total phosphorus

uptake (TPU) of 34.6 & 130.4 kg/ha-1 were obtained by the ‘HD 3249’ cultivar,

followed by ‘HD 3117’. The application of N75 and N150 increased SP by 57.9%

and 99.2%, WEY by 45.2% and 61.5%, PUG by 105.2% and 227%, PUS by 94% and

182%, and TPU by 100.5% and 208.7%, respectively, over N0. The study findings

indicate that N fertilization positively influences macronutrient uptake in wheat,

with cultivars ‘HD 3249’ and ‘HD 3117’ emerging as efficient candidates for

optimizing macronutrient utilization. These cultivars hold significant potential

for wheat breeding programs aimed at enhancing nutrient uptake while

maintaining system productivity. Furthermore, incorporating biological

nitrification inhibition traits into these cultivars is recommended to develop

climate-smart wheat varieties.
KEYWORDS

nitrogen input, macronutrient uptake, system productivity, wheat equivalent yield,
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Introduction

Wheat ranks as the second most important staple food crop

globally (Sendhil et al., 2022). Since the Green Revolution era, the

adoption and improvement of high-yielding wheat varieties,

combined with the widespread use of synthetic nitrogen (N)

fertilizers, have significantly enhanced productivity over the past

five decades (John and Babu, 2021; Hamdan et al., 2022). Nitrogen

inputs are central to plant growth, development, and overall

productivity in agroecosystems (Zayed et al., 2023a). However,

declining N sequestration in soils reduces N availability, making

them insufficient to sustain higher yields in improved wheat

cultivars. Unfortunately, over half of the N fertilizer used in agri-

food systems becomes immobilized in the soil or lost to the

environment (Anas et al., 2020; Menegaz et al., 2025). This results

in a significant gap of approximately 50% between N losses and its

efficient utilization in agroecosystems (Govindasamy et al., 2023).

This significantly contributes to soil reactive nitrogen (Nr) losses,

which in turn lead to negative environmental consequences that

drive climate change and nutrient imbalances that contribute to

biodiversity decline (Compton et al., 2011; Liu et al., 2018). Hence,

the careful and efficient application of N fertilizer is crucial for

maximizing productivity while maintaining long-term

sustainability in agroecosystems (Govindasamy et al., 2023;

Swathy et al., 2024).

In the global context, wheat-based cropping systems rank as the

second-largest consumer of N, accounting for approximately 18%

of total N fertilizer consumption among all crops (Ladha et al., 2016;

Fernanda et al., 2022). Similarly, in India, wheat is one of the highest

N-consuming crops. The N budget of Indian croplands has

increased from 4.87 million tons (Mt) in 1961 to 24.08 Mt in

2017 (Velayudhan et al., 2024). As fertilizer prices rise relative to

purchasing power parity, these places increasing pressure on the

Indian economy. Additionally, excessive N use continues to result

in low nitrogen use efficiency (NUE), leading to negative

environmental consequences through multiple pathways such as

leaching, volatilization, and denitrification (Anas et al., 2020; Yadav

et al., 2023). The NUE of wheat in India ranges between 32–35%,

primarily due to continuously increasing subsidies and the

imbalanced use of fertilizer nutrients (Singh, 2022; Sapkota and

Takele, 2023). Therefore, there is an urgent need to implement

targeted agronomic interventions to enhance NUE. This can be

achieved by identifying high-NUE cultivars and developing N-

efficient wheat varieties with biological nitrification inhibition

(BNI) properties, which should be a key research priority

(Gawdiya and Kumar, 2025).

Global researchers have proposed various strategies to mitigate

soil reactive nitrogen (Nr) losses and improve NUE. However, while

many of these strategies aim to reduce specific Nr components, they

often inadvertently lead to the release of other N forms or increase

trace gas emissions (Xia et al., 2018; Zhang et al., 2022). To date,

enhancing NUE through screened cultivars has proven to be an

effective approach up to a certain level. However, beyond this,

breeding N-efficient cultivars presents a viable strategy to
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overcome existing limitations and achieve further improvements

in NUE (Gawdiya et al., 2023c). This climate-smart approach has

gained momentum in the current scenario (Raghuram and Sharma,

2019) by offering a “triple-win” trade-off—enhancing yields,

reducing N losses, and improving macronutrient uptake.

Screening cultivars based on their field performance and

identifying key physiological and biochemical processes that

regulate N utilization are essential steps toward improving NUE

(Flores-Saavedra et al., 2024; Gawdiya and Kumar, 2025).

Synchronizing N supply with crop demand and optimizing

biological N transformations in soils under various N-smart

approaches are crucial for improving utilization of N (Lam et al.,

2022; Govindasamy et al., 2023). The NUE is regulated by a complex

interplay of N-responsive mechanisms and biogeochemical

processes, which must be fully characterized to develop context-

dependent strategies capable of improving NUE beyond 50%

(Mandal et al., 2022; Gawdiya et al., 2023c).

