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The increasing global population has intensified the demand for food production,

both in quantity and quality. To meet this challenge and prevent crop diseases,

chemical pesticides have been widely used. However, their negative effects on

human health and the environment have driven the search for sustainable

alternatives. In this context, microbial-based biopesticides, particularly

Trichoderma and Bacillus, have emerged as key biocontrol agents in

agroecosystems. This review provides a comprehensive overview of their

agricultural significance, focusing on their mechanisms of action, efficacy, and

biotechnological advancements aimed at optimizing their performance.

Trichoderma spp. act primarily through mycoparasitism, nutrient competition,

and antibiosis, while Bacillus spp. employ mechanisms such as lipopeptide

production, lytic enzymes, siderophores, and the activation of induced

systemic resistance (ISR). Unlike traditional reviews that primarily describe their

biological functions, this work offers a structured framework for their application,

addressing key factors such as selection criteria for effective biocontrol agents,

formulation strategies, product stability, viability, and regulatory challenges in

commercial agriculture. Additionally, recent studies on genetic enhancement,

including CRISPR-based modifications, are examined to improve their

adaptability, metabolic activity, and effectiveness in pathogen control across

diverse agricultural systems. By integrating biological, technological, and

practical perspectives, this review aims to bridge the gap between scientific

advancements and real-world agricultural applications, contributing to the

development of scalable and sustainable disease management strategies.
KEYWORDS

beneficial microorganisms, biological control agents, biopesticides, crop
protection, sustainability
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1 Introduction

Agriculture has been a fundamental pillar in the social and

economic transformation of countries, particularly in developing

nations, where it plays a crucial role in ensuring food security and

contributing significantly to the economy. However, the prolonged

use of agrochemicals has led to serious consequences for the

environment, soil health, and human well-being, making the need

for more sustainable alternatives ever more pressing (Zhao et al.,

2020). According to the World Health Organization (WHO, 2022),

over 1,000 pesticides are used worldwide, many of which

accumulate in the adipose tissue of organisms, posing risks to

both health and the environment (Souza, 2016; Zhang et al.,

2019). Although pesticides are necessary for crop protection and

food security, their inappropriate or excessive use can lead to

serious consequences (Beyuo et al., 2024). These include the

negative impact on non-target organisms, such as pollinators and

beneficial species that naturally control pests (Elhamalawy et al.,

2024), as well as the promotion of pest resistance, which

complicates pest control and increases production cost (Kumar

Chaube and Pandey, 2022).

In the face of these challenges, it is fundamental to explore

alternatives such as Integrated Pest Management (IPM), which

integrates biological control agents (BCAs) such as bacteria, fungi,

and viruses (Thomine et al., 2022). Recent advancements in pesticide

application technologies, such as precision application systems, allow

for more accurate dosing, reducing pesticide use and minimizing

environmental impact (Anastasiou et al., 2023). Furthermore, the

increasing pressure from consumers and international organizations

for clean food production has spurred the search for innovative

solutions that minimize the harmful effects of agrochemicals

(Thilagam et al., 2023). An example is the global commitment to

achieving sustainable agriculture by 2050, aligned with the

Sustainable Development Goals (SDGs) (Blazhevska, 2019).

In this context, BCAs have emerged as a promising solution to

reduce dependence on synthetic pesticides and minimize their

environmental impact (Damalas and Koutroubas, 2018). Notably,

the genera Trichoderma and Bacillus have gained considerable

attention due to their ability to suppress pathogens and promote

plant growth naturally (Tyagi et al., 2024). These microorganisms

employ several mechanisms to protect plants, including nutrient

competition, production of antibiotic metabolites, induction of

systemic resistance (ISR) in plants, and competition for space in

the soil (Poveda, 2021; Prasad et al., 2023).

This article provides a comprehensive review of the potential of

Trichoderma spp. and Bacillus spp. as BCAs, analyzing their

mechanisms of action, selection processes, and the challenges

associated with their formulation and large-scale implementation.

The effectiveness of these microorganisms is influenced by various

factors, including environmental conditions, proper formulation,

and the selection of specific strains with desirable characteristics

(Naamala and Smith, 2020). By reviewing the latest scientific

literature, this paper aims to provide a holistic view of how these

microorganism function in modern agriculture, highlighting their

successes and the challenges that must still be overcome to ensure
Frontiers in Agronomy 02
their widespread adoption in sustainable agricultural systems.

Moreover, this review compiles a list of biological products

currently available on the Ecuadorian market (Supplementary

Materials), offering valuable insights into the practical application

of BCAs in deifferent agricultural contexts. This information can

help guide future efforts in integrating these biocontrol solutions

more broadly into farming practices, contributing to a shift toward

more environmentally sustainable agriculture.
2 Trichoderma and Bacillus in
agriculture

The use of microorganisms in agriculture has gained significant

attention as environmentally friendly alternatives to chemical

pesticides. These microorganisms include bacteria, fungi, viruses,

and protozoa, that enhancing plant health and performance.

Various studies have highlighted the effectiveness of bacteria such

as Rhizobium, Azospirillum, Azotobacter, Burkholderia, Klebsiella,

Bacillus, and Pseudomonas in agricultural applications (Alizadeh

et al., 2020). Also, endophytic microorganisms, which live inside

plants without causing harm, are also part of the plant growth-

promoting (PGP) group. Among endophytic fungi, species like

Penicillium sp., Guignardia mangiferae, Hypocrea sp., Neurospora

sp., Eupenicillium javanicum, Lasiodiplodia theobromae, and

Trichoderma sp. have proven effective in inhibiting Fusarium

oxysporum f.sp. cucumerinum, the principal causal agent of stem

rot in cucumber under greenhouse conditions (Abro et al., 2019).

Among these agents, fungi such as Trichoderma spp. and bacteria

such as Bacillus spp. enhancing soil health, promoting plant growth,

and controlling plant pathogens (Alizadeh et al., 2020).

Trichoderma is a filamentous fungus present in the rhizosphere

and roots (Ghorbanpour et al., 2018; Jaroszuk-ściseł et al., 2019).

According to the MycoBank classification, the Hypocrea/

Trichoderma includes more than 300 species characterized both

molecularly and morphologically (Tamandegani et al., 2020). These

fungi colonize plant roots and produce metabolites with

antimicrobial properties, contributing to plant health (Tyśkiewicz

et al., 2022). Trichoderma spp. can degrade toxic contaminants like

herbicides and fungicides through enzymatic processes that break

down cellulose and lignin (Escudero-Leyva et al., 2022). Trichoderma

species are renowned for their antagonistic activities against various

fungal pathogens, including F. oxysporum, Botrytis cinerea,

Rhizoctonia solani, and Alternaria alternata (Es-Soufi et al., 2020).

T. asperellum and T. harzianum are frequently noted for their ability

to inhibit the growth of Fusarium spp. through the production of

hydrolytic enzymes and growth inhibition mechanisms (Vargas-

Hoyos and Gilchrist-Ramelli, 2015; Miguel-Ferrer et al., 2021).The

wide array of enzymes, including exo- and endo-b-glucanases and
proteases, which degrade the structural components of the pathogen’s

cell walls, further facilitating colonization (Alizadeh et al., 2020). In

comparison, T. spirale and T. atroviride excel in antibiosis and the

production of extracellular metabolites, which suppress pathogens

like Corynespora cassiicola and Spodoptera frugiperda, respectively

(Contreras-Cornejo et al., 2018; Baiyee et al., 2019).
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Economically, applying Trichoderma has led to reduced

pesticide usage, decreased crop losses, and potentially higher

yields, offering a cost-effective solution for sustainable farming,

especially in developing countries (Morales-Mora et al., 2020;

Martıńez-Salgado et al., 2021). The data presented in Table 1

illustrates Trichoderma’s significant role in controlling numerous

economically important pathogens across various crops, including

tomatoes, wheat, maize, and avocados.

On the other hand, Bacillus spp. is recognized for promoting

plant growth, enhancing soil fertility, and serving as a biocontrol

agent. These Gram-positive, aerobic bacteria produce bioactive

compounds that support plant health and reduce pathogen

pressure (Etesami et al., 2023). Bacillus subtilis exhibits antifungal

properties attributed to metabolites like surfactin, iturin, and

fengycin (Méndez-Úbeda et al., 2018; Chen et al., 2021). They

also act as biofertilizers or biostimulators by facilitating nutrient

uptake and producing plant hormones (Dimopoulou et al., 2021).

