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José Bruno Malaquias,
Federal University of Paraı́ba, Brazil

REVIEWED BY

Robson Nascimento,
Federal University of Paraı́ba, Brazil
Allef Souza Silva,
Federal University of Paraı́ba, Brazil

*CORRESPONDENCE

Hainie Zha

zhahn@aqnu.edu.cn

Xueyong Chen

xueyongchen@fafu.edu.cn

RECEIVED 17 February 2025
ACCEPTED 18 April 2025

PUBLISHED 20 May 2025

CITATION

Wang X, Hu C, Wang X, Zha H, Chen X,
Yuan S, Zhang J, Liao J and Ye Z (2025)
Research on multi class pests identification
and detection based on fusion attention
mechanism with Mask-RCNN-CBAM.
Front. Agron. 7:1578412.
doi: 10.3389/fagro.2025.1578412

COPYRIGHT

© 2025 Wang, Hu, Wang, Zha, Chen, Yuan,
Zhang, Liao and Ye. This is an open-access
article distributed under the terms of the
Creative Commons Attribution License (CC BY).
The use, distribution or reproduction in other
forums is permitted, provided the original
author(s) and the copyright owner(s) are
credited and that the original publication in
this journal is cited, in accordance with
accepted academic practice. No use,
distribution or reproduction is permitted
which does not comply with these terms.

TYPE Original Research

PUBLISHED 20 May 2025

DOI 10.3389/fagro.2025.1578412
Research on multi class pests
identification and detection
based on fusion attention
mechanism with
Mask-RCNN-CBAM
Xingwang Wang1,2,3, Can Hu3, Xufeng Wang3, Hainie Zha1*,
Xueyong Chen2*, Shanshan Yuan4, Jing Zhang5, Jianfeng Liao5

and Zhangying Ye6

1Anhui Province Key Laboratory of Smart Monitoring of Cultivated Land Quality and Soil Fertility
Improvement, Anqing Normal University, Anqing, China, 2College of Mechanical and Electrical
Engineering, Fujian Agriculture and Forestry University, Fuzhou, China, 3School of Mechanical and
Electrical Engineering, Tarim University, Alar, China, 4Bayin'guoleng Mongol Autonomous Prefecture
Qimo County Agricultural and Rural Development Service Center, Quality and Safety Inspection and
Testing Center for Agricultural Products, Korla, China, 5Anhui Yi Gang Information Technology Co.,
Anhui Eagle Information Technology Co., Ltd, Anqing, China, 6Institute of Agricultural Bio-
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This study addresses challenges in agricultural pest detection, such as false

positives and missed detections in complex environments, by proposing an

enhanced Mask-RCNN model integrated with a Convolutional Block Attention

Module (CBAM). The framework combines three innovations: (1) a CBAM attention

mechanism to amplify pest features while suppressing background noise; (2) a

feature-enhanced pyramid network (FPN) for multi-scale feature fusion,

enhancing small pest recognition; and (3) a dual-channel downsampling module

tominimize detail loss during feature propagation. Evaluated on a dataset of 14,270

pest images from diverse Chinese agricultural regions (augmented to 7,000

samples and split into 6:1:3 training/validation/test sets), the model achieved

precision, recall, and F1 scores of 95.91%, 95.21%, and 95.49%, respectively,

outperforming ResNet, Faster-RCNN, and Mask-RCNN by up to 2.67% in key

metrics. Ablation studies confirmed the CBAM module improved F1 by 5.5%, the

FPN increased small-target recall by 6%, and the dual-channel downsampling

boosted AP@50 by 3.1%. Despite its compact parameter size (63.87 MB, 1.39 MB

lighter than Mask-RCNN), limitations include reduced accuracy in low-contrast

scenarios (e.g., foggy fields) and GPU dependency. Future work will focus on

lightweight deployment for edge devices and domain adaptation, offering a robust

solution for intelligent pest monitoring systems that balance accuracy with

computational efficiency.
KEYWORDS

Mask-RCNN-CBAM, attention mechanism, feature enhanced pyramid network, dual
channel downsampling, pest extraction, deep learning
frontiersin.org01

https://www.frontiersin.org/articles/10.3389/fagro.2025.1578412/full
https://www.frontiersin.org/articles/10.3389/fagro.2025.1578412/full
https://www.frontiersin.org/articles/10.3389/fagro.2025.1578412/full
https://www.frontiersin.org/articles/10.3389/fagro.2025.1578412/full
https://www.frontiersin.org/articles/10.3389/fagro.2025.1578412/full
https://www.frontiersin.org/journals/agronomy
https://www.frontiersin.org
http://crossmark.crossref.org/dialog/?doi=10.3389/fagro.2025.1578412&domain=pdf&date_stamp=2025-05-20
mailto:zhahn@aqnu.edu.cn
mailto:xueyongchen@fafu.edu.cn
https://doi.org/10.3389/fagro.2025.1578412
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/agronomy#editorial-board
https://www.frontiersin.org/journals/agronomy#editorial-board
https://doi.org/10.3389/fagro.2025.1578412
https://www.frontiersin.org/journals/agronomy


Wang et al. 10.3389/fagro.2025.1578412
1 Introduction

Globally, pests represent one of the most significant challenges to

agricultural production, with crop yield losses attributed to pests

estimated between 20% and 40% annually. These pests not only

threaten food security but also impose substantial economic losses,

exacerbate hunger, and pose potential ecological risks (Suganya

Kanna et al., 2023). In recent years, China has experienced steady

growth in the production of major crops, such as rice, wheat, and

maize, as well as an increase in the yield of economic crops like

cotton, soybeans, peanuts, fruits, and tea. However, the impact of

climate change has amplified the pest and disease pressures,

negatively affecting crop yields in certain regions. The frequency of

pest and disease outbreaks in China has quadrupled since the 1970s,

with rising temperatures further accelerating pest growth and

reproduction, particularly during the night (Mendoza et al., 2022).