Macronutrients are the primary limiting factors regulating plant

growth and development (Sarmiento et al., 2006; Elser et al., 2007;

Agren et al., 2012; Touhami et al., 2022; Ye et al., 2022). The

synergistic interactions among macronutrients at optimal N rates

are well-documented. In both soil and plants, these interactions

depend on specific N:P/K ratios, which play a critical role in

facilitating metabolic reactions and synthesizing essential

compounds (Yuan and Chen, 2015a; Jiang et al., 2019). Multiple

studies have reported that optimal N fertilization stimulates root

growth, reduces soil nitrate-N accumulation, improves nutrient

distribution, and enhances macronutrient uptake in wheat

(Reganold, 1995; Hao et al., 2005; Kaiser et al., 2010; Wen et al.,

2016; Kabato et al., 2022). Therefore, determining the optimal N dose

is crucial for enhancing nutrient uptake and agroecosystem

productivity (Roy et al., 2006). However, the low availability of

macronutrients in the soil, coupled with the misapplication of N

fertilizers, disrupts nutrient balance, compromising soil fertility and

crop yields while posing significant environmental challenges (Asner

et al., 2001; He et al., 2002; Vargas et al., 2022; Zhang et al., 2025). To

address these issues, we evaluated the performance of ten wheat

cultivars under graded N levels over two growing seasons. The study

aimed to assess the effects of N levels on wheat equivalent yield,

system productivity, and macronutrient uptake in different cultivars.
Materials and methods

Site description

Field experiments were conducted over two consecutive years

(2020–2021 and 2021–2022, corresponding to the first and second

winter seasons) at the research farm located in Block 14C MB of the

ICAR-Indian Agricultural Research Institute, New Delhi, India (28°

38′ N, 77°10′ E). Prior to the on-station genotype evaluation

experiment, soil samples were collected from the top 0.02 m of

the soil profile for initial characterization. The experimental site

features sandy clay loam soil (USDA soil taxonomy) with a pH of
frontiersin.org
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7.8 (1:2.5, soil:water), 0.4% organic carbon (Walkley and Black,

1934), 221 kg ha-¹ of available nitrogen (Subbiah and Asija, 1956),

15.23 kg ha-¹ of Olsen phosphorus (Olsen, 1954), and 252.2 kg ha-¹

of available potassium (Hanway, 1952). The field conditions were

characterized by a cool, temperate climate. The recorded average

maximum and minimum temperatures varied from 27.1°C and

10.6°C in the first season to 26.9°C and 11.5°C in the second season,

with an overall temperature range of 17–38°C (maximum) and 7–

17°C (minimum). The average rainfall during the cropping season

was 74.3 mm in the first season and 181.5 mm in the second season

(Figures 1, 2).
Design of experiment and crop
management

The experiment was conducted in a split-plot design with three

distinct nitrogen (N) input: N0 (0 kg N/ha-1), N75 (75 kg N/ha-1),

and N150 (150 kg N/ha-1-recommended dose of N) are in main

plots and ten different wheat cultivars (HD-3226, HDCSW-18, HD-

2967, HD-3086, HD-3249, HD-2733, PBW-550, PBW-343, HD-

3117, HD-3298) were grown in subplots. The plot size was 5 m × 2.5

m, and seed sowing was done with a row-to-row spacing of 22.5 cm

and a plant-to-plant spacing of 5 cm. In the experimental field, a

basal application of 60 kg P2O5/ha
-1 (through single super

phosphate) and 60 kg K2O/ha
-1 (through muriate of potash) was

applied uniformly. However, N was applied in three phases: an

initial half dose as the basal application, followed by 25% during the

crown root initiation stage (20-25 days after sowing, DAS) and the

remaining 25% during the tillering stage (40-45 DAS) of the wheat

crop. The source of N input was Neem-oil-coated urea (containing

46.6% N content; one ton of neem-coated urea contained 0.5 kg of

neem oil). Irrigation was applied using the flooding method to

ensure adequate soil moisture for crop growth. Further details about

the experimental protocols and practices followed in the study are

provided in Gawdiya et al. (2023 a, b, c, d).
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Chemical analysis of phosphorus and
potassium content in plant samples

At the harvest stage, wheat samples were collected from each

plot for analysis of phosphorus (P) and potassium (K). For the

estimation of P in plant samples, a concentrated nitric acid

predigestion protocol was used in a 0.5 g plant sample (grain or

straw) over an extended duration of overnight incubation. The

sample was treated with 5 ml of diacid mixture (9:4; HNO3:

HCIO4) until a white residue was produced by means of the

digestion process. The resulting residue was solubilized in 6 N

hydrochloric acid and subsequently transferred to a 100 ml

volumetric flask, which was then diluted with distilled water. This

solution was utilized to quantify the concentration of P in the plant

samples. A simultaneous blank sample was also prepared. The P

content within the plant sample was assessed using a

spectrophotometer, using the yellow colorimetric technique

(Jackson, 1973). Similarly, in plant digest K content in plant

tissues was determined by using flame photometer (Jackson, 1973).
Calculation of wheat equivalent yield and
system productivity

Wheat equivalent yield (WEY- t ha-1) = (rice yield (t/ha) × MSP

of rice crop (INR/t)/MSP of wheat crop (INR/t)

MSP = market sale price.