Integrating Bacillus strains into agricultural practices has led to

reduced reliance on chemical pesticides and supported sustainable

farming methods.

The selection of Trichoderma and Bacillus species for

agricultural use requires careful consideration of factors such as

their ability to produce effective metabolites, efficiency in nutrient

acquisition, and stability under varying environmental conditions

(Silva et al., 2019). Both genera offer distinct advantages for different

agricultural systems, with Trichoderma providing broad-spectrum

biocontrol against fungal pathogens and Bacillus contributing to

disease management and plant growth promotion. Their

integration into farming practices can lower production costs,

enhance soil health, and improve overall crop productivity

(Martıńez, 2021). Table 2 highlights the effectiveness of different

Bacillus spp. in managing plant diseases across various crops,

underscoring their importance in sustainable agriculture.
3 Mechanism of action of
Trichoderma spp.

As mentioned, BCAs offer significant benefits to the agricultural

sector. However, their effective application depends on a thorough

understanding of each microorganism’s specific mechanism of

action. This lack of clarity can raise concerns among farmers about

whether the selected microorganism is truly appropriate for their

needs. To address this issue, this section provides farmers and

policymakers with a detailed description of the mechanisms of

action of Trichoderma spp. The key biocontrol strategies that

Trichoderma spp. develops in direct conflict with fungal pathogens,

such as mycoparasitism, competition, and antibiosis (Figure 1).
3.1 Mycoparasitism

Trichoderma spp. employs a dual strategy to degrade the

pathogen’s cell wall: enzymatic degradation and secondary

metabolite production. It secretes extracellular enzymes such as
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chitinases, glucanases, and proteases (Cortés Hernández et al.,

2023), breaking down structural components of the pathogen’s

hyphae. In addition, bioactive compounds like peptaibols and

gliotoxins further weaken the pathogen, enhancing penetration

and colonization (Leiva et al., 2020; Pimentel et al., 2020). For

example, T. asperellum produces chitinases and cellulases that

significantly affect F. oxysporum in Stevia rebaudiana (Dıáz-

Gutiérrez et al., 2021). Similarly, T. virens has demonstrated

effectiveness against R. solani, with electron microscopy revealing

structural changes such as protuberances, coiling, and cell wall lysis

(Inayati et al., 2020). Additionally, hyphal interactions between T.

virens and Sclerotium rolfsii have been documented where T. virens

acts targets sclerotia and conidia within the host fungal tissue

(Mukherjee et al., 2022).
3.2 Competition for nutrients and space

Trichoderma spp. exerts biocontrol through competition by

effectively competing with pathogens for limited resources such as

space, nutrients, water, and light (Khan et al., 2020). Its rapid

growth allows it to efficiently consume nutrients, such as

carbohydrates, nitrogen, and oxygen, reducing their availability

for pathogens (Hariharan et al., 2022). This ability to quickly

colonize decreases the amount of nutrients accessible to

phytopathogenic fungi, contributing to their control (Cortés

Hernández et al., 2023).

Additionally, Trichoderma spp. colonizes the plant rhizosphere,

forming a protective layer around the roots and preventing

pathogen establishment (Basińska-Barczak et al., 2020; Oszust

et al., 2020). T. harzianum has a growth rate 2.0 to 4.2 times

faster than B. cinerea (Risoli et al., 2022), T. viride competes with

Fusarium graminearum, the causative agent of fusariosis in cereals,

through mechanisms such as adhesion, entanglement, and

interpenetration of its hyphae, damaging the structures of F.

graminearum with enzymes like chitinases and glucanases

(Dugassa et al., 2021).

The competition for nutrients between Trichoderma spp. and

plants can be significant, particularly in soils with low levels of

nitrogen, phosphorus, or potassium. Under these conditions,

Trichoderma spp. may deplete essential resources before plants

can absorb them, which is especially concerning in degraded soils

or those with poor fertilization management (Pedraza et al., 2020).

Additionally, excessive application of Trichoderma spp. can lead to

high concentrations in the soil, intensifying competition with plant

roots and potentially hindering early growth (Sood et al., 2020).

Environmental stress factors such as drought or salinity further

influence this competition, limiting nutrient availability and

reducing the efficiency of beneficial symbioses, such as those with

mycorrhizal fungi (Xiao et al., 2023). Moreover, in soils with high

microbial activity, Trichoderma may compete with other beneficial

microorganisms for space and resources, potentially disrupting the

soil microbiota and indirectly affecting plant health.

To mitigate these challenges, several strategies have been

proposed. First, co-applying Trichoderma spp. with plant growth-
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promoting bacteria (PGPB) helps balance nutrient competition

while maintaining its biocontrol efficacy (Pedraza et al., 2020).

Second, using controlled-release formulations, such as encapsulated

systems, enables a gradual release of Trichoderma spp., preventing
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excessive competition in the early stages of plant development and

promoting a more stable soil establishment (Mukherjee et al., 2022).

Additionally, optimizing fertilization practices ensures adequate

levels of essential nutrients, reducing competition and allowing
TABLE 1 Plant pathogenic fungi controlled by different strains of Trichoderma.

Crop Pathogen Strain-Trichoderma Mechanism
of action

References

Tomato
(Solanum
lycopersicum)

Fusarium sp. T. asperellum Growth inhibition
Hydrolytic enzymes

(Vargas-Hoyos and
Gilchrist-Ramelli, 2015)

Wheat
(Thriticum spp.)

F. culmorum, F. oxysporum,
F. graminearum

Trichoderma sp. Mycoparasitism (Jaroszuk-s ́ciseł et al., 2019)

Chili pepper
(Capsicum annum L.)

Colletotrichum truncatum T. harzianum
T. asperellum

Systemic Resistence (Yadav et al., 2021)

Tomato
(S. lycopersicum)

F. oxysporum f. sp. lycopersici T. asperellum Antagonism (Mahmoud et al., 2015)

Lettuce (Lactuca
sativa L.)

Corynespora cassiicola, Curvularia aeria T. spirale Antibiosis
(extracellular metabolites)

(Baiyee et al., 2019)

Maize (Zea mays) Spodoptera frugiperda T. atroviride Hydrolytic enzymes (Contreras-Cornejo
et al., 2018)

Jamaica (Hibiscus
sabdariffa L.)

Phytophthora parasıt́ica, F. oxysporum Trichoderma spp. Mycoparasitism (Alejandro et al., 2019)

Chili (C. annum) Fusarium solani T. harzianum Mycoparasitism (Miguel-Ferrer et al., 2021)

Manzano chili
(Capsicum pubescens)

Phytophthora capsici T. harzianum Growth inhibition (Valencia et al., 2021)

Onion (Allium cepa) Fusarium sp. T. harzianum Growth inhibition (Martıńez-Salgado
et al., 2021)

Avocado
(Persea americana)

Phytophthora cinnamomi T. asperellum, T. hamatum, T.
koningiopsis, T. harzianum

Biocontrol (Andrade-Hoyos
et al., 2020)

Onion (A. cepa) Alternaria porri T. asperellum Defense
response induction

(Camacho-Luna
et al., 2021)

Strawberry
(Fragaria spp.)

A. niger, Colletotrichum sp., R. stolonifera T. harzianum Antagonism (Morales-Mora et al., 2020)

Nopal (Opuntia
ficus-indica)

Pythium sp., Fusarium sp.,
Colletotrichum sp.

T. harzianum, T. viride, T.
atroviride, T. hamatum

Antagonism (Valencia De Ita
et al., 2020)

Maize (Z. mays) Sporisorium reilianum Trichoderma spp. Bioestimulant (Landero Valenzuela
et al., 2019)

Wheat
(Thriticum spp.)

F. pseudograminearum T. afroharzianum, T. harzianum,
T. gamsii

Biocontrol (Stummer et al., 2020)

Melon (Cucumis melo) F. oxysporum, F. solani T. asperellum Antagonism (Espinoza Ahumada
et al., 2019)

Tomato
(S. lycopersicum)

F. oxysporum, B. cinerea T. asperellum Biocontrol (Herrera-Téllez et al., 2019)

Chili pepper
(Capsicum annum L.)

C. truncatum T. harzianum, T. asperellum Induction of Plant
Resistance in Response

(Saxena et al., 2020)

Soft Fruit Colletotrichum sp., Botrytis sp.,
Verticillium sp., Phytophthora sp.

Trichoderma spp. Competition for Nutrients
and Space

(Oszust et al., 2020)

Wheat
(Thriticum spp.)