During the cultivation of crops, different crops suffer from

different pest problems. The most common pests include the

second generation rice borer, fall armyworm, rice leaf roller, corn

borer, thrips, cotton bollworm, locusts, and cutworms, which not

only reduce crop yields and cause economic damage but, if not

controlled in time, can lead to complete crop failure (Jiang et al.,

2019). Therefore, rapid identification and efficient control of major

pests are critical for reducing yield losses and ensuring food

security. To safeguard food security, China established the

National Agricultural Technology Extension Service Center in

1995, which includes pest and disease forecasting and control

agencies responsible for pest and disease management. As of

2023, there were 24,800 national agricultural technology

extension agencies in China. In the early years, agronomists

primarily relied on manual pest counting to predict pest

outbreaks. This method not only required significant human

labor but was also time consuming and inefficient. With

technological advancements, the introduction of intelligent pest

monitoring lamps has solved the problem of manual counting by

using trap lamps that attract specific pests with light of a particular

wavelength. These lamps use industrial cameras to capture images

of pests at predetermined intervals, remotely upload these images to

the corresponding network ports for processing, and employ object

detection algorithms to classify and count the pests in the images.

The key difficulty in intelligent pest monitoring systems lies in the

pest image detection and recognition algorithms, which commonly

use object detection algorithms in computer vision for pest

detection (Wei et al., 2022).

Currently, research on pest detection primarily focuses on

improving the efficiency of recognition and classification algorithms,

especially with deep learning models that have achieved outstanding

performance in agricultural pest detection. For example, YOLO series

algorithms, SSD (Single Shot MultiBox Detector), and Faster-RCNN

(Faster Region based Convolutional Neural Networks) offer a good

balance between speed and accuracy in pest detection (Zongwang

et al., 2021; Yunong et al., 2023; Li et al., 2024; Zhu et al., 2024).

Additionally, the introduction of attention mechanisms, multimodal

fusion, and super resolution techniques has made significant progress

in improving pest detection performance (Wang et al., 2020; Hu et al.,
Frontiers in Agronomy 02
2023; Khalid et al., 2023). However, challenges remain in detecting

small target pests (minute or densely distributed pests), mainly due to

difficulties in extracting small target pests, the impact of background

interference, and poor performance in complex environments (Wang

et al., 2020; Suganya Kanna et al., 2023). To address these issues,

research needs to focus on specific technical improvements for small

target pest detection and explore efficient, lightweight models suitable

for agricultural production scenarios.

This study focuses on the classification capabilities of object

detection algorithms for small target pest categories. Compared

with traditional machine learning methods, deep learning based

image recognition models can achieve higher accuracy. Among

various deep learning network models, Mask-RCNN (mask region

based convolutional neural network) (He et al., 2017) has an

advantage in pest detection and recognition accuracy (Li et al.,

2022). Mask-RCNN is an instance segmentation model based on

Faster-RCNN, adding a mask branch for pixel segmentation. It uses

anchor boxes for classification and regression while also

incorporating pixel level segmentation and classification, resulting

in more accurate classifications. In recent years, many researchers

have focused on insect detection and recognition with most choosing

Mask-RCNN as the base recognition algorithm. For instance,

research by Deepika et al. (Deepika and Arthi, 2022; Rong et al.,

2022; Kasinathan and Uyyala, 2023) achieved an accuracy rate of over

92%for single-target or single-class detection in each image, while

Mendoza and Denver (2022) achieved high accuracy for multi-class

detection in one image. In Liu et al.’s (2023) study, detection of four

sparsely distributed classes achieved up to 92% accuracy, but non

target similar pests and high density cases were not considered,

leaving room for improvement. Thus, Mask-RCNN is effective for

multi target classification in a single image, but further improvements

are needed for multi class small target detection.

This paper addresses the challenges of high intra class

similarity, varying target scales, and complex backgrounds in

small target pest images captured by pest monitoring lamps.

These challenges result in low detection precision, false

positives, and missed detections. Inspired by the attention

mechanism, multi scale feature transmission, and Mask-RCNN

algorithms, this study proposes a fusion attention based Mask-

RCNN-CBAM (Convolutional Block Attention Module)object

recognition network. This network tackles the issues of complex

backgrounds and insufficient multi-scale feature extraction,

combining attention mechanisms and multi-level semantic

features to achieve precise extraction of small target pests. The

proposed method offers high efficiency and accuracy, providing an

optimized and innovative solution for pest identification in pest

monitoring lamps.
2 Materials and methods

2.1 Image data acquisition

This study uses a self-developed intelligent pest monitoring

lamp (YG-L1200) for pest sampling. This lamp uses a light source
frontiersin.org
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with a wavelength range of 320–680 nm(Nanometer) during night

operation. Due to the weak penetration of ultraviolet light (320–400

nm) and its inability to cover large agricultural fields, visible light

with stronger penetration is used to attract pests over greater

distances, drawing them towards the detection lamp. The pests

attracted to the light will collide with the glass screen in the device

and fall into an infrared treatment chamber. After entering the

chamber, pests are effectively killed by infrared heat treatment

without damaging their bodies. The pests are killed within 3–5

minutes of falling, and regularly collected pests are transferred to a

drying chamber for further heat treatment before being stored in a

collection box. To improve pest-killing efficiency, two infrared

heating boxes are used, and two movable doors are alternately

opened to ensure that each pest undergoes at least one infrared

heating cycle. The processed pests will fall onto a shooting platform

at preset time intervals. The platform is equipped with a vibration

device and a small conveyor belt. Once the pests fall onto the

platform, they are evenly distributed on the conveyor belt and

moved to the shooting area. The system camera captures images of

the pests, and these photos are transmitted to the image acquisition

system. The captured pest carcasses are then moved to the

collection device.

To ensure the diversity of experimental samples, pest trapping

and sampling points were set up in multiple regions across China, as

shown in Figure 1. Each pest monitoring light deployed at the

sampling point can cover an area of 2 hectares. Since different

regions have varying crops, the types of pest infestations also differ.

To facilitate comprehensive pest monitoring, the collected pest data

from various crops are categorized and recorded, as shown

in Table 1.
2.2 Image data classification and
processing

The data set used in this experiment is collected by the pest

monitoring lights. The pest monitoring lights are equipped with a
Frontiers in Agronomy 03
20 megapixel high definition industrial camera, which is mounted

above the workbench in a docking mode to capture high resolution

images of pests attracted by the light source. The images captured

by the camera are then promptly uploaded to local storage. A

sample image captured by the camera is shown in Figure 2.