System productivity (t ha-1) = wheat yield (t ha-1) + [rice yield (t

ha-1) + MSP of rice (t ha-1)/MSP of wheat (t ha-1)]

In the kharif season, rice cultivars grown on plots are replaced

with wheat cultivars during the winter season. Instead of a plot, rice

cultivars sown are in kharif that plot wheat cultivars sown are G1-

Tella Hamsa/HD-3226, G2-Vasumati/HDCSW-18, G3-VL Dhan-

209/HD-2967, G4-Daya/HD-3086, G5-PB1728/HD-3249, G6-

Anjali/HD-2733, G7-Heera/PBW-550, G8-Birupa/PBW-343, G9-

Nagina-22/HD-3117’ G10-Nidhi/HD-3298.
FIGURE 1

Seasonal trends in mean temperature and rainfall: monthly variations during the crop growing period (2020–21) at ICAR-IARI, New Delhi (Nov,
November; Dec, December; Jan, January; Feb, February; Mar, March; Apr, April).
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Data analysis

The statistical analysis was performed using the open-source R

programming language in R Studio. The agricolae package in R

(Mendiburu, 2021) was utilized for data analysis, including analysis

of variance (ANOVA) to assess treatment effects. Multiple mean

comparisons were performed using Duncan’s Multiple Range Test

(DMRT) at a significance level (a = 0.05) to determine statistically

significant differences among treatments.
Results

Wheat equivalent yield and system
productivity

The two-year pooled analysis data shows that wheat equivalent yield

(WEY) was significantly influenced by cultivars (G) and nitrogen (N)

input (Table 1). The highest WEY was observed in cultivars ‘HD 3298’

(5.53 t/ha) and ‘HD 3086’ (5.05 t/ha). The order of cultivars significantly

decreasing WEY are HD 3298 > HD 3086 > PBW 343 ≥ HD 3249 >

HDCSW18 ≥HD3117 >HD2967 ≥HD3226 ≥ PBW550 >HD2733.

Similarly, the interaction of G×N on system productivity (SP) was

significant (Table 2). Among all cultivars, the highest SP was observed in

cultivar HD 3298’ (9.85 t/ha) and ‘HD 3086’ (9.69 t/ha), and the second-

best cultivar was ‘HD-3117’. The three N inputs, ‘HD-3249’, ‘HD-3117’,

and ‘HD-3298’, performed well compared to other cultivars. The order

of cultivars in terms of decreasing SP was HD 3249 ≥ HD 3298 ≥ HD

3086 > HD 3117 > PBW 550 ≥HD 2967 ≥ PBW 343 ≥ HDCSW 18 ≥

HD 2733 > HD 3226.
Phosphorus and potassium concentration
and uptake

The two-year pooled data shows significant interactions between

N inputs and cultivars for P uptake in grain (PUG), straw (PUS),
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and total P uptake (TPU), but in case of percentage P content in

grain (PPCG) and straw (PPCS) was not significant (Figures 3–8).

Among all cultivars with the highest PPCG, PPCS was observed in

cultivar ‘HD 3249’, which is statistically on par with ‘HD 3117’.

Similarly, the highest mean PUG was observed in cultivar ‘HD 3239’

and the second-best cultivar was ‘HD 3117’, but in the case of PUS

and TPU the highest value was observed in cultivar ‘HD 3249’,

which is equal to ‘HD 3117’ and the second-best cultivar was ‘HD

3298’. The order of the cultivars in decreasing PUG and PUS was as

follows: HD 3249 > HD 3117 > HD 3086 > PBW 550 ≥ HD 3298 ≥

HD 2733 ≥HD 2967 ≥HDCSW 18 > PBW 343 > HD 3226 and HD

3249 ≥ HD 3117 > HD 3298 ≥ HD 2967 ≥ HD 2733 ≥ HD 3086 ≥

PBW 550 ≥HDCSW 18 ≥ PBW 343 > HD 3226. Similarly, the order

of cultivars with significantly decreasing TPU was as follows: HD

3249 ≥ HD 3117 > HD 3298 ≥ HD 2733 ≥ HD 3086 ≥ HD 2967 ≥

PBW 550 > HDCSW 18 ≥ PBW 343 > HD 3226.The data pertaining

to potassium (K) concentration in grain, straw, and total K uptake

was available in Tables 3–6. Different N levels significantly

influenced K concentration and uptake in grain and straw. The

highest percentage K concentration in grain was observed in two

cultivars ‘HD 3249’ (0.429%), and ‘HD 3117’ (0.427%) and these two

cultivars were at par with cultivar ‘HD 3298’. Similarly, the highest

percentage of K concentration in straw was observed in cultivars

‘HD 3249’ (1.52%), and ‘HD 3117’ (1.52%). Both the year’s highest K

uptake in grain and straw were observed in cultivar ‘HD 3249’ (23.8

and 23.9 kg ha-1), (106.7 kg ha-1). Similarly, the highest total K

uptake was observed in cultivar ‘HD 3249’ (130.3 and 103.5 kg ha-1).

The orders of cultivars decreasing uptake of K in grain and straw are

same as trends follows on phosphorus.
Discussion

The Indo-Gangetic Plains (IGP) of India are a hotspot for

excessive N use, primarily due to limited access to advanced
FIGURE 2

Seasonal trends in mean temperature and rainfall: monthly variations during the crop growing period (2021–22) at ICAR-IARI, New Delhi (Nov,
November; Dec, December; Jan, January; Feb, February; Mar, March; Apr, April).
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technology, inadequate extension services, and the absence of

economic disincentives for overuse (Stringer et al., 2020; Khan

et al., 2024). This over-reliance on N fertilizers leads to multiple

negative agroecosystem outcomes. To address these challenges,

there is a growing need for on-station and on-farm screening

experiments to identify N-efficient cultivars and enhance their

adoption rates in farming systems (Gawdiya et al., 2023a,

Gawdiya et al., 2023b, Gawdiya et al., 2023c, Gawdiya et al.,

2023e). Our findings highlight substantial opportunities

to improve nutrient use efficiency (NUE) through two

complementary pathways: identifying N-efficient cultivars (N-

saving roadmap) and assessing yield responses to graded N

nutrition (yield-gain roadmap).