F. culmorum, F. oxysporum,
F. graminearum

Trichoderma sp. Mycoparasitism (Jaroszuk-s ́ciseł et al., 2019)

Groundnut
(Arachis hypogaea)

Sclerotium rolfsii T. virens Hydrolytic enzymes (Hirpara et al., 2017)
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Trichoderma spp. to function effectively as a biocontrol agent

without compromising plant growth (Xiao et al., 2023). Finally,

selecting Trichoderma strains adapted to specific soil conditions and

crop nutritional needs enhances pathogen suppression while

minimizing negative effects on plant nutrient uptake (Baker

et al., 2020).
3.3 Antibiosis

Trichoderma spp. produce a wide range of secondary

metabolites with antimicrobial properties that inhibit the growth

of pathogens (Masi et al., 2018). These compounds include

peptaibols, polyketides, and terpenes (Cortés Hernández et al.,

2023). T. virens produces trichodermamides, while T. koningii

synthesizes koniginins, both of which exhibit antimicrobial

activity against pathogens such as R. solani, F. oxysporum,

Verticillium dahliae, and B. cinerea (Manganiello et al., 2018). T.

atroviride produces the volatile compound 6-pentyl-2H-pyran-2-

one (6-PP), which not only promotes plant growth but also

regulates sugar transport in the roots of Arabidopsis (Esparza-

Reynoso et al., 2021) and T. viride synthesizes trichotoxins A and

B, tricodecenins, tricorovins, and tricocelins (Khan et al., 2020).

Among the bioactive compounds, Trichoderma also produces

growth hormones such as auxins, cytokinins, and gibberellins,

which stimulate plant development and overall growth (Estrada-
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Rivera et al., 2019). It activates ISR, enhancing the plant’s defense

mechanisms against pathogens. Trichoderma’s ability to induce ISR

in plants such as chili peppers and tomatoes against Colletotrichum

truncatum and F. oxysporum (Yadav et al., 2021) strengthens the

plant’s defense system, providing long-term protection beyond

direct antagonism. T. asperellum is particularly effective in

controlling Fusarium spp. and inducing ISR, especially in

tomatoes and onions (Camacho-Luna et al., 2021). Strains like T.

asperellum are known to improve nutrient uptake, particularly

phosphorus, by solubilizing ions that are typically inaccessible in

many soils (Bononi et al., 2020). This nutrient solubilization,

combined with ISR, enhances the plant’s overall health, making it

more resistant to both biotic and abiotic stresses. Another

mechanism associated with the use of Trichoderma is its ability to

produce antimicrobial compounds, lignify cell walls, and activate

signaling pathways such as jasmonic acid (JA) and ethylene (ET),

which are essential for the plant’s response to biotic stress (Alizadeh

et al., 2020).

Together, the multiple mechanisms of action of Trichoderma

from the production of antimicrobial compounds to the

stimulation of induced defenses and the optimization of plant

nutrition not only make it a highly effective biocontrol agent but

also reduce reliance on synthetic agrochemicals. This promotes

more sustainable agriculture by minimizing environmental

impact and enhancing crop resilience against diseases and

adverse conditions.
FIGURE 1

Biocontrol mechanisms used by Trichoderma spp. against plant pathogenic microorganisms.
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4 Mechanisms of action of Bacillus
spp.

The main mechanisms of action of the Bacillus genus are

production of lipopeptides, lytic enzymes, siderophores and

induced systemic resistence (Figure 2).
4.1 Production of lipopeptides

Lipopeptides synthesized by species of the genus Bacillus, such

as B. subtilis, B. amyloliquefaciens, and B. velezensis, are classified
Frontiers in Agronomy 06
into three main families: surfactins, iturins, and fengycins (Rabbee

et al., 2019). These Bacillus-derived lipopeptides play crucial roles in

both plant protection and growth promotion (Wang et al., 2024).

They exhibit potent antifungal properties, effectively controlling a

wide range of plant pathogens, including Monilinia fructicola,

Fusarium spp., B. cinerea, Alternaria spp., and Colletotrichum

gloeosporioides. They also induce systemic resistance in plants and

promote biofilm formation, thereby enhancing rhizosphere

antibacterial activity (Huang et al., 2019; Malviya et al., 2020).

The effectiveness of these lipopeptides can be attributed to their

unique physicochemical properties. They disrupt lipid bilayers,

reduce surface tension, and cause alterations in pathogen cell

membranes. This disruption leads to the formation of pores,
TABLE 2 Plant pathogenic fungi controlled by different strains of Bacillus.

Crop Pathogen Strain - Bacillus Mechanism of action References

Potato
(Solanum tuberosum)

Fusarium sp. B. subtilis Antagonism (Méndez-Úbeda
et al., 2018)

Passion fruit
(Passiflora edulis)

F. solani B. subtilis Biocontrol (Chen et al., 2021)

Maize (Z. mays) Cephalosporium maydis B. subtilis Siderophore production (Ghazy and El-
Nahrawy, 2021)

Rice (Oryza sativa) Rhizoctonia solani B. subtilis Antagonism
Biocontrol

(Ghazy and El-
Nahrawy, 2021)

Potato (S. tuberosum) Phytophthora infestans,
F. oxysporum

B. subtilis Growth inhibition (Lastochkina et al., 2020)

Soybean (Glycine max) Phytophthora sojae B. subtilis,
B. amyloliquefaciens

Biocontrol (Liu et al., 2019)

Tomato (S. lycopersicum) B. cinerea,
Cladosporium fulvum

B. subtilis Biocontrol (Wang et al., 2018)

Pistachio (Pistacia vera) Aspergillus parasiticus B. subtilis,
B. amyloliquefaciens

Growth inhibition (Siahmoshteh et al., 2017)

Maize (Z. mays) Rhizomucor variabilis B. amyloliquefaciens Lipopeptide Production (Kulimushi et al., 2017)

Cucurbits Sphaerotheca fuliginea B. amyloliquefaciens Systemic resistance (Li et al., 2015)

Tobacco
(Nicotiana tabacum)

R. solani,
Phytophthora nicotianae

B. subtilis Induces Systemic Resistance (Kim et al., 2015)

Citrus fruit Penicillium digitatum B. megaterium Antagonism (Mohammadi et al., 2017)

Wheat (Thriticum spp.) Stagonospora nodorum B. subtilis Antimicrobial metabolites (Maksimov et al., 2020)

Turnip
(Brassica campestris)

S. sclerotium, Plutella xylostella B. thuringiensis Systemic Resistance (Wang et al., 2020)

Tomato (S. lycopersicum)
Soybean (Glycine max)

Phytophthora sojae
Ralstonia solanacearum

B. velezensis Antimicrobial metabolites (fengycin,
iturin, bacillomycin)

(Yu et al., 2023)

Rice (Oryza sativa) Xanthomonas oryzae B. atrophaeus,
B. cabrialesii

Antagonistic Activity (Rajer et al., 2022)

Rice (Oryza sativa) Aphelenchoides besseyi B. thuringiensis Antagonistic Activity (Liang et al., 2022)

Wheat (Thriticum spp.)
Maize (Z. mays)

F. graminearum,
F. verticillioides

B. subtilis Antagonistic Activity (Yu et al., 2021a)

Wheat (Thriticum spp.) F. graminearum B. atrophaeus Biocontrol (Zubair et al., 2021)

Tomato (S. lycopersicum) S. sclerotium B. amyloliquefaciens Induce Systemic Resistance (Farzand et al., 2019a)

Rapeseed
(Brassica napus)

S. sclerotium B. amyloliquefaciens Antifungal Activity (Farzand et al., 2019b)
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osmotic imbalance, and, ultimately the death of phytopathogenic

microorganisms (Saiyam et al., 2024). Furthermore, Bacillus-

derived lipopeptides stimulate plant defense mechanisms by

activating systemic acquired resistance (SAR) and ISR, thereby

boosting plant immunity (Valenzuela Ruiz et al., 2024).

Among the various lipopeptides, iturins, particularly Iturin A,

are known for their ability to disrupt fungal plasma membranes.

This action effectively controls plant pathogens and even extends

the shelf-life of fruit juices, offering a natural alternative to chemical

preservatives (Shi et al., 2018). Surfactins, which are biosurfactants

produced by Bacillus spp., help form protective biofilms that inhibit

microbial growth, making them valuable for reducing fruit and

vegetable decay (Huang et al., 2019). Fengycins, including types A,

B, and C, also demonstrate broad-spectrum antimicrobial activiy,

inhibiting the growth of both pathogenic bacteria and fungi (Mnif

and Ghribi, 2015).