Due to variations in the image quality captured by the pest

monitoring lights, and the fact that certain pest species may appear

in large numbers during the same season, this could significantly

affect the quality of the data set. To address this issue, the training

data set is first filtered to remove low quality image samples. In deep

learning algorithms, high resolution images are required for better

recognition accuracy. Therefore, images with resolutions lower than

4096×2160 are excluded from the data set. Similarly, images

containing incomplete leaves or pests are also discarded. Next,

images from different seasons are extracted in specific proportions

to ensure an adequate number of images for each pest species, thus

meeting the deep learning training requirements. Some sample data

information is shown in Table 2.
2.3 Experimental data set construction

Due to the dense collection of images of pests, this paper

constructs a multi-type pest data set. Before the experiment, all

images are uniformly processed by cropping each image into 9

equal parts, with each cropped image set to a resolution of 1824

pixels × 1216 pixels. To ensure diversity in the experimental

samples, data augmentation techniques are employed to increase

the data set size (Yuqi et al., 2023), including horizontal flipping,

vertical flipping, 90°rotation, 180°rotation, 270°rotation, and noise

addition. Through these operations, the data set size is increased

seven fold, resulting in a total of 7000 images. Labeling is done using

the LabelMe tool, and each image’s label is saved as a.json file in the

directory where the image is stored. For data set training using

Mask-RCNN, the data set format follows the COCO format, which

includes image information, annotation details, and category

definitions, as shown in Figure 3. Finally, the data set is split into
FIGURE 1

Pest monitoring light deployment map.
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TABLE 1 Deployment and distribution of pest monitoring lights and collected pest data.

Region Quantity (units)
Longitude and
latitude range

Main crops Major pests (insect scientific name)

Heilongjiang Province 14

1、133°06′E,47°20′N
2、132°56′E,47°22′N
3、133°02′E,47°20′N
4、133°00′E,47°17′N
5、133°12′E,47°23′N
6、133°13′E,47°23′N
7、133°05′E,47°14′N
8、133°06′E,47°18′N
9、133°07′E,47°16′N
10、133°07′E,47°20′N
11、131°34′E, 45°44′N
12、131°35′E, 45°44′N
13、126°32′E, 45°45′N
14、126°13′E, 45°58′N

Cold-resistant rice,
spring wheat

Nilaparvata lugens, Sogatella furcifera, Empoasca vitis,
Cnaphalocrocis medinalis, Scirpophaga excerptalis,
Scirpophaga excerptalis, Chilo suppressalis, Spodoptera
litura, Hylastinus obscurus, Melolontha melolontha, etc.

Shandong Province 11

1、116°44′E, 37°38′N
2、116°51′E, 37°48′N
3、116°36′E, 37°36′N
4、116°51′E, 37°39′N
5、116°48′E, 37°44′N
6、116°12′E, 37°05′N
7、117°00′E, 37°41′N
8、117°00′E, 37°42′N
9、117°08′E, 37°37′N
10、116°18′E, 36°40′N
11、116°17′E, 36°40′N

Winter wheat, corn,
grapes, apples

Spodoptera litura, Hylastinus obscurus, Melolontha
melolontha, Gryllotalpa orientalis, Ostrinia nubilalis,
Caelifera, Bemisia tabaci, Parthenolecanium corni,
Lobesia botrana, Thrips tabaci, Cydia pomonella,
Grapholita molesta, Sternorrynchus spp, etc.

Henan Province 1 113°31′E, 34°36′N Winter wheat, rice, corn

Nilaparvata lugens, Sogatella furcifera, Empoasca vitis,
Cnaphalocrocis medinalis, Scirpophaga excerptalis,
Scirpophaga excerptalis, Chilo suppressalis, Spodoptera
litura, Hylastinus obscurus, Melolontha melolontha,
Thrips tabaci, Agrotis ipsilon, Ostrinia nubilalis,
Caelifera, Bemisia tabaci, etc.

Anhui Province 66

1、117°05′E, 32°56′N
2、117°00′E, 32°56′N
3、117°04′E, 32°59′N
4、116°47′E, 30°08′N
5、116°29′E, 30°34′N
6、116°47′E, 30°08′N
7、117°01′E, 30°39′N
8、117°07′E, 33°53′N
9、116°53′E, 30°56′N
10、117°11′E, 30°12′N
11、116°05′E, 33°34′N
12、116°22′E, 33°29′N
13、116°06′E, 33°34′N
14、115°46′E, 32°33′N
15、116°43′E, 30°19′N
16、117°46′E, 33°12′N
17、117°01′E, 33°36′N
18、117°02′E, 33°39′N
19、118°35′E, 31°21′N
20、115°59′E, 30°18′N
21、116°34′E, 30°57′N
22、116°32′E, 30°05′N
23、116°34′E, 30°57′N
24、118°37′E, 31°31′N
25、117°03′E, 33°56′N
26、117°03′E, 30°31′N
27、115°59′E, 30°18′N
28、116°15′E, 33°01′N
29、116°52′E, 30°28′N
30、117°07′E, 33°42′N
31、117°33′E, 32°53′N
32、116°58′E, 30°50′N

Rice, winter wheat,
corn, tea

Nilaparvata lugens, Sogatella furcifera, Empoasca vitis,
Cnaphalocrocis medinalis, Scirpophaga excerptalis,
Scirpophaga excerptalis, Chilo suppressalis, Spodoptera
litura, Hylastinus obscurus, Melolontha melolontha,
Thrips tabaci, Agrotis ipsilon, Ostrinia nubilalis,
Caelifera, Bemisia tabaci, Euproctis chrysorrhoea,
Ectropis obliqua, Setora nitens, Adoxophyes honmai,
Cydia pomonella, etc.

(Continued)
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TABLE 1 Continued

Region Quantity (units)
Longitude and
latitude range

Main crops Major pests (insect scientific name)

33、118°19′E, 32°29′N
34、114°34′E, 36°45′N
35、117°48′E, 33°10′N
36、117°07′E, 32°38′N
37、116°37′E, 34°00′N
38、118°39′E, 32°42′N
39、118°36′E, 32°39′N
40、117°49′E, 33°09′N
41、118°38′E, 32°40′N
42、117°05′E, 30°33′N
43、117°07′E, 33°42′N
44、117°06′E, 30°33′N
45、118°28′E, 32°29′N
46、117°02′E, 31°46′N
47、117°21′E, 31°03′N
48、117°06′E, 31°42′N
49、117°07′E, 31°43′N
50、117°06′E, 31°40′N
51、116°15′E, 33°01′N
52、118°36′E, 32°18′N
53、117°11′E, 33°44′N
54、117°12′E, 33°43′N
55、117°33′E, 32°53′N
56、115°42′E, 32°49′N
57、117°15′E, 31°52′N
58、117°10′E, 31°34′N
59、117°10′E, 31°35′N
60、117°10′E, 31°34′N
61、117°12′E, 30°48′N
62、117°06′E, 30°33′N
63、116°52′E, 30°23′N
64、118°07′E, 31°33′N
65、116°33′E, 32°29′N
66、116°32′E, 32°35′N

Yunnan Province 1 101°59′E, 24°03′N
Rice, oranges,
tangerines, tea

Nilaparvata lugens, Sogatella furcifera, Laodelphax
striatellus, Cnaphalocrocis medinalis, Scirpophaga
excerptalis, Chilo partellus, Sitophilus oryzae,
Spodoptera litura, Aphis citricola, Liriomyza spp.,
Spodoptera exigua, Helicoverpa armigera, Thrips tabaci,
Ceratitis capitata, Cutworm, Tephritis spp., Plutella
xylostella, Clostera anachoreta, etc.