Identifying N-efficient cultivars is one of the most sustainable

approaches in the current agricultural context. Previous attempts to

identify agronomically optimal cultivars have primarily relied on

greenhouse and laboratory settings (Zhang et al., 2024), which often

lead to generalized assumptions about the N levels and their

interactions with macronutrients. Our study findings align with

previous research, demonstrating a positive relationship between N

application and phosphorus (P) and potassium (K) uptake in wheat

(Godebo et al., 2021). However, these responses are highly

dependent on multiple factors, including soil pH, microbial

activity, and root system architecture of cultivars, which influence

nutrient availability and uptake efficiency (Touhami et al., 2022).

These insights provide a practical roadmap for an evidence-based,
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targeted governance approach to N-smart production systems. By

moving away from uniform recommended fertilizer doses and

embracing site-specific nutrient management, scientists and

policymakers can enhance NUE and promote sustainable

agricultural intensification.

Nitrogen is absorbed by plant roots primarily in the form of

nitrate (NO3
-) and ammonium (NH4

+) ions. Its interaction with

macronutrient uptake is dynamic and complex, influenced by soil

properties, microbial activity, rhizodeposition, root traits, and

rhizosphere processes (; Treseder, 2004; Yuan and Chen, 2012b;

Fan et al., 2019; Bicharanloo et al., 2020; Schleuss et al., 2020; He

et al., 2020; Leptin et al., 2021). Nitrogen stimulates root and shoot

growth, modifies plant metabolism, and influences soil pH through

rhizosphere acidification, which can reduce Ca-bound phosphorus

(Ca-P) and total phosphorus (P) levels in the soil, thereby

facilitating soil-to-plant P translocation (Blair et al., 1971;

Sharpley, 2000). Additionally, N enhances the mobility and

accessibility of less-soluble inorganic macronutrients, improving

their solubility and bioavailability for plant uptake (Sherman et al.,

2006; Fan et al., 2019). These processes collectively contribute to

greater nutrient acquisition efficiency, supporting optimal plant

growth and productivity (Hinsinger, 2001; Zhang et al., 2004;

Havlin et al., 2016). In our study, the cultivars ‘HD 3249’ and

‘HD 3117’ exhibited superior performance compared to other

cultivars, primarily due to their greater soil nutrient acquisition

by roots, ability to alter soil pH, and genetic traits that enhance
TABLE 1 Effect of nitrogen × cultivar interaction on wheat equivalent yield (WEY).

Nitrogen
× variety

HD
3226

HDCSW
18

HD
2967

HD
3086

HD
3249

HD
2733

PBW
550

PBW
343

HD
3117

HD
3298

Mean

WEY (t/ha)

2020-
21

N0
2.75kl 2.55lm 2.35mn 3.53gh 3.33hi 1.91° 2.16no 3.04ijk 3.09ijk 3.73fg 2.84c

N75 3.53gh 3.83fg 3.14ij 5.20c 4.81d 2.84jkl 2.84jkl 3.68fgh 4.36e 6.13b 4.04b

N150 3.73fg 3.97f 3.09ijk 6.47b 5.20c 2.99ijk 2.94jk 3.97f 5.10cd 7.21a 4.47a

Mean 3.33f 3.45ef 2.86g 5.07b 4.45c 2.58h 2.65gh 3.56e 4.18d 5.69a

*N × V = 0.40(SEm± = 0.13)/*V × N = 0.44 (SEm± = 0.14)

2021-
22

N0
1.97° 3.16jk 2.19no 3.51ghij 3.20ijk 2.05no 2.09no 3.44ghij 2.46lmn 3.75gh 2.78c

N75 2.22mno 4.43f 3.34hij 5.43de 4.61f 2.32mno 3.38hij 5.72cd 3.86g 6.02bc 4.13b

N150 2.86kl 5.24e 3.51ghij 6.17abc 5.22e 2.67lm 3.62ghi 6.59a 3.89g 6.35ab 4.61a

Mean 2.35f 4.27c 3.01e 5.03b 4.34c 2.35f 3.03e 5.25ab 3.40d 5.37a

*N × V = 0.49 (SEm± = 0.16)/*V × N = 0.44(SEm± = 0.15)

Pooled N0 2.36lm 2.85ijk 2.27mn 3.52fg 3.27gh 1.98n 2.12mn 3.24gh 2.78jk 3.74f 2.81c

N75 2.88ij 4.13e 3.24gh 5.31c 4.71d 2.58kl 3.11hi 4.70d 4.11e 6.07b 4.08b

N150 3.29gh 4.61d 3.30gh 6.32b 5.21c 2.83ijk 3.28gh 5.28c 4.49d 6.78a 4.54a

Mean 2.84e 3.86d 2.94e 5.05b 4.40c 2.46f 2.84e 4.41c 3.79d 5.53a

*N × V = 0.30 (SEm± = 0.10)/*V × N = 0.33 (SEm± = 0.11)
front
*LSD (P= 0.05) for nitrogen means at same or different level of varieties; *LSD (P= 0.05) for varieties means at same or different level of nitrogen; Values in a column followed by the different
letters was significantly different at p<0.05 as determined by LSD; Letters indicate the comparison among cultivars under different N levels.
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stability and adaptability to the microclimate. This underscores the

pivotal role of soil chemical processes, in conjunction with the

genetic potential of superior cultivars, in regulating nutrient

availability, uptake efficiency, and assimilation under varying

N inputs.