Through the production of antimicrobial compounds, Bacillus

spp. exhibit antagonistic mechanisms against various plant

pathogens. For instance, B. amyloliquefaciens has shown strong

antifungal properties against Rhizomucor variabilis in maize

(Kulimushi et al., 2017), Similarly, B. subtilis produces

antimicrobial mycosubtilin, which effectively controls F.

graminearum in wheat and maize, while B. velezensis produces

fengycin, iturin, and bacillomycin, which control Phytophthora

sojae and Ralstonia solanacearum in soybean and tomato (Yu

et al., 2021a).

In the case of Sclerotinia sclerotiorum, B. amyloliquefaciens

suppresses its growth through the production of fengycin,

inducing systemic resistance in crops such as rapeseed and
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tobacco (Farzand et al., 2019b). This highlights the importance of

selecting the appropriate Bacillus spp. for specific pathogen control,

as different strains produce distinct bioactive compounds with

varying efficacy. The diversity of lipopeptide producing Bacillus

spp. thus offers a valuable tool for integrated pest management and

sustainable agriculture.
4.2 Production of lytic enzymes

Bacillus spp. produce various lytic enzymes, such as chitinases,

b-glucanases, and proteases, which contribute to the biological

control of phytopathogens. Their mechanism of action involves

disrupting the structural integrity of pathogens cell walls by

hydrolyzing specific components, ultimately leading to their

disintegration (Hakim et al., 2021). These enzymes achieve this by

breaking the glycosidic linkages that bind the structural polymers of

the cell wall (Santoyo et al., 2021; Ajuna et al., 2023).

Among these enzymes, chitinases have gained significant

attention due to their ability to degrade chitin, a component of

the fungal cell wall, without harming the host plant (Kumar et al.,

2018). Similarly, b-glucanases catalyze the breakdown of b-glucans,
polysaccharides present in the cell walls of certain phytopathogenic

fungi such as F. oxysporum (Won et al., 2018). Notably, these

enzymes not only degrade fungal cells but also enhance Bacillus spp.

competitiveness in the soil. Besides, the released glucan fragments

can trigger plant defense responses, such as ISR and the production

of phytoalexins. For instance, B. amyloliquefaciens FS6 produces a

b-1,3-1,4-glucanase with antimicrobial activity against Alternaria
FIGURE 2

Biocontrol mechanisms used by Bacillus spp. against plant pathogenic microorganisms.
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panax and B. cinerea (Wang et al., 2021). Likewise, B. velezensis CE

100 synthesizes chitinase and b-1,3-glucanase, which degraded

fungal cell walls and effectively inhibit the mycelial growth of M.

phaseolina and F. oxysporum f. sp. fragariae, causal agents of

charcoal rot and Fusarium wilt in strawberries b-1,3-glucanase
(Hong et al., 2022). In addition to chitinases and b-glucanases,
Bacillus spp. produces proteases, which catalyze the breakdown of

peptide bonds in proteins, facilitating the degradation of fungal cell

wall proteins (Rosazza et al., 2023). Beyond their antimicrobial

function, these enzymes contribute to plant nutrition and may

activate additional defense responses (Gray et al., 2019). An

example of this is B. subtilis B315, which effectively reduced

bacterial wilt in chili plants by 60.89% (Prihatiningsih et al., 2021).
4.3 Production of siderophores

Bacillus spp. is well known for its ability to produce

siderophores, a variety of compounds in their competition for

nutrients (Prasad et al., 2023). These molecules sequester ferric

iron (Fe³+), giving Bacillus a competitive advantage over

phytopathogens that lack siderophore production (Martıńez-

Canto et al., 2021). Notably, various Bacillus spp., including B.

subtilis, B. pumilus, B. cereus, B. licheniformis, B. amyloliquefaciens,

B. velezensis, B. thuringiensis, B. halodenitrificans, B. mojavensis,

and B. atrophaeus, are known to produce siderophores, making

them effective biocontrol agents against multiple phytopathogens

(Andrić et al., 2020).

Several studies have demonstrated that siderophore-producing

Bacillus strains can reduce the incidence of diseases caused by

Fusarium spp. and R. solani in various plant species (Shafi et al.,

2017; Dimopoulou et al., 2021). For instance, B. amyloliquefaciens

synthesizes the catecholate siderophore bacilibactin under iron-

limiting conditions, which effectively inhibits the growth of

Pseudomonas syringae pv. tomato both in vitro and in plants

(Nikolić et al., 2019). Similarly, B. subtilis MF497446 produces

siderophores that not only restrict pathogen growth but also

enhance resistance to Cephalosporium maydis in maize (Ghazy

and El-Nahrawy, 2021).
4.4 Induced systemic resistence

Refers to a plant defense mechanism activated after interaction

with specific microorganisms, such as Bacillus spp. This interaction

triggers biochemical and molecular responses, involving the

activation of jasmonic acid (JA), salicylic acid (SA), and ethylene

(ET) signaling pathways (Shafi et al., 2017). Among the key ISR

elicitors produced by Bacillus, cyclic lipopeptides (CLPs), N-alkylated

benzylamine derivatives (NABD), and pyoverdines stand out. These

compounds enhance plant immunity by activating defense

mechanisms, thereby increasing resistance against various

pathogens without exerting direct antimicrobial effects.

Several studies highlight the effectiveness of Bacillus in inducing

ISR. For instance, B. thuringiensis enhances systemic resistance in
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soybean plants against Phytophthora sojae, strengthening defenses

not only in the roots but throughout the entire plant (Basu et al.,

2021). Similarly, B. velezensis PEA1 exhibits both antifungal and

antiviral properties, effectively suppressing F. oxysporum and

cucumber mosaic virus (CMV) in Datura stramonium leaves

(Abdelkhalek et al., 2020). Furthermore, B. subtilis SL18r reduces

foliar damage in tomato plants caused by Botrytis cinerea, a benefit

attributed to its ability to activate the expression of a long non-

coding RNA associated with defense pathways (Zhou et al., 2021).

The versatility of Trichoderma spp. and Bacillus spp. in their

mechanisms of action underscores their potential as effective

biocontrol agents within sustainable agriculture. Both genera

exhibit a multifaceted approach to pathogen suppression,

employing strategies such as direct antagonism through the

production of antimicrobial compounds, competition for

nutrients and space, and the activation of plant defense

mechanisms. Notably, Bacillus spp. has shown superior

adaptability in iron-limited environments through siderophore

production, whereas Trichoderma spp. excels in mycoparasitism

through enzymatic degradation of pathogen cell walls.

Comparatively, Bacillus spp. tends to provide more immediate

and widespread antimicrobial effects due to its production of

various bioactive metabolites, including surfactins, iturins,

fengycins, and siderophores. These compounds exhibit broad-

spectrum activity against bacteria, fungi, and viruses, enhancing

their utility across diverse agricultural systems. However,

Trichoderma spp. is particularly effective in directly parasitizing

phytopathogenic fungi through chitinase and glucanase activity,

mechanisms that are often strain-specific but highly efficient when

appropriately matched to the target pathogen. In adittion, while

both microorganisms induce plant systemic resistance, the

pathways activated differ slightly; Trichoderma spp. is more

frequently associated with jasmonic acid and ethylene signaling,

whereas Bacillus spp. often involves salicylic acid pathways as well.

The successful implementation of Trichoderma spp. and Bacillus

spp. in agricultural systems requires careful consideration of their

distinct mechanisms of action and environmental compatibility.

Various factors, including soil composition, crop type, pathogen

species, and climatic conditions, influence the efficacy of

Trichoderma spp. and Bacillus spp. Moreover, the interaction

between these biocontrol agents and native soil microbiota can

significantly impact their performance. Farmers and policymakers

must be aware that the indiscriminate or inappropriate application of

these agents may yield inconsistent results or even counterproductive

outcomes. Therefore, promoting an integrated approach that

considers the specific attributes of each microorganism, supported

by empirical evidence and tailored to local agricultural conditions,

is important for optimizing their biocontrol potential. Ensuring the

successful adoption of Trichoderma spp. and Bacillus spp. as

biocontrol agents demands comprehensive research, clear

guidelines, and educational efforts to inform practitioners about the

conditions under which these microorganisms are most effective.