Tibet Autonomous Region 1 95°34′E, 30°55′N Barley, rapeseed
Locusta migratoria tibetensis, Mamestra brassicae, Pieris
rapae, Plutella xylostella, Agrotis ipsilon, Toxocera spp.,
Raphanus sativus, etc.

Hebei Province 1 114°34′E, 36°45′N
Winter wheat,
corn, peaches

Spodoptera litura, Hyles euphorbiae, Melanotus spp.,
Gryllotalpa orientalis, Ostrinia nubilalis, Locusta
migratoria, Laodelphax striatellus, Planococcus ficus,
Erythroneura vitis, Thrips tabaci, Cydia pomonella,
Carposina sasakii, Aphis pomi, etc.

Sichuan Province 1 104°55′E, 28°58′N Rice, tangerines, tea

Nilaparvata lugens, Sogatella furcifera, Laodelphax
striatellus, Cnaphalocrocis medinalis, Scirpophaga
excerptalis, Chilo partellus, Sitophilus oryzae,
Spodoptera litura, Aphis citricola, Liriomyza spp.,
Spodoptera exigua, Helicoverpa armigera, Thrips tabaci,
Ceratitis capitata, Cutworm, Tephritis spp., Plutella
xylostella, Clostera anachoreta, etc.

Guizhou Province 7

1、106°22′E, 27°40′N
2、104°06′E, 27°12′N
3、104°08′E, 26°54′N
4、104°14′E, 26°54′N
5、104°06′E, 27°08′N

Rice, rape, tea

Sogatella furcifera, Laodelphax striatellus,
Cnaphalocrocis medinalis, Scirpophaga excerptalis,
Chilo partellus, Sitophilus oryzae, Spodoptera litura,
Aphis citricola, Liriomyza spp., Spodoptera exigua,
Helicoverpa armigera, Thrips tabaci, Ceratitis
capitata, etc.

(Continued)
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training, validation, and test sets in a 6:1:3 ratio. Since this study

only labels pests that cause significant crop damage, pests causing

minor damage, beneficial insects, and non-crop pests are not

labeled. The labeling style is shown in Figure 4. Figure 4a shows a

sample of the original image, while Figure 4b shows the

corresponding labeled image.
Frontiers in Agronomy 06
2.4 Mask-RCNN network

The network structure used in this paper was based on the

classic Mask-RCNN architecture. Mask-RCNN has a simple

structure and can be used for various tasks, such as object

detection, semantic segmentation, instance segmentation, and
TABLE 1 Continued

Region Quantity (units)
Longitude and
latitude range

Main crops Major pests (insect scientific name)

6、104°06′E, 26°50′N
7、104°06′E, 27°35′N

Hubei Province 2
1、110°38′E, 30°16′N
2、112°42′E, 29°52′N

Rice, tea,
oranges, tobacco

Nilaparvata lugens, Sogatella furcifera, Laodelphax
striatellus, Cnaphalocrocis medinalis, Scirpophaga
excerptalis, Chilo partellus, Sitophilus oryzae,
Spodoptera litura, Aphis citricola, Liriomyza spp.,
Spodoptera exigua, Helicoverpa armigera, Thrips tabaci,
Ceratitis capitata, Cutworm, Tephritis spp., Plutella
xylostella, Clostera anachoreta, etc.

Jiangxi Province 2
1、117°03′E, 29°18′N
2、117°18′E, 29°30′N

Rice, tea,
oranges, tobacco

Nilaparvata lugens, Sogatella furcifera, Laodelphax
striatellus, Cnaphalocrocis medinalis, Scirpophaga
excerptalis, Chilo partellus, Sitophilus oryzae,
Spodoptera litura, Aphis citricola, Liriomyza spp.,
Spodoptera exigua, Helicoverpa armigera, Thrips tabaci,
Ceratitis capitata, Cutworm, Tephritis spp., Plutella
xylostella, Clostera anachoreta, etc.

Jiangsu Province 2
1、120°24′E, 33°42′N
2、120°23′E, 33°40′N

Rice, wheat, corn, rape

Nilaparvata lugens, Sogatella furcifera, Laodelphax
striatellus, Cnaphalocrocis medinalis, Scirpophaga
excerptalis, Chilo partellus, Sitophilus oryzae,
Spodoptera litura, Aphis citricola, Liriomyza spp.,
Spodoptera exigua, Helicoverpa armigera, Thrips tabaci,
Ceratitis capitata, Cutworm, Tephritis spp., Plutella
xylostella, Clostera anachoreta, etc.
FIGURE 2

The image captured by an insect detection light.
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TABLE 2 The sample size and image information for various pest species.

Number Pest Acronym Image
Number of labeled
samples (bounding

box)

Percentage of
bounding box

samples

1 Cicadella viridis (Linnaeus) CV 6171 4.33%

2 Thaia rubiginosa (Kuoh) TR

9008 6.31%

3 Nephotettix cincticeps NC 8982 6.29%

4 Nilaparvata lugens NL 8765 6.14%

5 Sogatella furcifera SF 6548 4.59%

6 Laodelphax striatellus LS 7254 5.08%

7 Echinocnemus squamous (Billberg) ES

6875 4.82%

8 Verania discolor (Fabricius) VD 4521 3.17%

9 Thysanoptera TP 9468 6.63%

10 Helicoverpa armigera HA 7251 5.08%

11 Naranga aenescens (Moore) (♂) NA_M 6790 4.75%

12 Naranga aenescens (Moore) (♀) NA_F

7741 5.43%

13 Inazuma dorsalis (Motschulsky) ID

8894 6.23%

14 Nezara viridula (Linnaeus) NV

9274 6.50%

(Continued)
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human pose recognition. Its network structure was shown

in Figure 5.