In various cultivar-based rice and wheat cropping systems,

‘HD 3298’ (Nidhi-rice) and ‘HD 3086’ (Daya-rice) exhibit superior

WEY due to their consistently higher grain productivity (Gawdiya
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et al., 2023a, Gawdiya et al., 2023b, Gawdiya et al., 2023c, –,

Gawdiya et al., 2023e; Gawdiya et al., 2024). Similar findings were

reported by Ramachandra et al. (2007) and Rao et al. (2014). To

comprehensively assess treatment impacts, we quantified

system productivity (SP) using WEY as a standardized metric.

Notably, ‘HD 3249’, ‘HD 3117’, and ‘HD 3298’ demonstrated the

highest SP, with their performance predominantly driven by

higher WEY.
TABLE 2 Effect of nitrogen × cultivar interaction on wheat system productivity (SP).

Nitrogen
× variety

HD
3226

HDCSW
18

HD
2967

HD
3086

HD
3249

HD
2733

PBW
550

PBW
343

HD
3117

HD
3298

Mean

SP (t/ha)

2020-
21

N0
4.39mn 4.52mn 4.90m 6.24l 6.53kl 4.04n 4.95m 4.84m 6.29l 6.02l 5.27c

N75 6.14l 7.60hi 7.55hi 9.70def 10.12d 6.89jk 7.43ij 7.37ij 9.13f 10.25d 8.22b

N150 7.73hi 9.30ef 9.43ef 13.13ab 12.59b 8.55g 9.73de 8.13gh 11.99c 13.21a 10.38a

Mean 6.09e 7.14c 7.29c 9.69a 9.75a 6.50d 7.37c 6.78d 9.14b 9.83a

*N × V = 0.60 (SEm± = 0.20)/*V × N = 0.89 (SEm± = 0.29)

2021-
22

N0
3.69° 5.04klm 4.65lmn 6.14hi 6.48ghi 4.26no 4.96lmn 5.33jkl 5.74ijk 6.04ij 5.23c

N75 4.42mn 6.83gh 8.69ef 10.23cd 9.96d 7.02g 8.18f 8.17f 8.96e 11.12b 8.36b

N150 6.98g 10.56bcd 9.85d 12.71a 12.62a 8.23ef 10.41bcd 10.75bc 10.90bc 12.47a 10.55a

Mean 5.03f 7.48d 7.73cd 9.69a 9.69a 6.50e 7.85cd 8.08c 8.53b 9.88a

*N × V = 0.73 (SEm± = 0.25)/*V × N = 1.14 (SEm± = 0.37)

Pooled N0 4.04n 4.78m 4.77m 6.19l 6.50kl 4.15n 4.95m 5.09m 6.02l 6.03l 5.25c

N75 5.28m 7.21j 8.12gh 9.96de 10.04d 6.96jk 7.81hi 7.77hi 9.05f 10.68c 8.29b

N150 7.35ij 9.93de 9.64de 12.92a 12.61a 8.39g 10.07d 9.44ef 11.44b 12.84a 10.46a

Mean 5.56e 7.31c 7.51c 9.69a 9.72a 6.50d 7.61c 7.43c 8.84b 9.85a

*N × V = 0.57 (SEm± = 0.19)/*V × N = 0.95 (SEm± = 0.31)
front
*LSD (P= 0.05) for nitrogen means at same or different level of varieties; *LSD (P= 0.05) for varieties means at same or different level of nitrogen; Values in a column followed by the different
letters was significantly different at p<0.05 as determined by LSD; Letters indicate the comparison among cultivars under different N levels.
FIGURE 3

Phosphorus uptake in grain, straw, total P uptake and their trends of ten wheat cultivars over two years under N150-HN (High-nitrogen) conditions.
iersin.org
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FIGURE 4

Phosphorus (P) concentration (percentage) in grain, straw, and their trends of ten wheat cultivars over two years under N0- (No-
nitrogen) conditions.
FIGURE 5

Phosphorus concentration (percentage) in grain, straw, and their trends of ten wheat cultivars over two years under N75-LN (low
nitrogen) conditions.
FIGURE 6

Phosphorus concentration (percentage) in grain, straw, and their trends of ten wheat cultivars over two years under N150-HN (High-
nitrogen) conditions.
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Macronutrient’s concentrations and uptake