Without such a nuanced understanding, their potential benefits may

remain underutilized, compromising the progress toward more

sustainable agricultural practices.
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5 Laboratory scale, industrial scale-up,
patents, and regulatory

The development of microbial fungicides follows a structured

process to ensure their efficacy and safety in pest or disease control.

The first step is identifying the target pathogen, which requires a deep

understanding of its biology, life cycle, and environmental conditions

that favor its proliferation (Basu et al., 2021). Once identified, a

thorough review of previous studies is conducted to select

microorganisms with proven effectiveness against the pathogen.

After selecting potential BCAs, they are isolated and cultured in

the laboratory, where their efficacy is evaluated under controlled

conditions. This evaluation considers various mechanisms of action

to determine their potential (Zandi and Basu, 2016). For instance, it

is important to assess the specificity of the BCA to ensure it does not

affect non-target organisms, especially beneficial ones. Laboratory

and field tests further validate their ability to reduce pest

populations or disease severity (Jangir et al., 2021). Furthermore,

compatibility with the agricultural environment, including climate,

crop types, and agronomic practices, must be considered to enhance

field performance (Teixidó et al., 2022).

Once a suitable BCA is identified, production begins through

fermentation methods, primarily submerged fermentation (SMF) or

solid-state fermentation (SSF) (Teixidó et al., 2022). SMF is

preferred for bacteria and yeasts due to its high yield, ease of

nutrient control, and cost-effectiveness. In contrast, SSF is more

suitable for filamentous fungi, which struggles to sporulate in liquid

media. To optimize fermentation, key parameters such as

temperature, pH, agitation, aeration, inoculum concentration, and

duration must be carefully adjusted (Vehapi et al., 2023). However,

SSF presents challenges in nutrient addition due to its low water

activity, making process control more complex (Fahim et al., 2013).

The culture medium composition plays a critical role in microbial

growth and viability. It typically includes inorganic (ammonium

and nitrate salts) or organic nitrogen sources (amino acids, proteins,

or urea), carbon sources such as simple sugars (sucrose, fructose),

and complex carbohydrates (starch). Besides that, agro-industrial

by-products like molasses, whey, yeast extracts, and peptones are

commonly used to enhance growth (Clerici et al., 2021).

Following fermentation, the next step is formulating the BCA

into a usable product. Various formulations have been developed

for Trichoderma spp., including granules, pellets, wettable powders,

capsules, water-dispersible granules, and emulsifiable liquids

(Locatelli et al., 2018). However, some of these formulations pose

challenges in application, affecting dosing precision and potentially

increasing health risks for applicators (Ubando et al., 2020). In this

context, Jangir et al., 2021, developed water-dispersible granules of

B. subtilis and T. harzianum using response surface methodology

(RSM) to control F. oxysporum, providing a more user and

environmentally friendly option. Similarly, B. megatherium has

been formulated in alginate microcapsules, pellets, or effervescent

systems to enhance bacterial release (Wiwattanapatapee et al.,

2013). In addition, microbial preparations can be combined with

organic amendments to improve soil quality in semi-arid regions

(Fendrihan et al., 2016).
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Regarding formulation types, liquid formulations are often

preferred due to their cost-effectiveness and ease of handling

(Palmieri et al., 2022). They typically consist of an active

ingredient, either microbial cells or their secondary metabolites

combined with a carrier that ensures even distribution and

influences release and stability (Berninger et al., 2018). Water is

the most used carrier, often supplemented with additives to

maintain stability during application (Bashan et al., 2014).

Alternatively, oil-based formulations can be developed, provided

they are non-toxic to microorganisms, plants, humans, or animals

(Palmieri et al., 2022).

On the other hand, solid formulations offer advantages in

storage and transport due to their stability and cost-effectiveness.

Several dehydration methods are used to preserve microbial

viability. Freeze-drying is particularly suitable for heat- and

moisture-sensitive materials (Prakash et al., 2013). Spray drying

rapidly converts liquid suspensions into powder by atomizing

droplets in a hot air chamber (150°C–250°C), offering a fast and

scalable process (Teixidó et al., 2022). Also, fluidized bed drying, is

employed for granulating and coating, where particles are

suspended in hot air to ensure uniform drying, often with

cryoprotectants to enhance stability (Chaudhary et al., 2020;

Teixidó et al., 2022). A combination of spray drying and fluidized

bed drying can further improve uniformity and prevent clumping

(Torres et al., 2014).

Scaling up production begins in the laboratory, where

Erlenmeyer flasks are used to optimize culture media

composition. The process then transitions to small bioreactors

(2.0–5.0 liters) for further refinement of growth conditions. At an

industrial scale, production is conducted in pilot plant bioreactors

with capacities ranging from 100 to 300 liters (Fahim et al., 2013).

Once fermentation is complete, the next phase involves recovering

the microbial cells, spores, or supernatant containing secreted

metabolites, depending on the BCA type. For instance, in B.

amyloliquefaciens, it is recommended to recover both cells and

metabolites, as both contribute to disease control (Gotor-Vila et al.,

2017). Ensuring the viability and stability of the BCA throughout

production, storage, and application for its effectiveness. Colony-

forming unit (CFU) tests are commonly used to determine viable

microorganism counts per milliliter or gram of product (Meyer

et al., 2023). A sufficient concentration of viable cells is crucial to

achieving the desired biological effects in the field. Furthermore,

fungal spores must maintain a high germination rate, as prolonged

storage or adverse conditions can reduce their viability and efficacy

(Palmieri et al., 2022). Beyond cell viability, metabolic activity must

also be assessed to confirm that the microorganisms remain

functional. Measuring ATP (adenosine triphosphate) production

serves as a reliable indicator of cellular energy and viability

(Carrodeguas-González et al., 2022). Ensuring metabolic activity

guarantees that BCAs will perform effectively upon application.

After production, proper storage conditions are critical to

preserving product shelf life. Most BCAs require refrigeration (4°

C–10°C) to maintain microbial viability, though some formulations

remain stable at room temperature depending on the organism and

formulation used (Alamprese et al., 2017). Humidity control is
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equally important, as excess moisture can degrade powder or

granule formulations, leading to contaminant growth or

premature activation.

Finally, the commercialization of a BCA involves regulatory and

patenting processes. Patent applications typically grant 20 years of

protection to inventions that meet criteria for novelty, non-

obviousness, and industrial applicability. A complete description of

the BCA, including its production method and biological

mechanisms, is required. Additionally, regulatory compliance varies

by country; for instance, BCAs must be approved by entities such as

the U.S. Environmental Protection Agency (EPA) in the United

States or the European Union (EU) regulatory bodies before

commercialization (Dourado et al., 2016). Proper labeling is also

mandated, providing essential details on composition, application

methods, safety precautions, and usage instructions (Palmieri et al.,

2022). By following this structured approach from pathogen

identification to formulation, production, quality control, storage,

and regulatory approval, BCAs can be successfully developed and

commercialized as effective alternatives for sustainable disease and

pest management. Indeed, the market includes approximately 2,920

bacterial-based biopesticides, 1,658 fungal-based biopesticides, and

234 viral-based biopesticides. Of these, 227 are bacterial and 169 are

fungal fungicides (Palmieri et al., 2022). Notably, 77 Trichoderma-

based fungicides are available globally, with 7 approved by the

European Commission for use in EU member states (Thambugala

et al., 2020). These products demonstrate the rigorous regulatory

approval processes that often involve high costs and lengthy approval

periods. For instance, in countries like the U.S. and EU member

states, BCAs must comply with strict manufacturing regulations and

are subject to regular audits of production facilities. In contrast, many

developing countries may have less stringent manufacturing controls,

which raise concerns about product quality and effectiveness. These

regulatory processes often include additional testing for safety,

efficacy, and product stability. However, in countries with more

flexible regulatory frameworks, such as some in Asia and Latin

America, the registration process for BCAs may be quicker and less

expensive, but this can come at the cost of reduced guarantees of

product quality. Regulatory differences across countries and regions

further complicate the international marketing and use of BCAs, so

these challenges must be addressed carefully (Vekemans and

Marchand, 2020).