The Mask-RCNN model extends the Faster-RCNN framework

by adding a fully connected segmentation network for semantic

segmentation, offering both detection and extraction functions.

Unlike Faster-RCNN, which uses VGG as the backbone feature

extraction network, Mask-RCNN uses ResNet50 and ResNet101 as

the backbone feature extraction networks. It also incorporates a

feature pyramid network (FPN) into the backbone structure, where

different backbone combinations lead to feature layers of different

sizes. The Region Proposal Network (RPN) then generates anchor

boxes at each point in the effective feature layer to perform rough

screening, producing local feature layers. Afterward, Region of

Interest (ROI) Align is applied to these local feature layers, which

are passed into classification and regression models as well as the

Mask model for classification and mask generation, ultimately

outputting classification and segmentation results.
2.5 Mask-RCNN network improvements

The proposed Mask-RCNN-CBAM deep learning network is

based on the original Mask-RCNN structure and introduces the

CBAM (Convolutional Block Attention Module) attention

mechanism at the feature processing stage. The CBAM module

enhances channel and spatial attention to weigh the feature

information of different regions in the image, allowing the model to

learn and amplify the target features. Compared to the original

network, the enhanced feature pyramid module adds bottom up
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feature transfer branches to transmit shallow features to deeper

layers and fuse them. The features passed from the upper layers are

fused with the shallow spatial information and deep semantic

information. The feature transmission process utilizes dual channel

down sampling convolution operations to reduce detail feature loss

during down sampling, retaining image detail features and improving

the network’s feature extraction and detail optimization capabilities.

As shown in Figure 6, in the input stage, the image passes

through the ResNet101 backbone feature extraction layers, and the

resulting features are sent to the CBAM attention mechanism

module. The attention mechanism helps the model focus on

processing important regions. The channel attention module and

spatial attention module are connected in sequence, which

improves the network’s ability to learn complex object features

and avoids false positives and false negatives in complex

backgrounds. The network also introduces a multi scale feature

fusion pyramid module that performs feature transmission at

different scales, mitigating the impact of multi scale feature

deficiencies on target detection (Yu et al., 2022). To further

address the information loss issue caused by traditional down

sampling methods, a dual channel down sampling module is

introduced. This module uses two channels to retain information

and extract features, thereby improving the model accuracy.
2.6 CBAM attention mechanism module

CBAM (evolutionary block attention module) (Woo et al., 2018;

Wang et al., 2021) is an optimization algorithm, which combines
TABLE 2 Continued

Number Pest Acronym Image
Number of labeled
samples (bounding

box)

Percentage of
bounding box

samples

15 Anomala corpulenta (Motsehulsiy) AC

6744 4.72%

16
Cnaphalocrocis medinalis

(Guenee) (♀)
CM_F

7133 5.00%

17
Cnaphalocrocis medinalis

(Guenee) (♂)
CM_M

6674 4.68%

18 Chilo suppressalis CS

7213 5.05%

19 Sesamia inferens SI

7396 5.18%

Total 142,702 100%
♂ represents male individuals, ♀ represents female individuals.
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the channel attention module and the spatial attention module. The

image is extracted from the backbone feature by backbone and sent

to the CBAM module. The feature will first aggregate the features

generated by the channel attention with the input features through

the channel attention module to generate the final channel attention

feature. The generated features are input into the spatial feature

map, and the final attention feature is obtained through pooling and
Frontiers in Agronomy 09
convolution connection. This mechanism is very effective in

processing multi-scale feature extraction tasks, which can

highlight the effective features of the target and reduce redundant

information. In this paper, we use the relationship between channel

attention of features to generate a channel attention graph. Each

channel of the feature represents a special feature detector, and the

attention of different channel feature channels will be given
FIGURE 3

Dataset structure. (a) COCO file format, (b) Folder format recognized by the model.
a b

FIGURE 4

The original image and corresponding label image. (a) Original image, (b) Label image.
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corresponding weight coefficients. The channel attention will focus

on meaningful features, compressing the spatial dimension of the

input feature mapping to calculate the channel attention more

efficiently, which can generate region proposal features for

regions with rich features. As shown in Figure 7a, the channel

attention module utilizes the maximum pooled output and average

pooled output of the shared network. Process: (1) Aggregating the

spatial information of the channel feature map through the average

pooling and maximum pooling operations to generate two different

spatial context descriptors: Fc
avg and Fc

max , representing the average

pooling feature and the maximum pooling feature respectively;

(2) Transfer the generated features to a shared network to generate a

1 × 1 × C channel attention map Mc (F). The shared network

consists of multi-layer perceptron MLP and a hidden layer. To

reduce the cost of parameters, the activation size of the hidden layer

is set to C/r, where C is the number of neurons, r is the attenuation

rate, and the activation function was ReLu. After the shared

network was applied to each descriptor, the sum of feature

elements is combined and the feature vector is output. In short,

the calculation of channel attention is shown in Equation 1:
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MC (F) = s (MLP (AvgPool (F))+

MLP (MaxPool (F))) = s (W1 (W0 (Fc
max))+

W1 (W0 (Fc
avg))

(1)

Where: s was sigmoid function; W0 and W1 where two shared

weights for input characteristics.

Different from channel attention, the spatial attention

mechanism focuses on the location of features, and mainly uses

the spatial relationship of features to generate a spatial attention

feature map. Spatial attention and channel attention are

complementary. In order to calculate spatial attention, we first

use the average pooling and maximum pooling operations of

channels, and connect them to generate effective feature

descriptors. Then the feature descriptor is used to generate the

spatial feature map Ms (F) through a convolution layer. As shown

in Figure 7b, the process: (1) By using two pooling layers to

aggregate the channel information of the feature map, two two-

dimensional features Fc
avg and Fc

max where generated, representing

the average pooling feature and the maximum pooling feature

respectively; (2) The features where connected and convolved
FIGURE 5

Mask-RCNN network framework.
FIGURE 6

Improved Mask-RCNN network framework.
frontiersin.org

https://doi.org/10.3389/fagro.2025.1578412
https://www.frontiersin.org/journals/agronomy
https://www.frontiersin.org


Wang et al. 10.3389/fagro.2025.1578412
through the standard convolution layer, and input into the sigmoid

function to generate the spatial attention feature map. In short, the

calculation of spatial attention is shown in Equation 2:

Ms(F) = s (f 7�7(AvgPool(F));

(MaxPool(F))) = s (f 7�7(Fc
avg ; Fc

max))
(2)

Where: s was sigmoid function; ;f7×7 represents the convolution

operation with a filter size of 7 × 7.
2.7 Feature enhanced FPN module

Figure 8 illustrates the entire feature transmission process of the

FPN network, which consists of two parts: top down down

sampling feature extraction and bottom up up sampling feature

extraction. Down sampling extracts deeper image features with

stronger semantic information, resulting in higher resolution

features. Up sampling shallow features often contain rich spatial

information about the object, which is crucial for locating the target

in the image (Yu et al., 2022; Yuqi et al., 2023).