Nitrogen-smart production systems that synchronize N supply

with cultivar-specific demand through split-dose applications are

essential for maximizing nitrogen use efficiency (NUE) in

agricultural systems (Hu et al., 2021; Udvardi et al., 2021; Su et al.,

2022). Our study highlights that N-efficient genotypes (‘HD 3249’

and ‘HD 3117’), exhibited superior morphophysiological and

biochemical adaptations by optimize macronutrient acquisition and

utilization across varying N availability. These genotypes also

balanced trade-offs between yield potential and N dilution effects,

enhancing nutrient uptake, assimilation, and remobilization

(Uribelarrea et al., 2007; Móring et al., 2021; Zhao et al., 2022; He

et al., 2023; Liu et al., 2024);. Their enhanced efficiency is rooted in

robust root architecture, efficient metabolic pathways, symbiotic soil

microbiomes, and organic exudation, enabling them to explore

greater soil volumes and dynamically respond to edaphic and

endogenous signals for optimized nutrient acquisition (Rengel and

Marschner, 2005; Chen et al., 2019; Jia et al., 2022; Abdulraheem
Frontiers in Agronomy 08
et al., 2024). This adaptive foraging strategy, coupled with increased

expression and activity of N transporter proteins, enhances N uptake

efficiency (Nacry et al., 2013). Under optimal N conditions, the low-

affinity transport system becomes more active, facilitating efficient N

assimilation (Nacry et al., 2013). Once absorbed, N is efficiently

assimilated through nitrate reductase and glutamine synthetase,

working in tandem with hormonal regulation to optimize root-to-

shoot signaling and enhance nutrient uptake (Zörb et al., 2018; Zhang

et al., 2017; Jia et al., 2022). These genotypic adaptations also enhance

N-driven nutrient uptake under environmental stress, improving N

assimilation and metabolic efficiency (Francis et al., 2023). A finely-

tuned genetic regulation and partitioning mechanism directs N

allocation toward chlorophyll synthesis, key transporters, and

photosynthetic proteins such as Rubisco, while also supporting the

synthesis of peptides and other N-containing compounds. This

optimized allocation enhances macronutrient utilization,

maximizing photosynthetic efficiency and biomass production per

unit of N absorbed (Balyan et al., 2016; Evans and Clarke, 2019;

Mălinas ̧ et al., 2022; Aluko et al., 2023; Zayed et al., 2023b). As crops
FIGURE 7

Phosphorus uptake in grain, straw, total P uptake and their trends of ten wheat cultivars over two years under N0- (no nitrogen) conditions.
FIGURE 8

Phosphorus uptake in grain, straw, total P uptake and their trends of ten wheat cultivars over two years under N75-LN (low nitrogen) conditions.
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TABLE 3 Effect of nitrogen fertilization on potassium (K) concentration (%) in grain and straw of wheat at harvesting stage.

Nitrogen
× variety

K concentration in grain (%) K concentration in straw (%)

2020-21 2021-22 Pooled 2020-21 2021-22 Pooled

N0 0.346c 0.347c 0.346c 1.39c 1.40b 1.39b

N75 0.418b 0.417b 0.417b 1.48b 1.48ab 1.48b

N150 0.446a 0.446a 0.446a 1.58a 1.59a 1.58a

LSD (P= 0.05) 0.027 0.022 0.024 0.069 0.141 0.099

HD 3226 0.372e 0.374e 0.373e 1.46efg 1.47cd 1.47cde

HDCSW 18 0.422ab 0.422ab 0.422ab 1.47def 1.48bc 1.47cd

HD 2967 0.372e 0.373e 0.373e 1.48cde 1.49abc 1.48bc

HD 3086 0.418ab 0.416ab 0.417ab 1.45fg 1.46cd 1.46de

HD 3249 0.429a 0.429a 0.429a 1.52a 1.51a 1.52a

HD 2733 0.410abc 0.410abc 0.410abc 1.49bcd 1.49abc 1.49bc

PBW 550 0.384de 0.383de 0.383de 1.44g 1.45d 1.45e

PBW 343 0.395cd 0.395cd 0.395cd 1.50bc 1.50ab 1.50ab

HD 3117 0.426a 0.428a 0.427a 1.52a 1.51a 1.52a

HD 3298 0.403bcd 0.404bc 0.403bcd 1.51ab 1.50ab 1.51ab

LSD (P= 0.05) 0.021 0.020 0.021 0.024 0.029 0.024

Interaction ns ns ns ns ns ns
F
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Means sharing the same superscript letter do not differ significantly, whereas means with different letters differ significantly at p < 0.05 (LSD test).
TABLE 4 Effect of nitrogen × cultivar interaction on K uptake in grain of wheat.

Nitrogen
× variety

HD
3226

HDCSW
18

HD
2967

HD
3086

HD
3249

HD
2733

PBW
550

PBW
343

HD
3117

HD
3298

Mean

K uptake by grain (kg ha-1)

2020 N0 5.3q 7.2opq 8.1nop 9.9lmno 12.0l 7.6nopq 9.2mno 6.2pq 11.7lm 8.2nop 8.5b

N75 10.2lmn 17.0ijk 17.2ijk 19.6hi 23.8fg 17.2ijk 18.4ij 15.2k 21.4gh 17.0ijk 17.7ab

N150 16.7jk 24.9ef 26.4def 30.8bc 35.4a 26.0ef 29.0cd 18.2ij 32.8ab 27.3de 26.7a

Mean 10.7g 16.4e 17.2de 20.1c 23.8a 16.9e 18.8cd 13.2f 22.0b 17.5de

*N × V = 2.96(SEm± = 0.98)/*V × N = 8.9 (SEm± = 2.8)

2021 N0 5.6p 7.0nop 7.9mnop 9.6lmno 12.3l 7.9mnop 9.5lmno 6.5op 12.1l 8.2mnop 8.7b

N75 8.6mnop 10.9lm 20.8hij 20.7hij 24.0fgh 19.9ijk 19.2jk 10.1lmn 22.8ghi 21.2hij 17.8ab