Undoubtedly, this information offers valuable insights into how

the efficacy and safety of these products are ensured within

agricultural practices. For farmers, such knowledge is essential,

empowering them to make well-informed decisions about

selecting microbial fungicides based on crop compatibility,

environmental impact, and field performance. Moreover,

understanding optimal storage and application conditions allows

them to maximize yield and enhance productivity. Beyond practical

applications, this information highlights the scientific rigor

underpinning the development of biological products, reinforcing

that food produced through these methods is both safe and

sustainable. It also fosters greater trust in biological alternatives to

conventional agrochemicals, promoting a healthier and more

environmentally responsible agricultural system.
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6 Challenges and future perspectives
in the use of BCAs in agriculture
The positive effects of BCAs in the field can vary significantly due

to environmental conditions, competition with other microorganisms,

and the genetic variability of pathogens. For example, high UV

radiation, extreme temperatures, or high humidity can hinder BCA

performance after application, limiting their effectiveness in certain

regions or for specific crops (Umer et al., 2021). For this, the BCAs

should be collected and screened to achieve relevant biocontrol results

(Yu et al., 2021b). In addition to environmental limitations, scaling up

BCA production presents another challenge. This is primarily due to

the costs associated with microorganism propagation under optimal

conditions and the need for suitable formulation technologies to ensure

their efficacy. Formulations, such as controlled release or encapsulated

systems, are necessary for maintaining prolonged stability in the field

(Locatelli et al., 2018).

Beyond production challenges, another limitation lies in the

interaction of BCAs with other organisms within the agroecosystem,

such as pollinators, beneficial insects, and soil microorganisms.

Understanding these interactions is vital to minimizing negative

impacts and maximizing the benefits of BCAs (Palmieri et al., 2022).

However, there is a lack of detailed information on these interactions.

The available literature generally focuses on the ecological importance

of relationships between plants, microorganisms, and insect

communities, with some suggestions that negative interactions may

arise when certain microorganisms or insects become parasites

affecting plants (Barolia et al., 2023). On the other hand, beneficial

microorganisms in the rhizosphere can improve plant health and

indirectly support pollinators by enhancing nectar quality. For

instance, Lactobacillus kunkeei, found in flowers, inhibits pathogens

affecting bees, highlighting a positive interaction. In contrast, soil

pathogens can harm plant health and reduce nectar availability for

pollinators. This microbial cycle between soil, plants, and

pollinators underscores the interconnectedness of ecosystem health

(Liu et al., 2019).

Looking to the future of microorganisms such as BCAs offer a

promising sustainable alternative to chemical pesticides. These

agents address environmental pollution and biodiversity loss, as

they do not negatively affect non-target organisms. Unlike chemical

pesticides, which can lead to pathogen resistance over time, BCAs

have multiple modes of action, reducing the likelihood of resistance

development. For example, Trichoderma reduces pathogen

resistance by producing secondary metabolites like peptaibols and

gliotoxin, which exhibit antifungal activity. Besides, it triggers plant

defense mechanisms through elicitors, enhancing systemic

resistance and promoting mutualistic associations that improve

nutrient uptake and plant health (Orozco-Mosqueda et al., 2023).

Utilizing specific Trichoderma isolates, such as T. afroharzianum

TRI07, can effectively inhibit pathogens like A. alternata, enhance

tomato plant defense mechanisms, and promote the production of

defense-related enzymes and phenolic compounds (Philip et al., 2024).

Similarly, B. subtilis, B. mojavensis, and B. velezensis reduce pathogen

resistance of F. oxysporum by producing hydrolytic enzymes and
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secondary metabolites that inhibit pathogen growth. These

microorganisms also promote root development and create an

unfavorable rhizosphere environment for pathogens, ultimately

improving overall plant health and resilience (Auriza

Rumandani, 2025).

Considering growing concerns about food safety, there is

increasing demand for safer pest control methods that do not leave

harmful residues on crops. One of the primary factors influencing

consumer acceptance of BCAs is their level of awareness about these

agents. Research has shown that individuals who are more informed

about BCAs tend to have a more positive perception of their use.

Trichoderma has gained acceptance due to its specificity, safety for

beneficial organisms, and absence of toxic residues or environmental

risks (Sharma and Gothalwal, 2017). This indicates a positive trend

toward acceptance among producers and consumers, as sustainable

agricultural practices and biological control methods continue to be

prioritized within IPM. However, despite these benefits, adoption

remains limited in developed countries due to a general lack of

awareness (Kumar Chaube and Pandey, 2022).

Biotechnological advances improving the efficacy, stability, and

ease of use of BCAs include the development of specialized

formulations using protective substances like sugars and polyols,

which enhance stability during storage. Techniques such as freeze-

drying and fluidized bed-spray-drying are employed to maintain

viability (Chaudhary et al., 2020). The optimized packaging

conditions, including vacuum packaging and modified atmospheres,

help extend shelf life (Kumar et al., 2023). These innovations facilitate

the mass production and application of BCAs, making them more

viable alternatives to synthetic fungicides (Teixidó et al., 2022).

Moreover, other studies analyze advances in transformation

tools for genetic improvement of Trichoderma, enhancing biomass,

primary and secondary metabolite production, and enzyme activity,

thereby improving efficacy and adaptability in agricultural

applications, particularly against challenges posed by climate

change and pathogens (Villao-Uzho et al., 2024). One of the most

common techniques for genetic transformation is protoplast-

mediated transformation using Agrobacterium tumefaciens (Wang

et al., 2019). Early methods for transforming Trichoderma involved

techniques such as electroporation and biolistics (Schuster et al.,

2016). The CRISPR (regularly interspaced clustered short

palindromic repeat)-Cas9 (CRISPR-related nuclease 9) system,

has many innovative applications in Trichoderma (Wang et al.,

2022). CRISPR allows the reduction of undesirable traits and the

introduction of new, desirable traits that can target a wide range of

pathogens and pests in various cropping systems (Tyagi et al.,

2024). Analyzes dedicated to the function of the genes of the

beneficial Trichoderma spp. are generally attributed to the

construction of recombinant DNA using conventional cloning

techniques, which are based on digestion and ligation procedures

(Fitz et al., 2018). The genomic organization, together with the

regulation and enzymatic hydrolytic expression in the T. harzianum

strain IOC3844, are closely related, which helps to increase plant

degradation (Ferreira Filho et al., 2020). The layer-by-layer (LbL)

encapsulation method using biobased lignin derivatives

significantly enhances the stability and efficacy of Trichoderma
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spores, protecting them from extreme temperatures and UV

exposure, thus improving their performance as biocontrol agents

in sustainable agriculture (Løvschall et al., 2024). Biopolymer-based

emulsions, particularly those using agar and cellulose nanocrystals,

enhance the stability and viability of T. atrobrunneum conidia,

allowing for prolonged storage and effective encapsulation, thus

improving their efficacy (Martı ́nez et al., 2023). Chemical

mutagenesis using Ethyl Methyl Sulphonate (EMS) and gamma

irradiation have enhanced the biocontrol capabilities of T. viride,

resulting in stable mutants with improved antagonistic activities

against soil-borne pathogens, thus increasing efficacy and ease of

use in agricultural applications (Shewarega Foyate, 2024).

The genetic improvement of Bacillus spp. has enabled the

identification of key genes that contribute to plant growth promotion

and biopesticide production. Advances in genetic engineering have

facilitated the development of strategies to optimize the production of

enzymes, chemicals, and antimicrobial compounds, making Bacillus

more competitive in the biotechnology industry (Mitra et al., 2021;

Muras et al., 2021). One of the most extensively studied cases is B.

thuringiensis, widely used in biopesticide development. Recombinant

DNA techniques have enhanced its insecticidal potency, expanded its

spectrum of action, improved its persistence in crops, and increased its

fermentation yield (Ortiz et al., 2024). A notable example is the genetic

modification of crops to express cry genes, which have been introduced

into potatoes, tomatoes, tobacco, rice, corn, and broccoli to provide

resistance against agricultural pests (Abbas, 2018). However, this

practice has sparked controversy regarding its safety and potential

impacts on human health.

Advancements in genetic engineering have also benefited other

Bacillus species. For instance, in B. amyloliquefaciens, the

manipulation of regulatory genes such as codY, comA, degU, and

spo0A has proven to be an effective strategy for enhancing the

production of antimicrobial lipopeptides (bacillomycin D, fengycin,

and surfactin), resulting in strains with high potential for industrial

applications (Sun et al., 2021). The application of advanced

technologies, such as CRISPR, has revolutionized the genetic

modification of Bacillus spp. It has been used in B. subtilis to

enhance the production of the terpenoid artemisinic acid (Song

et al., 2021) and in B. licheniformis to improve its production

capacity (Zhou et al., 2019). Furthermore, genetic engineering

allows not only gene modification but also the manipulation of

their products, as seen in the case of B. thuringiensis Cry toxins,

whose optimization has increased their insecticidal efficiency.