For example, when the input image feature is 1024×1024×3, a

convolutional layer with a stride of 2 is applied for dimensionality

reduction. Since convolutional down sampling can cause some

feature loss, an Identity Block module is used during the sampling

process to enhance the network, allowing deeper layers to learn

more complex features. The features are passed through the block

to obtain features Ci, i ∈ (Jiang et al., 2019; Mendoza et al., 2022;

Wei et al., 2022), and the C5 feature is up sampled and fused with
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the C4 feature from the previous layer. After up-sampling, a

convolutional operation is performed on the fused features to

generate new features P4. After the bottom up up sampling

process, a pooling operation is performed on the C5 feature to

reduce information redundancy and prevent over fitting,

producing new feature layers Pj, j ∈ (Jiang et al., 2019;

Zongwang et al., 2021; Mendoza et al., 2022; Wei et al., 2022),

which contain more semantic and spatial information.
2.8 Dual-channel down sampling module

The down sampling module is a method used to reduce the

resolution of an image or feature map. However, commonly used

down sampling methods often lead to the loss of detailed

information. To reduce the feature loss during the down sampling

process, this paper improves the down sampling module. The

improved dual-channel down sampling module combines two

transition modules. The left branch applies a 2×2 max-pooling

operation followed by a 1×1 convolutional layer, while the right

branch applies a 1×1 convolutional layer followed by a 3×3

convolutional layer with a stride of 2×2. These two branches

stack their results and output them together. Compared to

traditional methods, this module better captures and processes

the input image ’s features, improving object detection

performance, and reduces the feature map’s size without changing

its depth. This improved down sampling module effectively reduces

information loss and helps the network retain important detail

information. The structure is shown in Figure 9.
FIGURE 7

CBAM Convolutional Block Attention Module.
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2.9 Loss function

The loss function of Mask-RCNN-CBAM is a multi-task loss

function that combines the losses of classification, localization, and

segmentation masks, as shown in Equation 3:

L  = Lcls + Lbox + Lmask (3)

Where: Lcls represents the classification loss, which is used to

determine which category each ROI belongs to; Lbox represents the

bounding box offset loss, which is used to regress the boundary box

of each ROI; Lmask represents the pixel segmentation mask

generation loss, which is used to generate a mask for each ROI

and each category.
3 Experiment and result analysis

3.1 Experimental environment

The programming language used in the experimental

environment is Python 3. 8.10, the deep learning framework uses

Tensorflow2.4.0, and the hardware environment is configured with

Intel (R) Core (TM) i7-12700K × 20, The operating system is
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Windows 10, the graphics card is NVIDIA GeForce RTX3080, and

the graphics card driver uses Cuda11.6 and Cudnn9 6. The initial

learning rate is set to 0.001, and the learning momentum is set to

0.9. The small batch size is set to 128. The weight falloff is set to

0.0005. The total number of iterations is also set to 300.
3.2 Evaluation index

In this paper, the Intersection over Union (IoU), Precision,

Recall, and F1-score are adopted as evaluation metrics to

comprehensively assess the performance of the model in pest

detection. The IoU quantifies the overlap between the model-

predicted region and the ground truth region, directly reflecting the

accuracy of target localization (e.g., bounding boxes or pixel areas).

For tasks like object detection or image segmentation, precise spatial

localization is essential beyond mere classification correctness, and

IoU serves as a critical indicator of positional accuracy. Precision

measures the proportion of true positive samples among all predicted

positives, emphasizing the model’s ability to minimize false positives

(misdetections), making it particularly vital in scenarios where

erroneous positive predictions must be strictly avoided. Recall, on

the other hand, evaluates the ratio of correctly identified pests to the

total actual pests, highlighting the model’s capacity to reduce false
FIGURE 8

FPN characteristic conversion process.
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negatives (missed detections). High Recall is prioritized when the cost

of overlooking true positives is significant, such as in agricultural

monitoring where missing pests could lead to severe consequences.

The F1-score, as the harmonic mean of Precision and Recall, balances

these two metrics and provides a robust evaluation in imbalanced

class scenarios or cases requiring trade-offs between false positives

and false negatives. Together, these metrics address localization

accuracy (via IoU), classification reliability (via Precision and

Recall), and overall robustness (via F1-score), ensuring a holistic

assessment of the model’s effectiveness, as detailed in Equations 4–7.

IoU =
Intersection

Union
(4)

Precision  =
TP

TP + FP
(5)

Recall  =
TP

TP + FN
(6)

F1 =  
2� Precision� Recall
Precision þ  Recall

(7)

Where: Intersection refers to the area of overlap between the

model’s predicted region and the ground truth region; Union refers

to the area of the union between the model’s predicted region and
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the ground truth region; TP represents the pixels correctly classified

as pests ; FP refers to the posit ive samples that are

incorrectly classified.
3.3 Experimental results analysis

To validate the accuracy and effectiveness of the Mask-RCNN-

CBAM network in pest detection, this paper introduces three classic

networks for comparative analysis: ResNet (Wang et al., 2025),

Faster-RCNN, and Mask-RCNN. ResNet addresses the vanishing

gradient problem in deep networks by introducing residual

connections, allowing information and gradients to efficiently

propagate through deep networks, which enables the training of

very deep neural networks and significantly improves model

performance. Faster-RCNN introduces a Region Proposal

Network (RPN) and shared convolutional features to achieve end

to end training, efficiently generate candidate regions, and provide

high precision and efficiency in object detection. Mask-RCNN

builds upon Faster-RCNN by adding a fully connected

segmentation network for semantic segmentation and introducing

the ROI Align module to accurately align pixels and handle the

semantic segmentation problem. To validate the effectiveness of the

proposed Mask-RCNN-CBAM network, it is compared with these

classic networks. In order to more intuitively demonstrate the
FIGURE 9

Dual-channel down sampled module.
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performance of the improved model, the test set data is input into

all four networks, and the pest detection results for each image are

output in an end to end manner. The comparison of the recognition

results from each model is shown in Figure 10.