N150 17.3k 24.9efg 26.4def 30.2bc 35.4a 25.9defg 28.9cd 18.2jk 33.4ab 27.9cde 26.8a

Mean 10.5e 14.2d 18.4bc 20.1b 23.9a 17.9c 19.2bc 11.6e 22.8a 19.1bc

*N × V = 3.6 (SEm± = 1.2)/*V × N = 10.4 (SEm± = 3.4)

Pooled N0 5.4p 7.1nop 8nop 9.7Imn 12.2klm 7.8nop 9.3mno 6.4op 11.9klm 8.2nop 8.61b

N75 9.4mno 14.0k 19.0ij 20.2hi 23.9fg 18.5ij 18.8ij 12.6kl 22.1gh 19.1hij 17.75ab

N150 17j 24.9efg 26.4def 30.5bc 35.4a 25.9def 28.9cd 18.2ij 33.1ab 27.6cde 26.79a

Mean 10.60f 15.31d 17.80c 20.12b 23.83a 17.42c 19.01bc 12.42e 22.37a 18.30c

*N × V = 3.1 (SEm± = 1)/*V × N = 6.4 (SEm± = 2.1)
front
*LSD (P= 0.05) for nitrogen means at same or different level of varieties; *LSD (P= 0.05) for varieties means at same or different level of nitrogen; Values in a column followed by the different
letters was significantly different at p<0.05 as determined by LSD; Letters indicate the comparison among cultivars under different N levels.
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TABLE 5 Effect of nitrogen × cultivar interaction on K uptake in straw of wheat.

Nitrogen
× variety

HD
3226

HDCSW
18

HD
2967

HD
3086

HD
3249

HD
2733

PBW
550

PBW
343

HD
3117

HD
3298

Mean

2020 N0 41.5n 46.5mn 56.9jkl 55.8kl 65.7ij 50.7lm 55.8kl 45.5mn 66.9i 53.1lm 53.8c

N75 64.7ijk 86.3h 94.5efgh 93.9fgh 110.9d 90.4h 94.0efgh 87.3h 100.1efg 92.7gh 91.5b

N150 102.7def 126.4c 135.5ab 136.0ab 143.6a 127.2bc 128.1bc 103.0de 135.9ab 135.3abc 127.4a

Mean 69.6g 86.4e 95.6c 95.2c 106.7a 89.4de 92.6cd 78.6f 101.0b 93.7cd

*N × V = 9.4 (SEm± = 3.09)/*V × N = 27.2 (SEm± = 9)

2021 N0 43.7l 43.3l 54.7jkl 55.9ijkl 67.5ij 51.4kl 58.1ijk 47.3kl 6.0i 53.4kl 54.3c

N75 55.7ijkl 57.1ijk 120.3def 101.9h 105.9gh 108.2fgh 97.2h 59.4ijk 104.9gh 117.0efg 92.7b

N150 101.1h 127.1cde 140.0abc 136.6abc 145.9a 131.4bcd 136.3abc 103.4h 144.0ab 141.5ab 130.7a

Mean 66.8e 75.8d 105.0ab 98.1bc 106.4a 97.0c 97.2c 70.0de 105.6ab 104.0abc

*N × V = 13.9 (SEm± = 4.6)/*V × N = 28.1 (SEm± = 9.3)

Pooled N0 42.6n 44.9mn 55.8kl 55.8kl 66.6hij 51.1klmn 56.9jk 46.4lmn 67.5hi 53.3klm 54.1c

N75 60.2ijk 71.7h 107.4ef 97.9fg 108.4e 99.3efg 95.6g 73.3h 102.5efg 104.8efg 92.1b

N150 101.9efg 126.8d 137.7abc 136.3abcd 144.7a 129.3cd 132.2bcd 103.2efg 140ab 138.4abc 129.0a

Mean 68.2g 96.7cd 106.6a 93.2d 94.9cd 74.3f 103.3ab 98.8bcd 68.2g 96.7cd

*N × V = 10.9 (SEm± = 3.6)/*V × N = 19.9 (SEm± = 6.6)
F
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*LSD (P= 0.05) for nitrogen means at same or different level of varieties; *LSD (P= 0.05) for varieties means at same or different level of nitrogen; Values in a column followed by the different
letters was significantly different at p<0.05 as determined by LSD; Letters indicate the comparison among cultivars under different N levels.
TABLE 6 Effect of nitrogen × cultivar interaction on total K uptake of wheat.

Nitrogen
× variety

HD
3226

HDCSW
18

HD
2967

HD
3086

HD
3249

HD
2733

PBW
550

PBW
343

HD
3117

HD
3298

Mean

Total K uptake (kg ha-1)

2020-
21

N0
46.7° 53.7no 65.1lm 65.7lm 77.7k 58.4mn 65.0lm 51.7no 78.6k 61.3mn 62.4b

N75 74.9kl 103.3ij 111.7ghij 113.5ghi 134.7f 107.6ij 112.4ghij 102.5j 121.5g 109.8hij 109.2a

N150 119.5gh 151.3e 161.8bcd 166.7bc 179.0a 153.1de 157.1cde 121.2g 168.7ab 162.6bcd 154.1a

Mean 80.4g 102.8e 112.9c 115.3c 130.5a 106.4de 111.5cd 91.8f 122.9b 111.2cd

*N × V = 10.90 (SEm± = 3.63)/*V × N = 32.5 (SEm± = 10.5)