Biological products are increasingly integrated into existing

agricultural systems as part of IMP strategies. This integration is

particularly effective when combined with other sustainable

agricultural practices, such as crop rotation, the use of resistant

crops, or the application of organic fertilizers. These practices not

only enhance the efficiency of biological control but also reduce

reliance on chemical products (Baker et al., 2020). Moreover, when

BCAs are integrated with other products like bactericides and

organic fertilizers, their effectiveness is strengthened, contributing

to crop sustainability and boosting agricultural productivity. By

carefully considering interactions with the existing biota, the

ecological functions of the system are optimized, leading to more
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efficient and environmentally friendly pest and disease control

(Vasquez-Lopez et al., 2021). In the case of Trichoderma, studies

have shown that it is not only safe for the soil ecosystem but also

helps maintain its balance and sustainability (Li et al., 2024). From

an ecological perspective, Trichoderma is not considered an

aggressive soil colonizer that disrupts existing microbiota. Instead,

its mode of action is based on competition, which does not harm

other beneficial microorganisms (Zin and Badaluddin, 2020). Given

that Trichoderma is naturally found in soils, it serves to strengthen,

rather than alter, the biological mechanisms in the soil. Importantly,

it does not leave toxic residues or affect soil pH, making it an

ecologically sustainable alternative (Zafra et al., 2015).

Based on the aforementioned, despite the ecological benefits of

BCAs, their commercialization can be more costly compared to

conventional chemical pesticides, which limit their adoption,

particularly in resource-limited countries (Droby et al., 2016).

These high production costs are attributed to the controlled and

specific conditions required for multiplying microorganisms like

Trichoderma and Bacillus. Such processes involve specialized

facilities, expensive growth media, and highly skilled personnel

(Palmieri et al., 2022). For this reason, there is a need to assess the

impact of these organisms in a holistic manner, given the increasing

demand for sustainable alternatives that has driven significant growth

in the biofungicide market in recent years. This approach is

supported by ongoing research demonstrating the effectiveness of

microbial biocontrol agents in diverse crops. For instance, a study

evaluated the effect of Bacillus and Trichoderma species in managing

bacterial wilt in tomatoes (Lycopersicon esculentum). The Bacillus

CB64 and Trichoderma T1 isolates achieved significant reductions in

disease incidence and severity in the field, as well as a decrease of over

90% in the soil pathogen population (Kariuki et al., 2020).

Additionally, research on bananas has shown that strains of B.

licheniformis CSR-D4 significantly reduce the incidence of wilt

caused by F. oxysporum f. sp. cubense in banana plants. The

bioactive metabolites produced by this strain inhibited pathogen

invasion, demonstrating its potential as an effective biocontrol

agent (Izquierdo-Garcıá et al., 2024). Therefore, improving the

connection and relationship between these findings highlights the

importance of adopting integrated biocontrol strategies to enhance

agricultural sustainability.
7 Conclusion

The agri-food industry bears a significant responsibility to meet

global food demand with products that are not only nutritious and

of high quality but also safe. As highlighted throughout this review,

BCAs such as Trichoderma and Bacillus offer a viable and

sustainable alternative to conventional chemical pesticides. These

beneficial microorganisms have demonstrated their ability to

enhance crop productivity, promote soil health, and improve

resilience against various diseases, thereby contributing to eco-

friendly agricultural systems. Understanding the mechanisms of

action, selection criteria, formulation processes, and challenges
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associated with BCAs is essential for optimizing their efficacy in

diverse agricultural environments. This knowledge empowers

farmers to select appropriate formulations that align with specific

environmental and soil conditions, enhancing their productivity

while reducing dependency on synthetic agrochemicals.

Additionally, integrating BCAs with other sustainable practices

can further bolster agricultural resilience and contribute to more

environmentally responsible food production. Moreover, from a

consumer perspective, BCAs present a safer alternative by reducing

the presence of toxic residues in food products. Raising awareness

and providing education about these biocontrol agents are essential

steps in fostering their acceptance and encouraging wider adoption.

Informed consumers are more likely to support sustainable

agricultural solutions, which can drive market growth and

innovation in this field. On a broader scale, challenges such as

regulatory disparities between countries, economic barriers to

production, and commercialization hurdles remain significant.

Addressing these obstacles through collaborative efforts between

researchers, industry, and policymakers is crucial to achieving the

large-scale adoption of BCAs. Thus, this review has underscored the

importance of developing strategies that harmonize regulatory

frameworks and enhance economic feasibility across different

agricultural contexts. While the positive impacts of BCAs on

productivity and sustainability are evident, further research is

needed to optimize formulations, improve application techniques,

and assess long-term efficacy under various agroecological

conditions. Continued efforts in these areas will be essential to

unlocking the full potential of biological control agents and

ensuring their successful integration into mainstream

agricultural practices.
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(2021). Detección de genes Epl1 y Sm1 en Trichoderma spp. antagonistas contra
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Pedraza, L. A., López, C. E., and Uribe-Vélez, D. (2020). Mechanisms of action of
bacillus spp. (bacillaceae) against phytopathogenic microorganisms during their
interaction with plants. Acta Biol. Colombiana 25, 112–125. doi: 10.15446/
abc.v25n1.75045

Philip, B., Behiry, S. I., Salem, M. Z. M., Amer, M. A., El-Samra, I. A., Abdelkhalek,
A., et al. (2024). Trichoderma afroharzianum TRI07 metabolites inhibit Alternaria
alternata growth and induce tomato defense-related enzymes. Sci. Rep. 14, 1874.
doi: 10.1038/s41598-024-52301-2

Pimentel, M. F., Arnão, E., Warner, A., Subedi, A., Rocha, L., Srour, A., et al. (2020).
Trichoderma isolates inhibit Fusarium virguliforme growth, reduce root rot, and induce
defense-related genes on soybean seedlings. Plant Dis. 104, 1949–1959. doi: 10.1094/
PDIS-08-19-1676-RE

Poveda, J. (2021). Trichoderma as biocontrol agent against pests: New uses for a
mycoparasite. Biol. Control 159, 104634. doi: 10.1016/j.biocontrol.2021.104634

Prakash, O., Nimonkar, Y., and Shouche, Y. S. (2013). Practice and prospects of
microbial preservation. FEMS Microbiol. Lett. 339, 1–9. doi: 10.1111/1574-6968.12034

Prasad, B., Sharma, D., Kumar, P., and Chandra Dubey, R. (2023). Biocontrol
potential of Bacillus spp. for resilient and sustainable agricultural systems. Physiol. Mol.
Plant Pathol. 128, 102173. doi: 10.1016/j.pmpp.2023.102173

Prihatiningsih, N., Asnani, A., and Djatmiko, H. A. (2021). Extracellular protease
from Bacillus subtilis b315 with antagonistic activity against bacterial wilt pathogen
(Ralstonia solanacearum) of chili. Biodiversitas 22, 1291–1295. doi: 10.13057/biodiv/
d220327

Rabbee, M. F., Sarafat Ali, M., Choi, J., Hwang, B. S., Jeong, S. C., and Baek, K. H.
(2019). Bacillus velezensis: A valuable member of bioactive molecules within plant
microbiomes. Molecules 24. doi: 10.3390/molecules24061046

Rajer, F. U., Samma, M., Ali, Q., Rajar, W., Wu, H., Raza, W., et al. (2022). Bacillus
spp.-Mediated Growth Promotion of Rice Seedlings and Suppression of Bacterial Blight
Disease under Greenhouse Conditions. Pathogens 11 (11), 1251. doi: 10.3390/
pathogens11111251

Risoli, S., Cotrozzi, L., Sarrocco, S., Nuzzaci, M., Pellegrini, E., and Vitti, A. (2022).
Trichoderma-induced resistance to Botrytis cinerea in Solanum species: A meta-
analysis. Plants 11, 180. doi: 10.3390/plants11020180

Rosazza, T., Eigentler, L., Earl, C., Davidson, F. A., and Stanley-Wall, N. R. (2023).
Bacillus subtilis extracellular protease production incurs a context-dependent cost.Mol.
Microbiol. 120, 105–121. doi: 10.1111/mmi.15110

Saiyam, D., Dubey, A., Malla, M. A., and Kumar, A. (2024). Lipopeptides from
Bacillus: unveiling biotechnological prospects—sources, properties, and diverse
applications. Braz. J. Microbiol. 55, 281–295. doi: 10.1007/s42770-023-01228-3