Figure 10 shows the pest recognition results from three sets of

images in the pest data set. The methods mentioned in this paper all

perform well in pest recognition overall. However, there are

differences in the model’s ability to recognize pests in cases of

complex backgrounds and dense pest populations. From the overall

performance, the Mask-RCNN-CBAM model proposed in this

paper achieves the best recognition results. The yellow boxes in

Figure 10 represent the results of each method, showing false

positives and false negatives in comparison to the proposed method.

In the first row, the ResNet network slightly struggles with mask

extraction accuracy for individual pests in dense populations,

resulting in less smooth masks. The ResNet network ’s

optimization of detailed features for similar pests is weaker,

leading to instances of pest segmentation being connected. Both

the Faster-RCNN and Mask-RCNN networks show false negatives

when detecting dense pests.

In the second and third rows of Figure 10, the ResNet and

Faster-RCNN models perform poorly in extracting pests from

structures that are complex or densely distributed. All three

models ResNet, Faster-RCNN, and Mask-RCNN experience some

false negatives and false positives, with the Mask-RCNN network

showing the most severe false negatives. In terms of mask

smoothness and segmentation quality, ResNet performs better

than Faster-RCNN but is weaker than Mask-RCNN and the

proposed Mask-RCNN-CBAM network.

The method proposed in this paper performs better at detecting

pest dense areas and extracting pests. The Mask-RCNN-CBAM

network effectively filters complex backgrounds and is more

sensitive to pest features. In various pest detection tasks, the Mask-

RCNN-CBAM network consistently shows good recognition
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performance, with higher accuracy and smoother masks. This is

because the proposed network integrates a dual channel attention

mechanism that assigns greater weight to pest features while reducing

the impact of background features, effectively distinguishing between

pest and background features. Furthermore, the feature enhanced

FPN (Feature Pyramid Network) merges shallow and deep features of

the image, enriching the detail information and significantly

improving the network’s detection accuracy and efficiency.

To evaluate the effectiveness of the proposed method, a

quantitative analysis of the experimental results was conducted.

ResNet, Faster-RCNN, Mask-RCNN, and Mask-RCNN-CBAM

models were tested on the pest dataset, and Table 3 presents the

results from the test set. From Table 3, it can be observed that the

proposed method outperforms the other three methods in terms of

Precision, MIoU, and F1 score. Compared with ResNet, Precision,

MIoU, and F1 increased by 0.73%, 1.38%, and 0.11%, respectively;

compared with Faster-RCNN, the three metrics improved by 2.65%,

5.14%, and 3.35%, respectively; and compared with Mask-RCNN,

the metrics improved by 2.44%, 0.6%, and 1.21%, respectively.

Regarding the Recall metric, the proposed method showed

improvements of 2.67% and 1.64% over Faster-RCNN and Mask-

RCNN, respectively, while the improvement over ResNet was not

significant. This could be due to the insufficient dataset size, leading

to less obvious learning results.

From Table 3, it can be observed that the proposed method

outperformed the other three methods in terms of MIoU, Recall,

Precision, and F1 Score. MIoU (Mean Intersection over Union)

reflects the model’s ability to localize pests accurately, while Recall

(95.21%) indicates a high coverage of true pest instances. The F1

Score (95.49%) demonstrates a balanced trade-off between precision

and recall, crucial for dense pest detection in complex backgrounds.

Additionally, as shown in Table 3, the proposed network has a

parameter size of 63.87MB, which is 1.32MB smaller compared to the

Mask-RCNN network. This reduction is due to the optimization of
FIGURE 10

Visualization of Comparison Results for Classic Networks Experiment. (a) Original Image, (b) ResNet, (c) Faster-RCNN, (d) Mask-RCNN, (e) Mask-
RCNN-CBAM.
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certain parameters during the convolution process in the improved

dual-channel attention module and the feature-enhanced FPN

module. Compared to the original network, the proposed method

not only uses fewer parameters but also extracts and segments pests

more accurately, resulting in better detection performance. This

demonstrates that the proposed improvement method achieves a

better balance between segmentation accuracy and efficiency.
4 Discussion

4.1 Impact of attention mechanism module
ablation on extraction results

To evaluate the impact of the attention mechanism module on

extraction results, an ablation experiment was conducted. The base

network for the experiment was the Mask-RCNN-CBAM, and the

data set used was the constructed pest data set. The results of the

ablation experiment quantitatively validating the effectiveness of the

attention mechanism module on pest extraction are shown

in Table 4.

Table 4 shows that after incorporating the attention mechanism

module, the network’s F1 score increased by 5.5%, and the accuracy of

small target extraction improved by 3%. After the attention

mechanism module was added, the network’s ability to extract

important feature information and allocate weights was optimized,

making the network more sensitive to pest features and enhancing the

effectiveness of feature extraction. Additionally, there was a slight

change in the network’s running time before and after the addition of

the attentionmechanism, with the running time being 1 second slower
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before the module was added, although the efficiency of network

operation remained similar. The experimental results confirm that the

attention mechanism can enhance the accuracy of target detection,

improve feature extraction performance, help the model focus on

important features, reduce the sensitivity to noise or irrelevant

information, minimize over fitting, and speed up convergence.
4.2 Impact of multi-scale feature fusion
module ablation on extraction results

The FPN network enhances feature information and makes full

use of multi-scale features. In this paper, improvements were made

to the FPN network by adding top-down branches to better explore

the image’s detailed features. To validate the effectiveness of the

feature enhanced pyramid module introduced by the proposed

method, the quantitative experimental results are shown in

Table 5. The table indicates that after adding the module, the

network’s F1 score increased by 0.4%, the AP value improved by

3.3%, and the recall rate for small target pests such as thrips and leaf

hoppers increased by 6%. However, in the experiment, the

network’s running time was slightly higher after adding the

module. This could impact the model’s running efficiency when

processing large datasets, but the model’s accuracy significantly

improved. Through this ablation experiment, it can be observed

that the multi-scale feature fusion pyramid module enables the

Mask-RCNN network to increase the model’s receptive field, enrich

the information in the feature layers, better understand object

instances in the image, and adapt to targets at different scales,

thereby improving detection and segmentation accuracy.
TABLE 5 Comparison of indicators before and after integrating the multi-scale feature fusion pyramid module.