2021-
22

N0
49.2m 50.3lm 62.6jklm 65.5hijkl 79.8hi 59.4jklm 67.6hijk 53.8klm 80.1h 61.7jklm 63.0c

N75 64.3ijklm 68.0hijk 141.1ef 122.6g 129.9fg 128.0fg 116.3g 69.4hij 127.6fg 138.1ef 110.5b

N150 118.4g 152.0de 166.4abcd 166.8abcd 181.3a 157.3cd 165.2bcd 121.7g 177.4ab 169.4abc 157.6a

Mean 77.3d 90.1c 123.4ab 118.3b 130.3a 114.9b 116.4b 81.7cd 128.4a 123.1ab

*N × V = 16.02 (SEm± = 5.34)/*V × N = 46.47 (SEm± = 15.49)

Pooled N0 48.0k 52.0jk 63.8ij 65.6i 78.7gh 58.9ijk 66.3i 52.8jk 79.3gh 61.5ij 62.7c

N75 69.6hi 85.7 g 126.4ef 118.1f 132.3e 117.8f 114.3f 86.0g 124.6ef 124.0ef 109.9b

N150 118.9f 151.6d 164.1bc 166.8bc 180.1a 155.2cd 161.1bcd 121.4ef 173.1ab 166.0bc 155.8a

Mean 78.8f 96.4d 118.1b 116.8bc 130.4a 110.6c 113.9bc 86.7e 125.7a 117.1bc

*N × V = 12.7 (SEm± = 4.2)/*V × N = 24.9 (SEm± = 8.3)
*LSD (P= 0.05) for nitrogen means at same or different level of varieties; *LSD (P= 0.05) for varieties means at same or different level of nitrogen; Values in a column followed by the different
letters was significantly different at p<0.05 as determined by LSD; Letters indicate the comparison among cultivars under different N levels.
iersin.org
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mature, N-efficient genotypes exhibit superior N remobilization,

reallocating stored N from vegetative tissues to developing grains

during senescence (Liang et al., 2023). Their phenotypic plasticity

further enables them to maintain stable performance across varying

N inputs (Lenoir et al., 2023). The intricate synergy among plant

genetics, soil biology, and nutrient interactions underscores a

transformative opportunity for advancing sustainable food systems

in diverse agroecosystems.
Dominant influencing factors

Cultivars grown across diverse agroecological regions exhibit

significant variation in macronutrient uptake, influenced by

environmental conditions, genotype-environment interactions, and

soil fertility status. Our analysis of diverse cultivars underscores the

critical role of soil properties, nutrient availability (N, P, K), and their

interactions in regulating nutrient acquisition efficiency. These insights

provide a foundation for developing region-specific N management

strategies, tailored to cultivar-specific nutrient demands while

integrating site-specific agronomic practices and environmental

constraints. Such approaches could enhance NUE, optimize yield

potential, and promote sustainable agricultural intensification.
Implication and perspectives

The environmental costs associated with low NUE in global

croplands pose a significant challenge due to increased N losses,

greenhouse gas emissions, and soil and water contamination

(Omara et al., 2019). Since the Green Revolution, agricultural

practices have primarily emphasized high-yielding, N-intensive

production systems. However, beyond the optimal N threshold,

further increases in yield and phosphorus/potassium (P/K)

concentrations can occur at the expense of elevated N losses,

which ultimately disrupting nutrient balance and environmental

sustainability. This imbalance contributes to increasing pressure on

climate stability and biodiversity through negative N balances

(Goyal et al., 2024; Srivastava et al., 2024). Therefore, there is a

urgent need to enhance NUE to address global agricultural and

environmental challenges. In response to these challenges and the

impacts of climate variability, on-station and on-farm cultivar

screening experiments offer a sustainable approach to identify

resilient, N-efficient genotypes. Our study provides novel insights

into the interactions between graded N levels and the assimilation,

translocation, and utilization of essential macronutrients.

These findings can enhance resource use efficiency while

minimizing environmental impacts, particularly in intensive

wheat-growing regions such as North-West India, where excessive

N application leads to nutrient imbalances and environmental

degradation. Furthermore, these insights open new avenues

for breeding agronomically important cultivars with biological

nitrification inhibition traits, facilitating the development
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of climate-smart cultivars that establish robust trade-offs

between yield gains and reduced environmental footprints

(Gawdiya et al., 2024; Leon and Nedumaran, 2024; Gawdiya

and Kumar, 2025). To further enhance NUE, we recommend a

strategy that includes the partial substitution of synthetic fertilizers

with organic sources combined with fol iar nutr ient

supplementation. These multidimensional strategies are essential

for developing sustainable, resilient production systems that

improve soil health, crop productivity, and long-term

agricultural sustainability.
Conclusion

The present study highlights the genetic variability among

wheat cultivars under graded nitrogen levels, with ‘HD 3249’ and

‘HD 3117’ demonstrating superior performance in WEY, SP, and

macronutrient uptake. The adoption of these N-efficient cultivars is

crucial for optimizing fertilizer use, reducing input costs, and

mitigating environmental concerns. Their potential for biological

nitrification inhibition could further enhance nitrogen use

efficiency, making wheat production in the Indo-Gangetic

Plains more economically viable and environmentally

sustainable. These findings underscore the need for cultivar-

specific nutrient management strategies and farmer awareness

programs to maximize productivity while minimizing

environmental impact.
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