Santoyo, G., Guzmán-Guzmán, P., Parra-Cota, F. I., de los Santos-Villalobos, S.,
Orozco-Mosqueda, M. D. C., and Glick, B. R. (2021). Plant growth stimulation by
microbial consortia. Agronomy 11, 219. doi: 10.3390/agronomy11020219

Saxena, A., Mishra, S., Ray, S., Raghuwanshi, R., and Singh, H. B. (2020). Differential
Reprogramming of Defense Network in Capsicum annum L. Plants Against
Colletotrichum truncatum Infection by Phyllospheric and Rhizospheric Trichoderma
Strains. J. Plant Growth Regul. 39, 751–763. doi: 10.1007/s00344-019-10017-y

Schuster, M., Schweizer, G., Reissmann, S., and Kahmann, R. (2016). Genome editing
in Ustilago maydis using the CRISPR-Cas system. Fungal Genet. Biol. 89, 3–9.
doi: 10.1016/j.fgb.2015.09.001

Shafi, J., Tian, H., and Ji, M. (2017). Bacillus species as versatile weapons for plant
pathogens: a review. Biotechnol. Biotechnol. Equip. 31, 446–459. doi: 10.1080/
13102818.2017.1286950
frontiersin.org

https://doi.org/10.3390/ijms20122908
https://doi.org/10.1016/j.biocontrol.2017.08.020
https://doi.org/10.1016/j.biocontrol.2017.08.020
https://doi.org/10.1002/adsu.202300409
https://doi.org/10.5423/PPJ.OA.09.2014.0087pISSN1598-2254eISSN2093&ndash;9280
https://doi.org/10.5423/PPJ.OA.09.2014.0087pISSN1598-2254eISSN2093&ndash;9280
https://doi.org/10.1016/j.biocontrol.2020.104242
https://doi.org/10.1016/j.biocontrol.2020.104242
https://doi.org/10.3390/ijerph17041434
https://doi.org/10.3389/fmicb.2018.01966
https://doi.org/10.1007/s00253-023-12381-y
https://doi.org/10.19136/era.a8n2.2791
https://doi.org/10.19136/era.a8n2.2791
https://doi.org/10.18781/r.mex.fit.2101-4
https://doi.org/10.3390/molecules23040834
https://doi.org/10.5377/nexo.v30i2.5530
https://doi.org/10.5377/nexo.v30i2.5530
https://doi.org/10.1038/s41564-023-01513-9
https://doi.org/10.18781/r.mex.fit.2101-5
https://doi.org/10.1016/B978-0-323-85193-0.00005-X
https://doi.org/10.1016/B978-0-323-85193-0.00005-X
https://doi.org/10.1002/bip.22630
https://doi.org/10.17221/55/2016-PPS
https://doi.org/10.18781/r.mex.fit.2005-7
https://doi.org/10.1016/j.fbr.2021.11.004
https://doi.org/10.1080/07388551.2021.1873239
https://doi.org/10.3390/agronomy10081179
https://doi.org/10.1111/jam.14070
https://doi.org/10.3390/plants12030606
https://doi.org/10.3390/plants12030606
https://doi.org/10.1007/s00344-024-11553-y
https://doi.org/10.1007/s00344-024-11553-y
https://doi.org/10.3390/ijms21124235
https://doi.org/10.3390/ijms21124235
https://doi.org/10.3390/horticulturae8070577
https://doi.org/10.15446/abc.v25n1.75045
https://doi.org/10.15446/abc.v25n1.75045
https://doi.org/10.1038/s41598-024-52301-2
https://doi.org/10.1094/PDIS-08-19-1676-RE
https://doi.org/10.1094/PDIS-08-19-1676-RE
https://doi.org/10.1016/j.biocontrol.2021.104634
https://doi.org/10.1111/1574-6968.12034
https://doi.org/10.1016/j.pmpp.2023.102173
https://doi.org/10.13057/biodiv/d220327
https://doi.org/10.13057/biodiv/d220327
https://doi.org/10.3390/molecules24061046
https://doi.org/10.3390/pathogens11111251
https://doi.org/10.3390/pathogens11111251
https://doi.org/10.3390/plants11020180
https://doi.org/10.1111/mmi.15110
https://doi.org/10.1007/s42770-023-01228-3
https://doi.org/10.3390/agronomy11020219
https://doi.org/10.1007/s00344-019-10017-y
https://doi.org/10.1016/j.fgb.2015.09.001
https://doi.org/10.1080/13102818.2017.1286950
https://doi.org/10.1080/13102818.2017.1286950
https://doi.org/10.3389/fagro.2025.1578915
https://www.frontiersin.org/journals/agronomy
https://www.frontiersin.org


Villavicencio-Vásquez et al. 10.3389/fagro.2025.1578915
Sharma, P. K., and Gothalwal, R. (2017). “Trichoderma: A potent fungus as biological
control agent,” in Agro-Environmental Sustainability (Hauppauge, NY: Springer
International Publishing), 113–125. doi: 10.1007/978-3-319-49724-2_6

Shewarega Foyate, M. (2024). Improvement in biocontrol ability of Trichoderma
through chemical mutation and gamma irradiation for the control of soil borne
pathogens. J. Clin. Res. Rep. 15, 01–09. doi: 10.31579/2690-1919/347

Shi, J., Zhu, X., Lu, Y., Zhao, H., Lu, F., and Lu, Z. (2018). Improving iturin A
production of Bacillus amyloliquefaciens by genome shuffling and its inhibition against
Saccharomyces cerevisiae in orange juice. Front. Microbiol. 9. doi: 10.3389/
fmicb.2018.02683

Siahmoshteh, F., Siciliano, I., Banani, H., Hamidi-Esfahani, Z., Razzaghi-Abyaneh, M.,
Gullino, M. L., et al. (2017). Efficacy of Bacillus subtilis and Bacillus amyloliquefaciens in
the control of Aspergillus parasiticus growth and aflatoxins production on pistachio. Int. J.
Food Microbiol. 254, 47–53. doi: 10.1016/j.ijfoodmicro.2017.05.011

Silva, R. N., Monteiro, V. N., Steindorff, A. S., Gomes, E. V., Noronha, E. F., and
Ulhoa, C. J. (2019). Trichoderma/pathogen/plant interaction in pre-harvest food
security. Fungal Biol. 123, 565–583. doi: 10.1016/j.funbio.2019.06.010

Song, Y., He, S., Abdallah, I., Jopkiewicz, A., Setroikromo, R., Van Meerkerk, R., et al.
(2021). Engineering of multiple modules to improve amorphadiene production in
Bacillus subtilis using CRISPR-Cas9. J. Agric. Food Chem. 69, 4785–4794. doi: 10.1021/
acs.jafc.1c00498

Sood, M., Kapoor, D., Kumar, V., Sheteiwy, M., Ramakrishnan, M., Landi, M., et al.
(2020). Trichoderma: The “secrets” of a multitalented biocontrol agent. Plants 9, 1–25.
doi: 10.3390/plants9060762

Souza, E. (2016). The effects of sublethal doses of essential oils and their constituents
on antimicrobial susceptibility and antibiotic resistance among food-related bacteria: A
review. Trends Food Sci. Technol. 56, 1–12. doi: 10.1016/j.tifs.2016.07.012

Stummer, B. E., Zhang, Q., Zhang, X., Warren, R. A., and Harvey, P. R. (2020).
Quantification of Trichoderma afroharzianum, Trichoderma harzianum and
Trichoderma gamsii inoculants in soil, the wheat rhizosphere and in planta
suppression of the crown rot pathogen Fusarium pseudograminearum. J. Appl.
Microbiol. 129, 971–990. doi: 10.1111/jam.14670

Sun, J., Liu, Y., Lin, F., Lu, Z., and Lu, Y. (2021). CodY, ComA, DegU and Spo0A
controlling lipopeptides biosynthesis in Bacillus amyloliquefaciens fmbJ. J. Appl.
Microbiol. 131, 1289–1304. doi: 10.1111/jam.15007

Tamandegani, P. R., Marik, T., Zafari, D., Balázs, D., Vágvölgyi, C., Szekeres, A., et al.
(2020). Changes in peptaibol production of Trichoderma species during in vitro antagonistic
interactions with fungal plant pathogens. Biomolecules 10, 730. doi: 10.3390/biom10050730
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