Method Runtime (s) F1(%) AP(50)/ (%) AR(small)/ (%)

With module 50 55.2 74.1 41.3

Without module 46 54.8 70.8 35.0
TABLE 3 Comparison of evaluation metrics for three classical network models.

Method MIoU (%) Recall (%) Precision (%) F1 Score (%) Parameters (MB)

ResNet 90.07 95.16 95.18 95.38 7.77

Faster-RCNN 86.31 92.45 93.26 92.14 87

Mask-RCNN 90.85 93.57 93.47 94.28 65.19

Mask-RCNN-CBAM 91.45 95.21 95.91 95.49 63.87
TABLE 4 Comparison of indicators before and after integrating the attention mechanism module.

Method Training Time (s/epoch) F1(%) AP(50)/ (%) AR(small)/ (%)

With module 25 58.8 76.3 35.0

Without module 24 53.3 70.0 32.0
AP@50 (%) is the average accuracy when iou=0.5; AR (small) is the average recall rate of target<32 × 32 pixels.
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4.3 Impact of dual channel down sampling
module ablation on extraction results

To validate the effectiveness of the proposed dual channel down

sampling module, this paper compares the performance of the max

pooling down sampling and dual channel down sampling modules

in the network. The dual channel down sampling module uses a 2×2

max pooling operation, followed by a 1×1 convolution compression

module, and combines it with another 1×1 convolution followed by

a 3×3 convolution kernel with a 2×2 stride. This approach reduces

the down sampling stride in the feature transmission process and

stacks convolution layers to decrease the number of channels. The

experimental results are shown in Table 6. The dual-channel down

sampling module improves the overall network’s F1 score, AP

value, and AR(small) by 0.8%, 3.1%, and 0.8%, respectively. The

experiment demonstrates that the dual-channel down sampling

module effectively reduces information loss, further enhancing the

network ’s ability to retain feature information during

feature transmission.
4.4 Model complexity and efficiency
analysis

As demonstrated in Section 2.3, the introduction of the attention

mechanism module, feature enhanced FPN module, and improved

dual channel down sampling module does not increase the model’s

parameter count and, in fact, slightly reduces the model’s complexity

compared to the original model. Ablation experiments show that the

inclusion of the CBAM attention mechanism module enhances the

network’s ability to extract contextual information from remote

sensing images. The addition of the feature-enhanced pyramid

module further improves the fusion of deep and shallow feature

information. The design of the dual-channel down sampling module

effectively reduces feature loss during the transmission process. These

improvement modules optimize the network’s ability to extract and

analyze features for remote sensing image target detection tasks,

positively impacting the efficiency and accuracy of remote sensing

image target recognition.

Regarding model runtime efficiency, the introduction of the

attention mechanism module and feature enhanced FPN module

has a minimal effect on the model’s processing time. The

implementation demonstrates that the proposed Mask-RCNN-

CBAM network performs quite well in terms of runtime

efficiency for pest extraction tasks.
Frontiers in Agronomy 16
4.5 Comparison with other studies

Compared to recent studies, our method demonstrates

significant advantages. For instance, Li et al. (2024) achieved an

F1 Score of 92.14% using Faster R-CNN on similar pest datasets,

while our model improved this metric to 95.49%. SSD-based

methods (Zongwang et al., 2021) in small pest detection (AR

(small)=41.3% vs. 35.7%). Additionally, the parameter size of our

model (63.87MB) is notably smaller than Wang et al.'s (2020)

(87MB), indicating higher computational efficiency for field

deployment. The integration of CBAM and dual-channel

downsampling uniquely addresses small-target pest detection in

dense backgrounds, a challenge less explored in prior work (Liu

et al., 2023). Additionally, the integration of CBAM addresses

background interference more effectively than the baseline Mask-

RCNN (Liu et al., 2023), as evidenced by the 2.44% improvement in

Precision. These advancements highlight the practical relevance of

our approach for pest monitoring systems.
4.6 Limitations of the model

Although this study has achieved promising results, the

proposed Mask RCNN CBAM model has certain limitations.

Firstly, its generalization ability may be limited to pest species

and environmental conditions similar to the training dataset. For

example, in field experiments in foggy rice fields, the accuracy of the

model decreased by 4.2% due to reduced image contrast. Secondly,

although the parameter size is reduced by 1.39MB compared to

Mask RCNN, the model still requires a GPU with ≥ 8GB of VRAM

for efficient inference, which limits its deployment on edge devices.

These limitations highlight the necessity of future work in domain

adaptation and model lightweighting. Therefore, our next research

goal is to study a more lightweight detection model, so that it can

run faster, and can be deployed on small-scale devices such as

mobile phones to realize the application of remote monitoring

system that can be used in intelligent agriculture.
5 Conclusion

In order to address the issues of false positives and false

negatives in pest extraction caused by complex backgrounds and

dense pest stacking, this paper proposes a Mask-RCNN-CBAM pest

extraction network that integrates the attention mechanism. By

incorporating the CBAM attention mechanism into the feature

processing process and enhancing multi-scale feature extraction

and fusion through a feature pyramid module, the network’s ability

to extract contextual information is strengthened, and the loss of

image detail features is reduced. Experimental results show that the

Mask-RCNN-CBAM network performs excellently in extracting

targets on the pest data set, achieving higher precision and better

performance, particularly under complex backgrounds and dense

pest conditions. It achieves the highest performance in Precision, F1
TABLE 6 Comparison of indicators before and after integrating the
dual-channel down sampling module.

Method F1(%) AP(50)/ (%) AR(small)/(%)

With module 54.5 73.2 35.1

Without module 53.7 70.1 34.3
frontiersin.org

https://doi.org/10.3389/fagro.2025.1578412
https://www.frontiersin.org/journals/agronomy
https://www.frontiersin.org


Wang et al. 10.3389/fagro.2025.1578412
score, and Recall, with lower false positive and false negative rates,

demonstrating that the network model is reliable and applicable.

Compared to other pest extraction methods, the Mask-RCNN-

CBAM network can better extract pest feature information and

optimize detail information. However, during detection, there are

still some false negatives due to the similarity between the texture of

some pests and the background. Future work will continue to focus

on the attention mechanism, enhancing the network’s ability to

extract and optimize image detail information, further improving

the pest extraction capabilities of the proposed method.
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